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Summary 33 

Different mechanisms have been proposed as explanations for seismic anisotropy 34 

at the base of the mantle, including crystallographic preferred orientation of various 35 

minerals (bridgmanite, post-perovskite, and ferropericlase) and shape preferred orientation 36 

of elastically distinct materials such as partial melt. Investigations of the mechanism for 37 

D" anisotropy usually yield ambiguous results, as seismic observations rarely (if ever) 38 

uniquely constrain a mechanism or orientation and usually rely on significant assumptions 39 

to infer flow patterns in the deep mantle. Observations of shear wave splitting and polarities 40 

of SdS and PdP reflections off the D" discontinuity are among our best tools for probing 41 

D" anisotropy; however, currently available datasets cannot constrain one unique scenario 42 

among those suggested by the mineral physics literature. In this work, we determine via a 43 

forward modeling approach what combinations of body wave phases (e.g. SKS, SKKS, 44 

and ScS) are required to uniquely constrain a mechanism for D" anisotropy. We test nine 45 

models based on single-crystal and polycrystalline elastic tensors provided by mineral 46 

physics studies. Our modeling predicts fast shear wave splitting directions for SKS, SKKS, 47 

and ScS phases, as well as polarities of P and S wave reflections off the D" interface, for a 48 

range of propagation directions, via solution of the Christoffel equation. We run tests using 49 

randomly selected synthetic datasets based on a given starting model, controlling the total 50 

number of measurements, the azimuthal distribution, and the type of seismic phases. For 51 

each synthetic dataset, we search over all possible elastic tensors and orientations to 52 

determine which are consistent with the synthetic data. Overall, we find it difficult to 53 

uniquely constrain the mechanism for anisotropy with a typical number of seismic 54 

anisotropy measurements (based on currently available studies) with only one 55 
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measurement technique (SKS, SKKS, ScS, or reflection polarities). However, datasets that 56 

include SKS, SKKS, and ScS measurements or a combination of shear wave splitting and 57 

reflection polarity measurements increase the probability of uniquely constraining the 58 

starting model and its orientation. Based on these findings, we identify specific regions 59 

(i.e., North America, northwestern Pacific, and Australia) of the lowermost mantle with 60 

sufficient raypath coverage for a combination of measurement techniques.   61 
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1. Introduction 69 

Mantle convection finds its surface expression in plate tectonics and represents a 70 

crucial dynamic process in the deep Earth. Despite its importance, the pattern of mantle 71 

convection and the forces that drive mantle flow remain imperfectly understood. This is 72 

particularly true for the deepest mantle: flow at the base of the mantle likely influences 73 

(and/or is influenced by) structures such as large low shear velocity provinces (LLSVPs). 74 

Subducting slabs likely penetrate into the lower mantle and hot mantle plumes  generate 75 

from or near the LLSVPs, indicating a strong connection between the surface and deep 76 

mantle processes (e.g., Garnero et al., 2016).  77 

Observations of seismic anisotropy have the potential to illuminate mantle flow, 78 

due to the relationship between strain due to mantle convection and seismic anisotropy via 79 

lattice preferred orientation (LPO) or shape preferred orientation (SPO) mechanisms. The 80 

presence of anisotropy in the D" layer at the base of the mantle has been known for several 81 

decades (e.g., Lay and Helmberger, 1983) from the analysis of body wave phases (as 82 

summarized in Nowacki et al., 2011). At this point a relatively small fraction (Figure 1) of 83 

the core mantle boundary region has been explored for D" anisotropy using body waves. 84 

Figure 1 shows a map, updated from Nowacki et al. (2011) illustrating the geographical 85 

coverage of previous studies (including recent work by Creasy et al., 2017, Deng et al., 86 

2017, Simmons et al., 2015, Ford et al., 2015, Long and Lynner, 2015, Lynner and Long, 87 

2014, Cottaar and Romanowicz, 2013, and Thomas et al., 2011). Despite these 88 

observations, however, we still do not fully understand the anisotropy in these regions. 89 

Several different models for D” anisotropy have been proposed, including those that invoke 90 

LPO of bridgmanite (Br), post-perovskite (Ppv), or ferropericlase (Fp), and those that 91 
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invoke SPO of partial melt (see Nowacki et al., 2011 for a review). The mechanisms 92 

responsible for D" anisotropy, the dominant slip systems involved, the orientation of the 93 

anisotropic fabric, and the implications for mantle flow geometries thus remain poorly 94 

understood.   95 

A variety of body waves has been used to study anisotropy in the deepest mantle. 96 

Specifically, direct S, ScS, and Sdiff have been used to observe lowermost mantle 97 

anisotropy by measuring shear wave splitting (e.g., Wookey et al., 2005a, Cottaar and 98 

Romanowicz, 2013, Thomas et al., 2007, Ford et al., 2006). Combinations of phases, such 99 

as SKS-SKKS (e.g., Wang and Wen, 2007; Long, 2009) or S-ScS (e.g., Wookey et al., 100 

2005a; Nowacki et al., 2010), are often useful to isolate the lowermost mantle contribution 101 

to splitting. Thomas et al. (2011) used an array analysis technique to observe reflected P 102 

and S waves off the D" discontinuity; the azimuthal dependence of the polarity of D" 103 

reflections SdS and PdP contains information about lowermost mantle anisotropy. While 104 

body wave observations have been extensively used to study anisotropy at the base of the 105 

mantle, such studies suffer from the fundamental limitation of small azimuthal coverage; 106 

most studies are essentially restricted to a single raypath, which means that the geometry 107 

of anisotropy cannot be tightly constrained. 108 

Several recent studies of deep mantle anisotropy have ameliorated this limitation 109 

by targeting regions of D" that are sampled by body waves over multiple azimuths (pink 110 

regions in Figure 1). These include studies of the lowermost mantle beneath Siberia 111 

(Wookey and Kendall, 2008; Thomas et al., 2011), North America (Nowacki et al., 2010), 112 

the Afar region of Africa (Ford et al., 2015), and Australia and New Zealand (Creasy et al., 113 

2017). In some cases, one can test whether the observations could clearly distinguish 114 
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among different mechanisms for anisotropy. For example, Ford et al. (2015) and Creasy et 115 

al. (2017) carried out forward modeling of ScS, SKS, and SKKS splitting datasets over 116 

multiple azimuths to test whether a unique mechanism for anisotropy and/or a unique 117 

orientation of an assumed mechanism could be identified. In each of these studies it was 118 

found that LPO of Ppv matches the observations, but other mechanisms (such as LPO of 119 

Br or Fp) were also consistent with the data. None of the studies summarized in Figure 1 120 

has successfully identified a uniquely constrained mechanism or orientation for anisotropy. 121 

Motivated by this, we attempt here to understand what observations are needed to 122 

distinguish the various possible models for D” anisotropy. 123 

The goal of this study is to understand what combination of body wave datasets 124 

(SKS, SKKS, ScS, and reflection polarities) are necessary to uniquely constrain the 125 

mechanism and geometry of anisotropy in the lowermost mantle using observations of 126 

shear wave splitting and D" reflection polarities. Such an understanding will aid in the 127 

design of future observational studies to maximize the chances of uniquely constraining a 128 

mechanism. We are interested in understanding the characteristics of datasets that are best 129 

suited to constrain the details of D" anisotropy, including the number of measurements 130 

needed, the optimal azimuthal coverage, and the optimal combinations of body wave 131 

phases. We address two specific questions: 1) What types of datasets (potentially including 132 

SKS, SKKS, and/or ScS splitting, and/or reflection polarities) are needed to uniquely 133 

identify the causative mechanism for anisotropy (e.g., LPO of Ppv, Br, Fp, or SPO of partial 134 

melt); and 2) if we assume that the mechanism for anisotropy is known to be LPO of Ppv, 135 

what type of datasets are needed to uniquely constrain the orientation of the anisotropy?     136 
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We carry out forward modeling tests for a suite of synthetic body wave data. Our 137 

approach to forward modeling of synthetic datasets follows our previous work on 138 

observations of shear wave splitting in D” (Ford et al., 2015; Creasy et al., 2017) and also 139 

incorporates measurements of D" polarities of P and S wave reflections (Thomas et al., 140 

2011a). Our approach is to test a variety of candidate elastic tensors that describe various 141 

mechanisms for lowermost mantle anisotropy. For each model, we randomly generate more 142 

than 5,000 unique synthetic datasets (for SKS, SKKS, and ScS shear wave splitting, plus 143 

PdP and SdS polarities) with a certain set of characteristics (e.g., number and type of 144 

measurements, as described below) and a random azimuthal distribution. For each set of 145 

random raypaths, we compute a set of predicted “observations” of shear wave splitting 146 

and/or reflection polarities using a ray theoretical approach. We then attempt to determine 147 

what characteristics of body wave datasets are optimal for uniquely constraining anisotropy 148 

in the lowermost mantle.   149 

 150 

2. Methods 151 

2.1 Candidate models for D” anisotropy  152 

We first consider which plausible models for D” anisotropy should be tested. The 153 

lower mantle is likely composed of pyrolite (e.g., Lee et al., 2004), a model composition 154 

that consists of ~76 mol% of bridgmanite (Br: MgSiO3), ~17 mol% of periclase (Fp: 155 

(Mg,Fe)O), and ~7 mol% of calcium perovskite (Capv: CaSiO3). In the D" layer at the base 156 

of the mantle, we expect a phase change of Br to post-perovskite (Ppv: MgSiO3) (e.g., 157 

Murakami et al., 2004). Based on ab initio calculations and laboratory experiments, Br, Fp, 158 

and Ppv all have strong single-crystal anisotropy, with Fp being the weakest mineral and 159 
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the most anisotropic (as summarized in Nowacki et al., 2011), although it is less abundant 160 

than Br/Ppv. This suggests that LPO development in any of the dominant lowermost mantle 161 

minerals may contribute to the observed anisotropy, as long as deformation is taking place 162 

in the dislocation creep regime (e.g., McNamara et al., 2001). Another possible mechanism 163 

is aligned pockets of an elastically distinct material such as partial melt in configurations 164 

such as disks, tubes, or sheets, creating shape preferred orientation (SPO) (e.g., Kendall 165 

and Silver, 1998) (Tables 1 and 2). 166 

We test a suite of models that describe single-crystal elasticity of lowermost mantle 167 

materials derived from ab initio calculations, following our previous modeling work (Ford 168 

et al., 2015; Creasy et al., 2017). This approach assumes that an aggregate will have the 169 

same anisotropic geometry (although not strength) as a single crystal. In addition to the 170 

single-crystal models, we test one model (for Fp LPO) based on deformation experiments 171 

(Long et al., 2006) and models that invoke the SPO (shape-preferred orientation) of partial 172 

melt (Table 1), with elastic constants calculated using an implementation of effective 173 

medium theory within the MSAT toolbox (Walker and Wookey, 2012).  174 

Finally, our last candidate model approximates a textured Ppv aggregate and is 175 

derived from a 3D, global mantle flow field calculation in combination with a visco-plastic 176 

self-consistent model LPO development in Ppv (Walker et al., 2011). We determined a 177 

representative elastic tensor for Ppv texture development in high-strain simple shear by 178 

querying the TX2008.V1.P010 model of Walker et al. (2011), which combined a lower 179 

mantle viscosity model from Mitrovica and Forte (2004) with a mantle density model from 180 

Simmons et al. (2009). We only considered the case in which slip on the (010) plane 181 

dominates; this is the most likely slip plane for Ppv based on experiments (Walte et al., 182 
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2009; Yamazaki et al., 2006), modeling (Goryaeva et al., 2017), and observations of D" 183 

anisotropy (Creasy et al., 2017; Ford et al., 2015; Thomas et al., 2011). To obtain a 184 

representative average tensor for simple shear, we identified a 15° by 15° geographical 185 

region of the global flow (beneath the northern Atlantic Ocean) that is dominated by strong 186 

horizontal shear. We then extracted and averaged the 16 elastic tensors (the model 187 

calculated tensors every 5°) from the resulting TX2008.V1.P010 elasticity predictions in 188 

this region.  189 

 190 

2.2 Computation of reflection polarities and fast splitting directions 191 

Given the full suite of candidate models for elasticity in D” to be used in our study 192 

(Table 1), we implement methods for predicting various types of body wave observations 193 

for these scenarios. We calculated predicted shear wave splitting fast directions for SKS, 194 

SKKS, and ScS phases (Figure 2) over a range of azimuths (every 5°) and inclinations for 195 

each of these models (Tables 1) by solving the Christoffel equation using the MSAT toolkit 196 

of Walker and Wookey (2012). The three different phases propagate at different inclination 197 

angles: ~55°, 35°, 0° from the horizontal, respectively.  198 

We then calculated the reflection polarities of SdS and PdP and the corresponding 199 

predicted shear wave splitting fast directions (Figure 3) over a range of azimuths (every 200 

5°) and inclinations for each of these models (Tables 1 and 2). Table 2 summarizes the 201 

models used to generate predictions of D" reflection polarities (SdS and PdP), including 202 

the assumed slip system, based on the methodology of Thomas et al. (2011). These models 203 

were constructed by assuming horizontal simple shear at the base of the mantle, where the 204 

dominant slip direction aligns parallel to the CMB, the slip plane is assumed to be 205 
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horizontal, and 12% of the aligned single crystals are mixed linearly with its isotropic 206 

equivalent. This choice of 12% alignment was based on the previous work of Thomas et 207 

al. (2011), and yields reasonable anisotropic strengths; since we focus on reflection 208 

polarities and not amplitudes, however, this choice of value is not critical. We assume that 209 

the aligned grains are sub-parallel with the slip direction and the slip plane is sub-parallel 210 

to the CMB and the remaining grains are randomly oriented for Models A, B, and C (Figure 211 

3). We tested three models (Models A [Ppv], C [Br], and D [Fp] in Table 2) in which the 212 

D" discontinuity represents a change in alignment of the mineral grains from an isotropic 213 

(above the discontinuity) to an anisotropic (below the discontinuity) regime. In Model B, 214 

the D” discontinuity is an isotropic phase transformation from Br to anisotropic Ppv. The 215 

predicted values for reflection polarities for each model are shown in Figure 3 and were 216 

calculated using Guest and Kendall (1993) from the velocity perturbation and reflection 217 

coefficients at the interface between an isotropic and anisotropic layer with respect to 218 

azimuth from the dominant slip direction and epicentral distance (Thomas et al., 2011).  219 

Our approach to calculating predicted shear wave splitting parameters and 220 

reflection polarities for our synthetic models makes several simplifying assumptions. First, 221 

we only directly model shear wave splitting due to lowermost mantle anisotropy, and 222 

ignore any potential contributions from the upper mantle. Our approach therefore assumes 223 

that any upper mantle contribution (in real data) has been correctly accounted for; we 224 

further assume that the bulk of the lower mantle is isotropic (Meade et al., 1995). We do 225 

not explicitly consider how incorrect upper mantle corrections could bias the resulting D” 226 

observations, which is beyond the scope of our study.  Second, we rely on ray theory and 227 

do not consider finite frequency wave effects in our modeling. Ray theoretical predictions 228 
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are generally adequate for homogenous regions of D” (e.g., Nowacki and Wookey, 2016), 229 

although they may break down for laterally heterogeneous anisotropic models 230 

(heterogeneities varying over hundreds of km). Third, in our modeling we approximate the 231 

propagation directions for SKS and SKKS with average inclination angles for these phases, 232 

and for ScS we assume that propagation is horizontal through the D” layer. This assumption 233 

follows previous work (Nowacki et al., 2010; Ford et al., 2015; Creasy et al., 2017). In the 234 

Earth and at the relevant epicentral distances, ScS can be inclined from the horizontal up 235 

to ~15°, but this assumption has only a modest effect on the predicted splitting parameters. 236 

We assume the three different phases (SKS, SKKS, and ScS) propagate at different 237 

inclination angles: ~55°, 35°, 0° from the horizontal, respectively. Inclination angles are 238 

based on a straight-line approximation, calculated using TauP (Crotwell et al., 1999) based 239 

on the PREM Earth model (Dziewonski and Anderson, 1980) for distances of 90° - 120° 240 

for SKS/SKKS and 60° - 80° for ScS with an event at a depth 10 km. We use these average 241 

propagation angles for SKS and SKKS in our modeling for simplicity, although for real 242 

data they can vary by 10° to 20° from these average values.  243 

 244 

2.3 Modeling approach and strategy 245 

Our goal is to conduct a series of stochastic forward modeling simulations to test 246 

whether we can uniquely constrain a given starting model (an elastic tensor) and its 247 

orientation using a dataset with a given set of characteristics (e.g., number and type of 248 

measurements, azimuthal distribution). Our forward modeling framework follows Ford et 249 

al. (2015), who modeled a shear wave splitting dataset that samples the lowermost mantle 250 

beneath the Afar peninsula along the edge of the African LLSVP.  We did not consider 251 
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delay times in our modeling. Individual delay time measurements contain larger error bars, 252 

which limit the utility of using the relative travel times in a dataset as a discriminant. The 253 

complete tradeoff between fabric strength and layer thickness also limits the utility of using 254 

absolute travel times as a constraint.  255 

For each of our modeling experiments, we first choose a starting model and 256 

orientation from the possibilities listed in Table 1. As an example, we first consider a 257 

horizontally aligned elastic tensor of Ppv with [100] and [010] axes parallel to the CMB, 258 

which we will use to illustrate our approach in several of the following figures. Second, we 259 

randomly identify a set of raypaths of SKS, SKKS, and/or ScS sometimes in combination 260 

with SdS and PdP reflection polarities. Third, we calculate the predicted fast-axis directions 261 

and/or reflection polarities of SdS and PdP for each raypath, as described in Section 2.2.  262 

In the fourth step, we model the synthetic dataset by applying the same forward 263 

modeling technique that we typically use for real data (Ford et al., 2015). Specifically, we 264 

treat the synthetic observations as though the actual model used to generate them was not 265 

known, and test all possible models listed in Tables 1 and 2 in all possible orientations 266 

(every 5°) to identify models/orientations that are consistent with the synthetic dataset. A 267 

candidate model/orientation is discarded if the predicted and “observed” fast splitting 268 

directions differ by more than 20° or if the predicted reflection polarities are opposite to 269 

those of the “observations”. We apply this 20° cutoff for the splitting observations, based 270 

on methods and reasonable estimates of errors in previous shear wave splitting studies (see 271 

Ford et al., 2015). While this misfit criterion is appropriate for measurement errors, it does 272 

not take into account effects such as inaccurate upper mantle corrections for actual D” 273 

anisotropy observations or the possible finite-frequency effects of complex structure. 274 
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Explicit consideration of these effects in D” anisotropy studies is a subject of ongoing 275 

research. For each candidate model/orientation that was considered an acceptable fit to the 276 

synthetic data, we calculated a total misfit value for the fast polarization directions only 277 

based on a residual sum of squares approach, following Ford et al. (2015). Each fast 278 

direction misfit is normalized by the maximum residual of 90° and summed by using the 279 

residual sum of squares, in which we calculate the square of the difference between the 280 

observation and data prediction.  281 

The fifth and final step in our modeling strategy is to repeat the entire process a 282 

large number (M) of times for random raypath configurations. All of these steps are 283 

illustrated in Figure 4. In each iteration, we randomly choose a new azimuthal distribution 284 

of raypaths for a new synthetic dataset with varying characteristics (such as the number 285 

and type of observations, described in more detail below). We report our results by 286 

considering what percentage of the M iterations could uniquely identify the starting model. 287 

Each individual iteration was designated as “uniquely constrained” if it successfully 288 

identified the correct starting model and could completely rule out any other candidate 289 

model. However, if there was at least one other anisotropy configuration (any candidate 290 

elastic tensor model, in any orientation) which was found to be consistent with the synthetic 291 

observations, then that iteration was designated “not uniquely constrained.” Therefore, all 292 

our model results are characterized through a %-uniquely constrained value, which 293 

identifies what percentage of the M simulations could uniquely constrain the starting 294 

model. The actual values of these “%-uniquely constrained” estimates are strongly 295 

dependent on our modeling choices, and the estimates could change with different 296 
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modeling assumptions. However, these percentages can be compared across our suite of 297 

numerical simulations, since our assumptions are consistent across the various tests.  298 

Within this modeling framework, we tested a series of synthetic dataset 299 

characteristics described by the following three distinct variables: the number of 300 

measurements (N), ratio of the number of SK(K)S (that is, SKS plus SKKS) measurements 301 

to the total number of shear wave splitting measurements (we term this ratio the “SKS 302 

number”), and the azimuthal distribution of measurements, as quantified by the angular 303 

dispersion (R). Angular dispersion is defined as:  304 

𝐶𝑃 = ∑ cos(𝑎𝑖)
𝑛
𝑖=1 , 𝑆𝑃 = ∑ sin(𝑎𝑖)

𝑛
𝑖=1 ,    (1) 305 

𝑅 =  √𝐶𝑃
2 + 𝑆𝑃

2,      (2)  306 

where 𝑎𝑖 is a vector of directions and R is angular dispersion, which varies from 0 307 

(uniform dispersion) to 1 (concentration in one direction) (Mardia and Jupp, 2000). A 308 

graphical definition of R is shown in Supplementary Figure S1.  309 

We tested different combinations of N and SKS number to gain insight into how 310 

many measurements, and in what combination, are typically needed to uniquely constrain 311 

the anisotropy. For angular dispersion, we calculated the value of R for each of the M 312 

iterations carried out in each test; then, we queried the large number of simulations to 313 

understand how the azimuthal distribution of the synthetic data affected its ability to 314 

constrain anisotropy. 315 

 316 

2.4 Distinguishing the mechanism and orientation of anisotropy 317 

For the first round of tests, we sought to understand how many shear wave splitting 318 

measurements, and in what combination (as described by the SKS number), are generally 319 



 16 

needed to uniquely constrain the mechanism for anisotropy. That is, we tested whether 320 

synthetic datasets could be shown to be consistent only with the correct starting model (e.g., 321 

Ppv, as opposed to other models listed in Table 1), and with no other candidate mechanism. 322 

For this round of tests, we used the single crystal models in Table 1 as starting models, 323 

each in several different orientations. The LPO model of Ppv was only used for the second 324 

round of tests. We defined the starting model orientation via the rotation angle about the 325 

[100] axis from the horizontal (note that Figure 2 only shows an example with a horizontal 326 

[100] and [010] direction). We arbitrarily tested each single crystal model at three different 327 

orientations based on the rotation angle about the [100] axis from the horizontal:  0°, 45°, 328 

and 90°. For the LPO model of Ppv, we only test the original orientation for the starting 329 

model and do not test a rotated version of the elastic tensor since this model is based on a 330 

region in the Walker et al. (2011) with horizontal shear. In our initial round of tests, we 331 

focused only on cases in which shear wave splitting observations of SKS, SKKS, and ScS 332 

(for varying N, SKS number, and R values) were used to constrain the models. In later 333 

tests, we explored scenarios in which reflection measurements were combined with shear 334 

wave splitting data in order to estimate the improvement obtained by combining different 335 

data types.   336 

We also carried out a series of tests whose goal was to constrain the orientation of 337 

the elastic tensor for the case in which the mechanism for anisotropy is known (or 338 

assumed). For this line of inquiry, we focused on Ppv as a test case; we did not test other 339 

mechanisms in this part of the study. The choice to focus on Ppv was made for simplicity 340 

and because Ppv is often invoked as the preferred mechanisms for anisotropy in D" (Creasy 341 

et al., 2017; Ford et al., 2015; Ford and Long, 2015; Nowacki et al., 2010; Thomas et al., 342 
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2011a; Wookey et al., 2005b). We consider both single-crystal Ppv tensors and elastic 343 

tensors derived from texture modeling, as discussed above. As in our first series of tests, 344 

we initially focus on synthetic datasets that only contain shear wave splitting observations, 345 

and then examine cases that also include reflection measurements.  346 

Lastly, in addition to the two major lines of inquiry we address in our modeling 347 

(what kind of datasets are needed to constrain the mechanism and orientation) of lowermost 348 

mantle anisotropy, we performed two practical tests using horizontal Ppv as a starting 349 

model. First, we carried out a test of how many iterations (that is, values of M) are needed 350 

for our forward algorithm to converge on an estimate of the probability of identifying 351 

unique models. Second, we tested the addition of Gaussian noise to the shear wave splitting 352 

predictions, in order to understand how well real, noisy datasets might perform. The results 353 

of these practical tests are described below. While seismic data can deviate from a Gaussian 354 

distribution (Groos and Ritter, 2009), we only consider Gaussian distributed noise here 355 

since in an ideal case, seismic noise is Gaussian distributed (Bendat and Piersol, 2011). 356 

 357 

3. Results 358 

3.1 Illustrative examples: Model runs for a ppv starting model  359 

To illustrate the process and results of our modeling, we discuss here the results 360 

from a test that attempts to constrain the starting model, as well as one iteration of a test 361 

that attempts to constrain the orientation. In both cases, we use synthetic shear wave 362 

splitting data only. For these examples, as in all of our tests, we follow the five steps of our 363 

method outlined above (Figure 4): (1) choose a starting model and orientation, (2) choose 364 

the number of observations and the SKS number to randomly generate a distribution of 365 
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raypaths, (3) calculate the predicted fast polarization directions (of SKS, SKKS, and ScS) 366 

and reflection polarities (for SdS and PdP) for the synthetic dataset for the chosen starting 367 

model, (4) conduct a forward modeling search over all possible orientations for all possible 368 

candidate models to eliminate all models/orientations that do not fit the “observations” 369 

using a misfit cutoff. Then, if all other models and orientations can be eliminated by 370 

applying the misfit cutoff, this set of synthetic raypaths are able to uniquely constrain the 371 

starting model and designated as “uniquely constrained.” The fifth step would be repeating 372 

this process M number of times but for this illustrative example, M = 1.  373 

Our illustrative example is shown in Figure 5. For this example, we chose a starting 374 

model of non-rotated Ppv (in this case, the [100] and [010] crystallographic axes are 375 

parallel to the CMB) (Figure 5a). In all of our single-crystal elasticity tests, we do not 376 

assume a dominant slip system; rather, we invoke a starting orientation in the geographic 377 

reference frame identified by the angle of the mineralogical axes. This particular example 378 

involves 9 splitting observations, 6 of which are SK(K)S (that is, an SKS number of 2/3). 379 

The randomly generated azimuthal distribution of these chosen phases is shown in Figure 380 

5b. The predicted fast polarization directions for our chosen model and ray configuration, 381 

plotted in a ray-centered reference frame, are shown in Figure 5c. A search over all possible 382 

candidate models and orientations (rotating every 5°) shows that there is no other model, 383 

other than the correct starting model (Ppv), that can match each of the synthetic fast 384 

splitting directions to within 20° (our pre-defined misfit cutoff). Put another way, for every 385 

possible combination of starting model and orientation (other than the correct, known 386 

starting model), at least one predicted fast splitting orientation differed from that in the 387 

dataset by more than the 20° misfit cutoff. Since this particular configuration of 388 
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observations could uniquely identify the starting model and no other models, it is 389 

designated “uniquely constrained.”  390 

This particular example illustrates a single iteration (M = 1) of our testing, but the 391 

power of our approach lies in repeating this a large number of times to understand what 392 

percentage of randomly generated synthetic datasets have the ability to uniquely constrain 393 

the starting model. In order to understand how many iterations are needed to converge on 394 

an estimate of this probability, we conducted an “iteration test” for our horizontal Ppv 395 

starting model, as shown in Figure 6. For this test, we used 9 shear wave splitting 396 

measurements (N = 9) and an SKS number of 2/3, as in the example shown in Figure 5, 397 

and ran a large number of iterations (M = 50,000), each involving a new, random 398 

distribution of propagation azimuths. After each successive iteration, we calculated the 399 

percentage (of M iterations) for which the synthetic dataset was able to uniquely constrain 400 

the starting model, as shown in Figure 6. For this starting model, after a large number of 401 

iterations, we found that 41% of all iterations could uniquely constrain the starting model, 402 

while for the other 59% of the raypath configurations, there was another model/orientation 403 

that could simulate the synthetic data. Our running estimate of how likely a dataset with 9 404 

splitting observations (6 SK(K)S, 3 ScS) converges on an average value of 41% after 405 

approximately 1,000 iterations (Figure 5). Based on this iteration test, we have chosen to 406 

run each of our numerical experiments for M = 5,000 iterations, balancing computational 407 

cost and the need for our estimates to converge. 408 

Next, to illustrate our process for testing whether synthetic data can identify a 409 

unique starting orientation, we show in Figure 6 two examples of searching for the correct 410 

starting orientation for the same horizontal Ppv starting model as in Figure 4. For this 411 
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example, we chose two different raypath configurations, one with N = 8 observations (5 412 

SKS+SKKS and 3 ScS; Figure 7a) and one with N = 4 (3 SKS+SKKS and 1 ScS; Figure 413 

7b). We assume that the mechanism for anisotropy is known to be Ppv and that the elastic 414 

constants are known, and search over all possible orientations to test whether there are 415 

additional configurations (other than the known starting orientation) that can reproduce the 416 

synthetic observations.  417 

Figures 7a and 7b show all possible orientations that satisfy this suitability criterion 418 

for each of our two examples (N = 8 and N = 4, respectively), with each orientation color-419 

coded by its calculated misfit value (Equation 1). Following Ford et al. (2015), we search 420 

for local minima of misfit within the 3-D rotation space. For our N = 8 case (Figure 7a), 421 

the set of 8 measurements could uniquely identify the starting orientation, and would be 422 

designated as “uniquely constrained.” However, for our N = 4 case (Figure 7b), we 423 

identified two other possible orientations (that is, the known correct starting orientation, 424 

plus two others). Therefore, for this particular raypath configuration, the solution is 425 

designated “not uniquely constrained.” We note, however, that the orientation with the 426 

lowest misfit value (magenta dot in Figure 7b) is, in fact, the correct starting orientation.  427 

Finally, we illustrate an example calculation that includes Gaussian noise in the 428 

synthetic observations (Figure 7c). This test relies on the same horizontal Ppv starting 429 

model, and uses the same raypath configuration (N = 4) as the test shown in Figure 7b. The 430 

only difference is that when the predicted shear wave splitting fast directions are calculated 431 

based on the starting model and raypath distribution, we add Gaussian noise to the fast 432 

splitting direction “observations,” with a maximum error excursion of 20° and a standard 433 

deviation of 9°. Figure 7c reveals that the case with Gaussian noise produced the same two 434 
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possible sets orientations as fitting the data, but now the solution with the minimum misfit 435 

is not associated with the correct solution.  436 

 437 

3.2 Results: Constraining the anisotropy mechanism 438 

Building on the illustrative examples discussed in section 3.1, we now explore the 439 

results of a large number of simulations with different starting models and raypath 440 

configurations. We first address the question of what kind of datasets are needed to 441 

distinguish among the various models listed in Figures 2 and 3. For this suite of numerical 442 

experiments, we examined a variety of starting models and orientations, as well as a variety 443 

of raypath configurations (as defined by the number of splitting measurements, the SKS 444 

number, and the angular dispersion of the raypath azimuths). The results of these 445 

experiments are shown in Figure 8. We first examine those model runs that only included 446 

shear wave splitting data, shown in the nine panels of Figure 8a. 447 

We initially focus on the mechanism and orientation of the starting model (Figure 448 

8a, left panels), and explore how the probability of uniquely constraining the mechanism 449 

varies as a function of the number of measurements. For each of the models considered, 450 

the probability of identifying the unique starting model increases with the number of 451 

measurements as expected. Typically, there is a sharp increase in the probability for N 452 

values between six and nine measurements. In all cases, approximately 9 measurements 453 

are needed in order to have a ~50% chance of constraining the starting model, while a high 454 

number of splitting measurements (N ≈ 15) is needed for the probability to reach ~90%. 455 

For comparison, the datasets of Ford et al. (2015) and Creasy et al. (2017) contained 456 
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between four and eight splitting measurements. The starting model with the highest success 457 

rate at constraining the mechanism is Br, as opposed to Fp and Ppv.  458 

The probability of constraining the starting mechanism depends on the orientation 459 

of the starting model; as shown in Figure 8a, we tested orientations with a horizontal [100] 460 

crystallographic axis, 45° rotated about the [100], and 90° rotated about the [100] axis. 461 

Interestingly, for Ppv it is easier to uniquely constrain the starting model in the 90° case; 462 

in contrast, for Br the chances are highest for the horizontal case, and for Fp the chances 463 

are substantially higher for the tilted case. The reason for this result for Ppv can be 464 

discerned by examining the predicted splitting patterns in Figure 2. For the horizontal case, 465 

predicted fast splitting directions for ScS do not vary with azimuth; however, if the Ppv 466 

tensor is rotated by 90° about the [100] axis, there is significant variation in fast directions 467 

with azimuth. With greater variability in the predicted fast polarization directions (lower 468 

angular dispersion), there is a higher probability of constraining that model for a given 469 

number of ScS observations. A similar principle is at work for Fp: ScS fast directions do 470 

not vary with azimuth for either horizontally or vertically aligned Fp, but in the tilted case, 471 

variability is present. Generally, the anisotropy scenarios that yield higher chances of 472 

uniquely constraining the starting model have lower mean angular dispersion values of the 473 

predicted fast-axis directions (Supplementary Figure S2). Models that have little variation 474 

in fast-axis directions with azimuth, such as non-rotated Fp, are more difficult to uniquely 475 

constrain (Figure S2c and Figure 8a). 476 

We also examined how the balance between SKS+SKKS vs. ScS phases in the 477 

synthetic dataset affected the ability of the synthetic “observations” to uniquely constrain 478 

the starting model (Figure 8a, middle panels). For these experiments, we varied the SKS 479 
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number from 0 (all ScS measurements) to 1 (all SKS+SKKS measurements) for a fixed 480 

value of N = 9. For very high or low values of SKS number we find a low probability of 481 

uniquely constraining the starting model with substantially higher probabilities for 482 

intermediate SKS numbers. The optimal ratio of SK(K)S phases to total measurements 483 

differs slightly for different starting models, but in general an SKS number between 0.5 484 

and 0.8 maximizes the chances of constraining the anisotropic mechanism. In all cases, a 485 

combination of ScS and SK(K)S shear wave splitting observations, instead of splitting 486 

measurements for just one phase type, will drastically improve the probability of 487 

constraining the starting model.  488 

Additionally, we explored the importance of how the angular distribution of the 489 

synthetic raypaths affected the ability to constrain the starting model, finding only a weak 490 

effect (Figure 8a, right panels). As expected, datasets with a wide angular distribution (R 491 

< 0.2) have the largest probability of uniquely constraining the starting model in all cases. 492 

At very large values of angular dispersion (R > 0.8), for which the raypaths are clustered 493 

over a narrow range of azimuths, the splitting “observations” are sampling similar parts of 494 

the elastic tensor. Because of this, datasets that are tightly clustered in azimuth cannot 495 

capture the symmetry of the tensor and cannot distinguish among different candidate 496 

mechanisms for anisotropy. For intermediate values of R, the dependence on R is not 497 

strong. 498 

Finally, we explored the value of combining shear wave splitting and reflection 499 

polarity measurements when trying to uniquely constrain an anisotropic model. Figure 8b 500 

shows the results of adding a single reflection polarity measurement (that is, a measurement 501 

of PdP and SdS polarities for a single raypath) to a dataset of shear wave splitting 502 
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measurements. For this test, we considered a smaller number (four) of potential candidate 503 

models (as shown in Figure 3), so the probabilities of uniquely constraining the anisotropy 504 

mechanism are generally higher than in our other tests. For this test, we chose a raypath 505 

configuration involving an SKS number of 0.67 and varied the number of shear wave 506 

splitting measurements from 0 to 15. We used a starting model A in Figure 3 (anisotropy 507 

due to Ppv), and tested configurations that involved both shear wave splitting 508 

measurements and one additional set of reflection polarity measurements (both PdP and 509 

SdS) at a single azimuth. This test (Figure 8b) demonstrates that despite the fact that 510 

reflectivity measurements provide only binary information (positive or negative polarities), 511 

the incorporation of a different data type into the test increases the probability of uniquely 512 

constraining the starting model. In some cases, this increase is substantial; specifically, for 513 

datasets containing between four and eight shear wave splitting measurements. The 514 

addition of reflection polarity data can increase the probability of constraining the starting 515 

model by ~10-18% (right panel of Figure 8b).  516 

 517 

3.3 Results: Constraining the anisotropy orientation 518 

 The tests shown in Figure 8 illustrate the ability of shear wave splitting and 519 

reflection polarity data to constrain the anisotropic mechanism if the algorithm is allowed 520 

to consider a range of possible models. We now turn our attention to tests in which we 521 

assume that the mechanism that creates the anisotropy, as well as the elastic constants 522 

associated with that mechanism, are known, but the orientation of the elastic tensor is not 523 

known. In general, this is an easier problem than uniquely constraining the starting model, 524 

as the observations need not distinguish among different candidate elastic tensors, only 525 
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among different possible orientations. In practical terms, this type of modeling exercise 526 

would be suitable for datasets that sample a region of the lowermost mantle whose 527 

mineralogy and temperature conditions can be constrained using independent observations 528 

or models (for example, seismic velocities in combination with mineral physics 529 

constraints).   530 

For this set of tests, we first consider single-crystal Ppv in three different 531 

configurations: 1) [100] and [010] axes oriented in the horizontal plane, 2) a 90° rotation 532 

about the [100] axis, and 3) randomly chosen orientations. For the third configuration, we 533 

randomly identified nine different, unique starting orientations. These randomly generated 534 

orientations were used for each of the ~5,000 iterations in this scenario. As with the tests 535 

discussed in section 3.2, we tested a variety of raypath configurations with a range of N 536 

(number of measurements), SKS number, and examined how our results varied with the 537 

angular dispersion characteristics of the synthetic raypaths. The results of our single-crystal 538 

Ppv tests are shown in the top row of Figure 9. The results for our collection of nine random 539 

starting orientations are shown in detail in Supplementary Figure S3.  540 

As expected, our tests demonstrate that uniquely constraining the orientation of the 541 

starting model is much easier and requires fewer measurements than uniquely constraining 542 

the starting model/mechanism (Figure 7). In general, a ~50% probability of correctly 543 

retrieving the anisotropy is achieved with as few as six to nine splitting measurements (top 544 

left panel of Figure 9a). The orientation of the starting model does affect the likelihood of 545 

uniquely identifying the anisotropy orientation. With our randomly generated starting 546 

orientations, the probability of constraining the starting orientation varies (Figure S3), but 547 

on average randomly oriented starting models do slightly worse compared to the results 548 
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shown in Figure 9. For nine measurements, the randomly orientated models on average 549 

find the correct orientation in 65% of all simulations, compared to Figure 9, where a non-550 

rotated and Ppv rotated by 90° can constrain on average 75% of the simulations. As with 551 

our previous tests, it is clear that a mixture of SK(K)S and ScS shear wave splitting 552 

measurements provide the highest likelihood of constraining the starting orientation, 553 

although the optimal mix of ScS and SK(K)S depends on the starting model orientation. 554 

Our tests confirm that datasets that contain only ScS measurements (that is, SKS number 555 

of zero) cannot constrain the azimuth of the Ppv elastic tensor if its [100] axis is horizontal, 556 

due to the lack of variability in predicted fast polarization direction (Figure 2). The 557 

dependence of our results on angular dispersion of the propagation azimuths (right panels 558 

of Figure 9a) are similar to those for the case in which we attempted to retrieve the starting 559 

model; in general, a wide distribution of azimuths will increase the probability of uniquely 560 

constraining the orientation of Ppv, while datasets whose propagation azimuths are tightly 561 

clustered are less ideal. The same is generally true for the random starting models, despite 562 

some small excursions from the overall trend (Figure S3). These small excursions or 563 

“bumps” in the curves are artifacts, and are related to stochastic variations in the 564 

distribution of the predicted fast splitting directions for different models.  565 

Next, we considered elasticity models that explicitly take into account texture 566 

development in a polycrystalline aggregate, in addition to the single-crystal elastic tensors 567 

that are the main focus of our study. While there are many uncertainties in texture models 568 

for Ppv at lowermost mantle conditions, these models may be more representative of a 569 

realistic texture of aligned Ppv mineral grains. We only considered one case, invoking 570 

dominant slip on the (010) plane. Somewhat surprisingly, we found that for modeled Ppv 571 
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LPO, there is a much lower probability of constraining the orientation of the elastic tensor 572 

than for test cases that used a single crystal elastic tensor (Figure 8a). We investigated 573 

possible reasons for this, and found that in contrast to the single-crystal models, for the 574 

textured Ppv model it is fairly common for the algorithm to identify what we term as 575 

“unstable” solutions, which are illustrated in Figure S4. In this situation, a certain 576 

orientation might fit the observations, but adjacent orientations (in which the elastic tensor 577 

is rotated by 5°) do not. This is in contrast to the behavior of single-crystal elastic models 578 

(Figure 2), in which the best-fitting orientations are adjacent to other solutions that also fit 579 

the data (in other words, the misfit values vary smoothly as a function of rotation angles of 580 

the candidate tensors). In addition, the presence of unstable solutions is highly dependent 581 

on our use of the misfit criterion of 20°. Figure S4 shows results for a range of misfit cutoff 582 

values, and demonstrates that these unstable solutions disappear with the application of 583 

more conservative misfit criteria.  584 

We define a “stable” solution as one in which, if the elastic tensor is rotated slightly 585 

(~5° in any direction), the rotated elastic tensor would still yield an acceptable fit to the 586 

synthetic data. In contrast, an “unstable” solution is one that has no adjacent orientations 587 

that yield an acceptable fit to the data. For the case of the textured Ppv model, the algorithm 588 

generally identifies many “unstable” orientations (Figure 9); again, this is in contrast to the 589 

generally “stable” orientations identified for single-crystal Ppv (Figure 7). In order to 590 

illustrate the effects of these unstable solutions, we applied a sensitivity cutoff to our 591 

textured Ppv simulations (Figure 8a, second row) to illustrate the effects of removing all 592 

unstable solutions. If we consider only stable solutions, the probability of uniquely 593 

constraining the starting orientation increases by 20% on average (Figure 9a). 594 
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In order to identify the starting orientation of the Ppv LPO, we found that a mixture 595 

of SK(K)S and ScS shear wave splitting measurements again provide the highest likelihood 596 

of constraining the orientation (Figure 8a: bottom, middle panel). There is a clear 597 

dependence on angular dispersion (Figure 9a: bottom, right panel). Specifically, with low 598 

values of R (0-0.1) and middle values of R (0.5-0.7), there is a higher probability of 599 

constraining the orientation, while there is a decrease in probability between R = 0.1 and 600 

R = 0.4. In all other cases and starting models, we have not observed this pattern of 601 

dependence with R. While there is no explanation for this pattern, large values of R (0.8-602 

1.0) resulting in low probabilities of finding the starting orientation is consistent with all 603 

other tests.  604 

Returning to our consideration of single-crystal Ppv models, and as in section 3.2, 605 

we considered the effect of adding a reflection measurement to shear wave splitting 606 

observations to constrain the orientation of the single-crystal Ppv starting model (Figure 607 

9b). For this test, we used a starting model that invokes an isotropic ppv layer over an 608 

anisotropic ppv layer with dominant [100](010) slip (Model A in Figure 3). As in the 609 

previous test, we find that just adding one observation of reflection polarity measurements 610 

improves the probability of constraining the starting orientation (Figure 9b), although the 611 

improvement was somewhat less dramatic. Again as with the previous tests, the relative 612 

improvement is greatest for datasets with number of measurements N roughly between 5 613 

and 9.  614 

Finally, in a test analogous to the Gaussian noise test discussed in section 3.1 and 615 

illustrated in Figure 7c, we considered a single-crystal Ppv test in which we tried to retrieve 616 

the correct starting orientation using synthetic observations that included random, Gaussian 617 
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distributed errors on the fast polarization predictions (Figure 10). We found that adding 618 

Gaussian noise to the fast polarization directions, normally distributed between -20° and 619 

20° with a mean of 0° and standard deviation of 9°, does not significantly hinder the 620 

probability of constraining the starting model’s orientation (Figure 10a). However, this test 621 

allowed us to explore the distinction between uniquely constraining the starting model’s 622 

orientation and identifying a model with a minimum misfit value that corresponds to the 623 

correct starting orientation. For the error-free synthetic datasets, the minimum misfit value 624 

always corresponds to the correct orientation, even for cases in which other orientations 625 

are allowed by the data. For cases where Gaussian error is incorporated into the synthetic 626 

dataset, the synthetic dataset may result in an incorrect solution, where the minimum misfit 627 

value may be different from the correct solution. This observation led us to carry out a test 628 

(Figure 10b) in which rather than attempting to uniquely constrain the correct starting 629 

orientation, we tested whether the best-fitting orientation (that is, the candidate orientation 630 

with the minimum misfit value) actually corresponded to the correct starting orientation. 631 

We further tested whether the best-fitting solution in terms of misfit was oriented within 632 

10°-20° of the known, correct starting orientation. Encouragingly, we found that the 633 

probability that the minimum misfit solution was within 20° of the correct orientation 634 

exceeded 50% for datasets with a relatively small number of shear wave splitting 635 

measurements (N ≈ 4).  636 

 637 

4. Discussion 638 

4.1 Implications for the interpretation of real-world data sets 639 
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Understanding the scope of information about lowermost mantle anisotropy 640 

contained in shear wave splitting and reflection polarity observations is crucial for our 641 

ability to relate anisotropy observations to flow at the base of the mantle. While the 642 

mechanisms of lowermost mantle anisotropy remain imperfectly known, the results 643 

presented in this paper reveal observational strategies that can maximize the probability of 644 

constraining the mechanism and/or orientation, regardless of the actual anisotropic 645 

geometries present. This work shows that a diversity of shear wave splitting measurements 646 

and reflection polarity data is essential, and the modeling of single phases (e.g., ScS, SKS, 647 

SdS) is typically insufficient to constrain anisotropic geometry.    648 

Specifically, this work demonstrates that because different seismic phases (ScS, 649 

SKS, SKKS, PdP, SdS) propagate through or reflect off the D" region at different angles 650 

from the horizontal, a combination of these phases is more useful for constraining 651 

anisotropy than datasets with wide azimuthal coverage. Consider, for example, a 652 

hypothetical case in which 9 unique splitting measurements for ScS phases are used to 653 

probe an anisotropic structure consisting of horizontal, single crystal post-perovskite. In 654 

this case, post-perovskite can only be distinguished from other plausible anisotropic 655 

models less than 10% of the time (Figure 8a and 9a). However, if SK(K)S phases and/or 656 

reflection polarities are incorporated into the analysis, then we can distinguish between the 657 

two possible mechanisms nearly 40% of the time (Figure 8a). In all cases of varying starting 658 

models and orientations, a combination of different types of data increases the probability 659 

of constraining the starting model by 10% to 60%. This pattern also generally holds true 660 

for finding the orientation of the Ppv elastic tensor. A diversity of data increases the 661 

likelihood of constraining the orientation of Ppv anisotropy anywhere from 10% to 50% 662 
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for 6 unique measurements. Interestingly, we observed an exception to this (Figure 9a) for 663 

Ppv oriented at an azimuth of 90°, where only ScS splitting data (SKS number of 0) had 664 

the best chance to constrain the starting orientation.  665 

Body wave datasets that probe seismic anisotropy in the lowermost mantle should 666 

combine both multiple data types and wide azimuthal coverage to maximize the probability 667 

that the anisotropic geometry can be tightly constrained. Figure 11 illustrates regions in the 668 

mantle in which all of the body wave measurement methods could potentially be applied 669 

simultaneously. This map was generated by considering the actual distribution of high-670 

magnitude (M > 6.5) seismicity on Earth, in combination with a database of long-running 671 

broadband seismic stations beneath which the upper mantle anisotropy pattern has been 672 

shown to be simple enough to correct for (Lynner and Long, 2013, 2014b). While there are 673 

many regions of D” with limited raypath coverage for the types of data considered in this 674 

study, we find that North America, the Arctic, northwestern Pacific, and Australia are 675 

regions that represent ideal targets to collect a diverse set of observations to further 676 

constrain D” anisotropy.  677 

Our results inform our view of why previous studies that included crossing raypaths 678 

(e.g., Ford et al., 2015; Creasy et al., 2017) were unable to uniquely constrain a model for 679 

D” anisotropy. Our study indicates that a relatively large number of shear wave splitting 680 

measurements (approximately 9 or more for most cases in Figure 8a) are needed to have at 681 

least a 40% to 60% chance of uniquely identifying the starting model. The observational 682 

datasets of Ford et al. (2015) and Creasy et al. (2017) included approximately four to eight 683 

shear wave splitting measurements over unique azimuths in the lowermost mantle (Table 684 

3). The synthetic models presented in this paper help to provide context for why these 685 



 32 

studies have not been able to uniquely constrain a particular mechanism or orientation for 686 

anisotropy (e.g. Ford et al., 2015, Creasy et al., 2017). For example, each of these studies 687 

(Table 3) had relatively high angular dispersion values for their range of predicted fast 688 

splitting directions (greater than 0.4 in all cases). As discussed in section 3.2, datasets with 689 

lower angular dispersion values are generally more successful at constraining a unique 690 

elastic tensor. Therefore, even though many of the studies listed in Table 3 used diverse 691 

data types with combinations of SKS, SKKS, and ScS, they could not uniquely constrain 692 

an anisotropy mechanism or orientation when testing the elastic tensors considered in this 693 

study. The studies that used one type of observation (Nowacki et al., 2010; Thomas et al., 694 

2011) did not consider all possible elastic tensors and orientations that we tested here, so 695 

we cannot directly compare them with the results of our synthetic tests. If the mechanisms 696 

for anisotropy and the associated elastic tensors can be reliably assumed, there is generally 697 

a higher chance of identifying the correct orientation and inferring the correct mantle flow 698 

geometry. With only 9 measurements, there is a 40% to 80% chance of uniquely 699 

constraining the orientation of post-perovskite (Figure 9a), an improvement from the 700 

chance of uniquely identifying the elastic tensor itself (a 40%-60% chance). Consideration 701 

of these results in future studies of D” anisotropy, as well as a more detailed consideration 702 

of how errors and uncertainties propagate in forward models, should enhance our ability to 703 

characterize anisotropy at the base of the mantle. A more detailed statistical analysis may 704 

be required similar to this study to fully explore the error and model space.  705 

 706 

4.2 Practical considerations  707 
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Our tests that assumed Gaussian error on the predicted fast splitting directions 708 

(Figure 10b) demonstrate that it does not significantly affect the probability of constraining 709 

the model, as compared to noise-free synthetic data. When including Gaussian error, we 710 

found that as few as four shear wave splitting measurements can identify the correct 711 

orientation within 20° more than 50% of the time. Datasets of this size (roughly four unique 712 

measurements in the same region of D”) can likely be reasonably achieved in many regions 713 

of the lowermost mantle, based on the distribution of available raypaths (Figure 11). This 714 

finding may help with the interpretation of modeling results for real splitting datasets, such 715 

as those considered by Ford et al. (2015) and Creasy et al. (2017), for which multiple 716 

possible anisotropic orientations were identified, but particular orientations had 717 

significantly lower misfit values than others.  718 

Our synthetic modeling results also shed light on potential complications in 719 

interpretation caused by the different symmetry classes of some of the candidate elasticity 720 

scenarios that have been proposed to explain lowermost mantle anisotropy. To effectively 721 

differentiate these scenarios using shear wave splitting data alone, it is crucial for splitting 722 

datasets to probe the symmetry of the mineral such that no other elastic tensor simulates 723 

that pattern for a similar range of propagation directions. Of the candidate scenarios we 724 

tested in this study, Fp has the highest (cubic) symmetry with only 3 unique constants in 725 

the elastic tensor. SPO models have the next highest symmetry, since tubule and oblate 726 

SPO models are hexagonal (transversely isotropic) with 5 unique elastic constants. Ppv and 727 

Br are both orthorhombic, with the same order of symmetry and only 9 unique elastic 728 

constants. In more complicated models, such as LPO calculations of single crystals, the 729 

symmetry is much lower than its single crystal counterpart with 21 unique elastic constants.  730 
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 731 

4.3 Limitations of our modeling approach 732 

We caution that our synthetic tests must be interpreted in light of the still-733 

considerable limitations in our understanding of the elasticity of anisotropic materials at 734 

lowermost mantle conditions. We have focused mainly on single-crystal elastic tensors, 735 

derived mainly from ab initio simulations, as a reasonable starting point in this study; 736 

however, predictions of single-crystal elasticity are likely imperfect and do not take into 737 

account effects such as variation in composition. Furthermore, single-crystal elasticity is 738 

an imperfect proxy for the likely anisotropic geometry of polycrystalline aggregates, 739 

particularly for minerals with high symmetry such as Fp (e.g., Yamazaki and Karato, 740 

2002). The further consideration of elasticity models that explicitly take into account 741 

texture development will be an important step, although texture models include a number 742 

of poorly known parameters (such as activation energies for different slip systems) and 743 

consensus on the dominant slip systems in different lowermost mantle minerals remains 744 

elusive (e.g., Nowacki et al., 2011).      745 

Another limitation of the work proposed here is that it is carried out in the context 746 

of ray theoretical predictions, assuming infinite frequency, rather than considering the full 747 

characteristics of the waveform at finite frequencies. With improvements on both 748 

observational and modeling techniques that model the full waveform (e.g., Kawai and 749 

Geller, 2010, Nowacki and Wookey, 2016, Parisi et al., 2018), the interpretation of seismic 750 

anisotropy observations can very likely be improved. In particular, future work must 751 

investigate how the measurement techniques used influence the interpretation of finite 752 

frequency waveform effects and to what extent ray theoretical predictions are a useful 753 
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approximation. Despite these limitations, we expect that future work that predicts body 754 

wave observations in the presence of lowermost mantle anisotropy in a finite-frequency 755 

framework will likely find similar results: a diversity of seismic phases and measurement 756 

yields the best probability of capturing the symmetry, orientation, and properties of an 757 

elastic tensor. While this study is limited to a specific set of currently-available elastic 758 

tensors from the mineral physics literature, our overall findings should be generally 759 

applicable and adaptable to future improvements of our knowledge of lowermost mantle 760 

elasticity.  761 

 762 

5. Summary 763 

To summarize, the complete characterization and interpretation of seismic 764 

anisotropy at the base of the mantle would have profound effects on our understanding of 765 

lower mantle dynamics, potentially yielding insights into the pattern of mantle flow. Many 766 

recent studies have pointed to the difficulty of distinguishing different models of lowermost 767 

mantle anisotropy with body wave observations, given challenges with data coverage and 768 

uncertainties in the mechanism for anisotropy and the relationships between deformation 769 

and the resulting anisotropy at lower mantle conditions. In this study, we conducted a series 770 

of Monte Carlo simulations to determine what combination of body wave datasets (shear 771 

wave splitting and reflection polarities) are required to constrain D" anisotropy. We tested 772 

various starting models, orientations, and methods for the detection and identification of 773 

D” anisotropy. The modeling approach in this study is applicable to a wide range of 774 

elasticity models, and can be extended as our knowledge of the physical properties of the 775 
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lowermost mantle increases. This approach can be used in future work on D” anisotropy to 776 

further explore how well a dataset can discriminate among possible elastic tensors. 777 

Our results show that a diversity of observational techniques, including different 778 

types of seismic phases propagating over a range of raypath directions, are necessary in 779 

order to maximize the chances of constraining anisotropy at the base of the mantle. A 780 

combination of shear wave splitting measurements and observations of PdP and SdS 781 

reflection polarities in the same regions may be particularly powerful. We have further 782 

shown that if the mineralogy and/or mechanism for anisotropy can be constrained from 783 

independent data, then the orientation of the elastic tensor (and thus information about 784 

patterns of mantle flow) can likely be retrieved from observational datasets that include a 785 

relatively modest number of measurements.   786 
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Tables 787 

Table 1 788 

Summary of all elastic tensors used in the forward modeling. Columns show the type of 789 

tensor (single-crystal, LPO based on experimental data, SPO based on effective medium 790 

averaging, or LPO based on global flow and texture models), the phases and/or 791 

constituents, and the reference. For the single-crystal tensors, the pressure and temperature 792 

conditions used in the modeling are also indicated. 1Elastic tensors used for tests to 793 

uniquely constrain the starting model. 2Elastic tensors used for tests to uniquely constrain 794 

the orientation.  795 

Single Crystal Tensors 

Geometry Phase 
Pressure 

(GPa) 

Temperature 

(K) 
References 

Single 

Crystal 

Br1 

125 2500 
Wentzcovitch et al. [2006], 

Wookey et al. [2005a, 2005b] 
126 2800 

136 4000 

Ppv1,2 135 4000 Stackhouse et al. [2005] 

MgO1 135 3000 Karki et al. [1999] 

Other Tensors 

Geometry Phase Notes References 

Experimental 

LPO 
MgO1 P = 0.3 GPa; T = 1473K Long et al. [2006] 

SPO1 

0.003 vol. 

fraction 

melt 

Oblate shape Walker and Wookey [2012] 

0.003 vol. 

fraction 

melt 

Tubule shape Walker and Wookey [2012] 

Calculated 

LPO2 Ppv 

TX2008-V1 model; dominant 

slip plane: (010), P = 125-136; 

T = 3000-4000 K 

Walker et al. [2011]; Tensors 

based on Stackhouse et al., 

[2005] and Stackhouse and 

Brodholt [2007] 

 796 

 797 

 798 
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Table 2 799 

Models for the top (isotropic) and bottom (anisotropic) layers of each model described in 800 

Figure 3 for reflection polarity models. The dominant slip system assumed in each bottom 801 

layer is listed.  802 

Model 
Top Layer 

(isotropic) 

Bottom Layer 

(anisotropic) 

Slip 

System 
References 

A Ppv Ppv [100](010) 
Walte et al. [2009] 

Wentzcovitch et al. [2006] 

B Br Ppv [100](010) 
Walte et al. [2009] 

Wentzcovitch et al. [2006] 

C Br Br    [010](100) 
Stackhouse et al. [2005] 

Mainprice et al. [2008] 

D Fp Fp [100](001) Karki et al. [1999] 

 803 

 804 

Table 3 805 

Summary of previous studies that have used crossing raypaths to study D” anisotropy, as 806 

identified in Figure 1. The number of unique azimuths is given; each azimuth typically 807 

contains multiple observations (in practice, these observations are typically averaged for 808 

each set of raypaths). SKS number is calculated as defined in the text; for example, 809 

Nowacki et al. (2010) used only ScS phases, therefore the SKS number is 0. Angular 810 

dispersion (R) of the raypath azimuths is also calculated as described in the text. 811 

References Region 
Number of 

Unique Azimuths 
SKS Number R 

Creasy et al., 2017 New Zealand 8 0.75 0.7866 

Creasy et al., 2017 SW Australia 4 0.5 0.4297 

Ford et al., 2015 Afar Peninsula 5 0.6 0.8305 

Thomas et al., 2011 
Siberia + 

Caribbean 
4 

reflection 

polarities 
0.5801 

Nowacki et al., 2010 Caribbean 6 0 0.5734 

  812 
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Figure Captions 813 

 814 

 815 

Figure 1. Summary map of previously published studies (which include shear wave 816 

splitting measurements and reflection polarity observations) to constrain D" anisotropy, 817 

updated and adapted from Nowacki et al. (2011). Highlighted areas (pink/gray) indicate 818 

regions that have been probed for D" anisotropy with these methods. Regions in pink 819 

indicate studies that used multiple techniques and/or intersecting ray paths, for which at 820 

least two observations intersect in the same region with different propagation azimuths. 821 

Two such studies are highlighted on the right. Panel (a) shows the raypaths (black lines) 822 

beneath Siberia studied in the reflection polarity study of Thomas et al. (2011). CMB 823 

bounce points are indicated with diamonds and circles, and the dotted arrow indicates paleo 824 

subduction direction 100 Ma ago of the Kula plate. Background colors indicate P wave 825 

velocity deviations at the base of the mantle from the model of Kárason and Hilst (2001). 826 
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Panel (b) shows a schematic diagram of shear wave splitting measurements of SKS (green), 827 

SKKS (red) , and ScS (blue) phases beneath the Afar region of Africa (Ford et al., 2015). 828 

Background colors show S wave velocity deviations at a depth of 250 km above core 829 

mantle boundary from the GyPSuM tomography model (Simmons et al., 2010). Color 830 

scales indicate the maximum S or P wave velocity deviation. 831 

 832 

 833 

 834 

 835 

 836 

 837 

 838 

 839 

 840 

 841 

 842 
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 843 

Figure 2. Elastic properties of models from Table 1 for D" anisotropy tested in this 844 

study, as expressed in the predicted shear wave splitting behavior. Predicted shear wave 845 

splitting behavior is shown as a 3D spherical representation relative to geographic space, 846 

with the [100], [010], and [001] axes indicated in order to view the variation of splitting of 847 

SKS, SKKS, and ScS with azimuth. The anisotropy 3-D spheres show the directional 848 

dependence of seismic anisotropy (strength [gray color bar] and fast-axis directions [black 849 

bars]). For each model, the [100] and [010] axes are parallel to the CMB and oriented north 850 

and west, respectively. Black bars show predicted splitting over a range inclinations and 851 

azimuths, as computed using the MSAT toolkit (Walker and Wookey, 2012). Magenta bars 852 

illustrate the predicted fast polarization directions for the given starting models for a 853 

particular set of SKS, SKKS, and ScS raypaths every 20° (we actually use steps of 5° in 854 
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the synthetic modeling, but the plotting is too dense to show) that are evenly distributed. 855 

Inclination angles used in the modeling are based on the average inclination angles for each 856 

phase through the D" layer; we assume that ScS propagates nearly horizontally through the 857 

lowermost mantle, as described in the text. From left to right, we show elastic tensor models 858 

for single-crystal Ppv (Stackhouse et al., 2005), single-crystal Br (Wentzcovitch et al., 859 

2006), single-crystal Fp (Karki et al., 1999: Labeled as "Fp (Karki)"), experimentally-860 

derived LPO of Fp (Long et al., 2006: Labeled as “Fp (Long)”), Oblate SPO (Walker and 861 

Wookey, 2012), Tubule SPO (Walker and Wookey, 2012), and the averaged, textured Ppv 862 

(Walker et al., 2011). Background colors are %S-wave anisotropy.  863 

 864 
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 865 

Figure 3. Predictions of reflection polarities for PdP and SdS waves for different 866 

D" anisotropy models shown as an upper hemispherical projection since polarities depend 867 

on azimuth, not inclination as in Figure 2. Predictions are made as a function of azimuth 868 

and epicentral distance (from 60° to 80°). Azimuth is relative to the slip direction (indicated 869 

by the black arrow), which also corresponds to direction of lowermost mantle flow for a 870 

simple horizontal shear geometry. The first two columns show the reflection coefficients 871 

of P-P and SH-SH upon reflection off the D" discontinuity, located 300 km above the core 872 

mantle boundary in the model. Blue and red regions indicate positive and negative 873 

polarities, respectively. Models A, C, and D illustrate situations where there is an onset of 874 
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anisotropy at the D" discontinuity while Model B invokes both a phase change (from Br to 875 

Ppv) and the onset of anisotropy. The last column illustrates the predicted S wave 876 

anisotropy (color bar) and predicted shear wave splitting fast directions (black bars) for the 877 

same models, plotted as a function of azimuth and inclination from the horizontal. Elastic 878 

tensors corresponding to these models are shown in Table 2. 879 

 880 

 881 

 882 

 883 

 884 

 885 

 886 
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 887 

Figure 4. Flow chart of steps in our modeling framework. The first step is to identify 888 

the starting model and its orientation from Tables 1 or 2. Secondly, randomly choose an 889 

azimuthal distribution of raypaths through the starting model and fix the SKS number. 890 

Thirdly, use the raypaths from step 2 and calculate the fast polarization directions and/or 891 

reflection polarities (splitting parameters) based on the identified starting model and SKS 892 

number. Fourth, use this synthetic dataset to use the forward modeling approach to identify 893 

which models and orientations fit the synthetic dataset. We apply the misfit cutoff as 894 

described in Methods to eliminate certain models and orientations in order to see if the 895 

synthetic dataset can uniquely constrain the starting model. Lastly, in step 5, we repeat this 896 

1. Choose starting model and its 
starting orientation

2. Randomly identify azimuthal 
distribution of raypaths and set 
SKS number

3. Calculate splitting parameters 
based on starting model, SKS 
number, and azimuths

4. Conduct forward modeling 
search over all models and 
orientations

•Eliminate models/orientations 
if exceed misfit cutoff

•Did this set of raypaths 
uniquely solve for the starting 
model/ orientation: yes or no?

5. Repeat 
process M times 

(number of 
iterations)
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same process M times (number of iterations), identifying a new random distribution of 897 

raypaths each time.  898 

 899 

 900 

Figure 5. An illustrative example of how shear wave splitting predictions for an 901 

individual iteration in our stochastic modeling scheme are calculated. (a) Plane view 902 

(looking down from above on CMB) of starting model for Ppv (Stackhouse et al., 2005) 903 

showing S wave % anisotropy (colors), with fast polarization directions plotted as black 904 

bars. (b) Raypath distribution for this example for SKS (red), SKKS (orange), and ScS 905 

(blue), plotted as azimuth from north. (c) The predicted fast polarization directions based 906 

on the starting model in (a) and the raypath distribution in (b). Colors indicate phase type.  907 

 908 
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 909 

 910 

Figure 6. Results of a test of how many iterations are needed for the model results 911 

to converge. The x-axis defines the number of iterations (M) (that is, number of unique 912 

raypath configurations with similar characteristics) that were successively carried out. The 913 

y-axis indicates what percentage of the iterations run could be uniquely constrained. This 914 

particular test used 9 shear wave splitting measurements and a starting model of horizontal 915 

Ppv, and we found that after a large number of iterations, the starting model could be 916 

constrained for 41% of all iterations carried out. In contrast, for the other 59%, a unique 917 

solution of Ppv could not be constrained for that particular synthetic dataset.  Based on the 918 

results of this test, at least 5,000 iterations were carried out for each test described in this 919 

study.   920 

 921 
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 922 

Figure 7. An example of how the forward modeling method identifies all possible 923 

orientations of the Ppv single crystal elastic tensor that fit a particular synthetic dataset. We 924 

show two synthetic datasets of 8 (a) and 4 (b) unique synthetic measurements with 3 SKS, 925 

3 SKKS, 2 ScS measurements and 1 SKS, 2 SKKS, and 1 ScS measurements, respectively. 926 

The last case (c) shows a test with the same 4 synthetic measurements as in (b) but with 927 

Gaussian distributed random error to the predicted fast directions. These projections show 928 
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all possible permissible orientations (colored dots) of the Ppv tensor for the given synthetic 929 

dataset plotted as an upper hemispherical projection of the [100], [010], and [001] axes. 930 

The white dots mark local minima, where the magenta dots represent the global minimum. 931 

The magenta dots indicate the global minimum misfit, which should be equal to a non-932 

rotated Ppv (that is, horizontal [100] and [010] axes and vertical [001] axis).  933 

 934 
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 935 

Figure 8: Results of synthetic tests that aim to uniquely constrain the starting 936 

model/mechanism, as discussed in section 3.2. Three different sets of tensors were tested, 937 

while three different aspects of the raypath configuration were varied. In (a), each row 938 

shows plots of the probability of uniquely identifying the given starting model (Ppv, Br, 939 
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and MgO). Each column represents the variable describing raypath configuration that was 940 

allowed to vary, while the other two were fixed. In the first column, we varied the number 941 

of measurements N, but fixed the SKS ratio (0.67) and tested the full range of possible R 942 

values. In the second column, we varied SKS number but fixed the number of 943 

measurements (N = 9) and tested the full range of possible R values. In the third column, 944 

we varied the angular dispersion R, but fixed the number of measurements and SKS 945 

number (N = 9 and SKS = 0.6). We further tested a range of starting orientations for each 946 

starting model (three for Ppv and Br, two for Fp); the labels (0, 45, 90) refer to the rotation 947 

angle (in degrees) about the [100] axis from the horizontal. In (b), we chose Model A in 948 

Figure 3 as the starting model and tested whether we could uniquely constrain this starting 949 

model using a combination of shear wave splitting and reflection measurements. For this 950 

test, the SKS number was fixed (0.67) and we tested the full range of possible angular 951 

dispersion values. The test shown in (b: left image) compares synthetic datasets with only 952 

shear wave splitting measurements (black line, SS) to those that include splitting plus one 953 

additional reflection measurement for a P and S reflected phase off the D" over a randomly 954 

defined azimuth (gray line, SS+R). The difference in probability between these two raypath 955 

configuration scenarios is shown in right image.  956 

 957 
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 958 

Figure 9. Results of synthetic tests that aim to uniquely constrain the orientation of 959 

a Ppv starting model, as discussed in section 3.3. In (a), each row shows plots of the 960 

probability of uniquely identifying the given starting model’s orientation using the 961 

synthetic data, for three different orientations about the [100] axis in the starting model, as 962 

shown in the legend (with the labels 0 and 90, referring to the angle about the [100] axis) 963 

and described in the text. As in Figure 7, each column represents the variable that was 964 
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allowed to vary, while the other two were fixed. The second row illustrates the results of 965 

tests that aimed to uniquely constraining the starting model orientation for textured Ppv 966 

models invoking slip on the (010) plane (Walker et al., 2011). For these tests, we 967 

distinguish between scenarios in which we increased the sensitivity (that is, discarded 968 

“unstable” solutions, as described in the text). Tests in which unstable solutions were 969 

discarded (gray line) increased the probability of identifying the orientation of anisotropy 970 

in comparison to retaining unstable solutions (black line). In (b), we show results of tests 971 

of the effect of adding one additional reflection measurement to the shear wave splitting 972 

measurements, using Model A in Figure 3 as the starting model. For these tests, the SKS 973 

number was fixed (0.67) and we tested the full range of possible angular dispersion values. 974 

The test shown in (b: left image) compares synthetic datasets with only shear wave splitting 975 

measurements (black line, SS) to those that include splitting plus one additional reflection 976 

measurement for a P and S reflected phase off the D" over a randomly defined azimuth 977 

(gray line, SS+R). The difference in probability between these two raypath configuration 978 

scenarios is shown at right.  979 

 980 

 981 
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 982 

Figure 10: Results of tests that aimed to uniquely identify the orientation of a single-983 

crystal Ppv starting model, with Gaussian distributed random errors (standard deviation = 984 

9°) incorporated into the synthetic shear wave splitting dataset. In (a), we varied the number 985 

of shear wave splitting measurements and calculated the probabilities of correctly 986 

retrieving the starting model orientation. In (b), we plot the probability of correctly 987 

identifying the starting orientation for a synthetic dataset with Gaussian error applied based 988 

on an identification of the minimum misfit (as opposed to searching for a unique solution). 989 

In (b), the black line (unique solution, same as in (a)) shows the probability of uniquely 990 

constraining the orientation of the starting model. The other two lines show the probability 991 

of identifying the correct solution within 10° or 20° by using the minimum misfit. 992 

 993 
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 994 

Figure 11. Map of regions of the lowermost mantle in which the various 995 

measurement methods (SKS [distance range: 108° – 122°], SKKS [108° – 122°], and ScS 996 

[60° – 80°] shear wave splitting and reflection polarities) used in this study could 997 

potentially be applied. We parameterize the D” layer into a 5 by 5 grid. We calculated 998 

raypaths for different seismic phases using TauP (Crotwell et al., 1999) assuming a 250km 999 

thick D” layer. We used a set of seismic stations with simple upper mantle anisotropy 1000 

(Lynner and Long, 2013, 2014b) for all events greater than Mw6.5 that occurred in the 1001 

time span of deployment for each seismic station for SKS, SKKS, and ScS. For reflection 1002 

polarities, we considered only dense arrays openly available: TAMNNET, POLENET, 1003 

GAMSEIS, Yellowknife Array, KNET, Southern California Network, GRSN Array, F-1004 

Net, USArray (using stations in Alaska), USArray (using stations in Texas), USArray 1005 

(using stations in Minnesota), USArray (using stations in New York), USArray (using 1006 

stations in South Carolina), and the Pacific Northwest Seismic Network.  1007 

 1008 
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 14	

 15	

 16	

Figure S1. Schematic diagram showing the definition of angular dispersion (R), with 17	

arrows indicating a direction anywhere from 0° to 360°. Small values of R indicate a wide 18	

distribution of directions, while larger values indicate a tight configuration.  19	

 20	

R = 0 R = 1 R ≈ 0.7

Figure	4.	Schematic	diagram	showing	the	definition	 of	
angular	dispersion	 (R),	with	arrows	indicating	 the	
propagation	 azimuthal	for	each	raypath.	Small	values	of	R
indicate	 a	wide	distribution	 of	directions,	 while	 larger	values	
indicate	 a	tight	azimuthal	configuration.	



 21	

 22	

Figure S2. Angular dispersion – R – plots of all predicted fast axis directions for SKS (red), 23	

SKKS (orange), SKS and SKKS (violet), and ScS (blue). Equations (2) and (3) from the main text 24	

were used to calculate R; however, since fast axis directions can only vary from -90° to 90°, the 25	

fast axis orientations were adjusted from -90 to 90 to 0 to 360. Angular dispersion is plotted in 26	

terms of the clockwise rotation angle about the [100] axis of (a) post-perovskite (PPV), (b) 27	

bridgmanite (Br), (c) ferropericlase (Fp), and (d) LPO of PPV of the given models, respectively. 28	

Magenta triangles indicate the starting models’ orientations used in the modeling in the main text 29	

as in Figures 8 and 9.  30	
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 31	

 32	

 33	

Figure S3. Results of synthetic tests that aim to uniquely constrain the orientation of a Ppv 34	

starting model, as discussed in section 3.3 in the main text, by selecting 9 random the starting 35	

orientations of the Ppv tensor. Each figure illustrates the probability of uniquely identifying the 36	

given starting model’s orientation using the synthetic data, for nine different orientations of Ppv. 37	

As in Figure 7, each column represents the variable that was allowed to vary, while the other two 38	

were fixed. For (a), the SKS number was fixed (0.67). For (b), the number of measurements was 39	

fixed to six. For (c), the number of measurements was fixed to nine measurements and an SKS 40	

number of 0.67. The blue lines in (b) and (c) correlate to the blue line in (a), where the variation 41	

of SKS number and angular dispersion were only tested for one of the starting model orientations.  42	
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Figure S4: Example illustrating the identification of unstable solutions in a test that aimed 49	

to identify the starting orientation of a horizontal textured Ppv LPO. The polar plots show all 50	

possible orientations that fit a given synthetic dataset. The colors represent misfit values. The white 51	

circles mark the minimum misfit of each cluster of possible orientations. The magenta circles show 52	

the correct solution. The orange boxes highlight some of the unstable solutions. Each row 53	

represents a different misfit cutoff. The top row represents the cutoff used in this study (20°). The 54	

second row uses a cutoff of 15° and the third row 10°. With a lower cutoff, the unstable solutions 55	

are eliminated. The bottom elastic tensors on the left show and example of one of the resulting 56	

unstable solution from the orange boxes in the first row. The elastic tensor on the right shows the 57	

same tensor but rotated by 5°, which fails the misfit criterion. The magenta lines represent the 58	

measurements used in this simulation. Colors here represent %S wave anisotropy.  59	
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