
HAL Id: hal-02162546
https://hal.science/hal-02162546v1

Submitted on 24 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Pocket Guide to Solve Inverse Problems with
GlobalBioIm

Emmanuel Soubies, Ferréol Soulez, Michael T. Mccann, Thanh-An Pham,
Laurène Donati, Thomas Debarre, Daniel Sage, Michael Unser

To cite this version:
Emmanuel Soubies, Ferréol Soulez, Michael T. Mccann, Thanh-An Pham, Laurène Donati, et al..
Pocket Guide to Solve Inverse Problems with GlobalBioIm. Inverse Problems, 2019, 35 (10),
pp.104006. �10.1088/1361-6420/ab2ae9�. �hal-02162546�

https://hal.science/hal-02162546v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Pocket Guide to Solve Inverse Problems with
GlobalBioIm
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Abstract. GlobalBioIm is an open-source MATLAB® library for solving
inverse problems. The library capitalizes on the strong commonalities between
forward models to standardize the resolution of a wide range of imaging inverse
problems. Endowed with an operator-algebra mechanism, GlobalBioIm allows one
to easily solve inverse problems by combining elementary modules in a lego-like
fashion. This user-friendly toolbox gives access to cutting-edge reconstruction
algorithms, while its high modularity makes it easily extensible to new modalities
and novel reconstruction methods. We expect GlobalBioIm to respond to the
needs of imaging scientists looking for reliable and easy-to-use computational
tools for solving their inverse problems. In this paper, we present in detail the
structure and main features of the library. We also illustrate its flexibility with
examples from multichannel deconvolution microscopy.

1. Introduction

1.1. Inverse Problems in Imaging

Imaging is a fundamental tool for biological research, medicine, and astrophysics.
Medical imaging systems are essential for modern diagnosis, while the latest generation
of microscopes and telescopes provide images with unprecedented resolution. This
imaging revolution is driven, in part, by the current shift towards computational
imaging that sees optics and computing combine to bypass many limitations of
conventional systems.

These computational imaging techniques rely on the deployment of sophisticated
algorithms to reconstruct a d-dimensional continuously defined object of interest
f ∈ L2(Rd) from discrete measurements g ∈ RM recorded by a given imaging system.
These quantities are linked according to

g = H{f}+ n, (1)

where H : L2(Rd) → RM is an operator that models the imaging system. This
operator, which might be linear or not, maps the continuously defined object to
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Table 1: Broad class of imaging models defined as the composition of elementary operators.
Here, the basic constituents include weighting, windowing, or modulation (W), convolution
(C), Fourier transform (F), integration (Σ), rotation (Rθ), and sampling (S). The Radon
transform (for CT and cryo-EM) is written as the composition Σ ◦ Rθ of a rotation and
an integration. Similarly, the Laplace transform (for TIRF) is expressed as the composition
Σ ◦W of a weighting (decaying exponential) and an integration. Note that these elementary
operators might differ for each modality (e.g., using different kernels for the convolution
operators), but their construction stays identical.

Imaging modality Forward model H

X-ray computed tomography (CT) S ◦ Σ ◦ Rθ
Conventional fluorescent microscopy S ◦ C
Structured-illumination microscopy (SIM) S ◦ C ◦W
Total internal reflection fluorescence (TIRF) S ◦ Σ ◦W
Optical diffraction tomography (ODT, first Born) S ◦ C ◦W
Cryo-electron tomography (Cryo-EM) S ◦ C ◦ Σ ◦ Rθ
Magnetic resonance imaging (MRI) S ◦ F ◦W

discrete noiseless measurements. Finally, n ∈ RM is an error term, which is often
considered to be random.

To numerically solve the inverse problem and recover f , it is necessary to discretize
both f and the operator H. This leads to the discrete imaging model g = H{f}+ n,
with f ∈ RN and H{ · } : RN → RM .

The classical approach to address this inverse problem and recover an estimated
solution f̂ consists in solving

f̂ = arg min
f∈RN

(
D(H{f},g) + λR(f)

)
. (2)

There, D : RM ×RM → R measures the discrepancy between the forward model H{f}
and the measurements g (i.e., the data fidelity), while R : RN → R enforces specific
regularity constraints on the solution (e.g., spatial smoothness, or nonnegativity). The
balance between the data fidelity and regularization terms is controlled by the scalar
parameter λ > 0.

1.2. Unifying Framework for Solving Inverse Problems

The forward models associated with most of the commonly used imaging modalities
share important structural properties. This similarity is not surprising since many
imaging systems are governed by the same physical principles (e.g., the wave equation).
We express in Table 1 the forward models of a wide range of imaging modalities in
terms of a limited number of elementary constituents.

By capitalizing on these strong commonalities, the open-source MATLAB®

library GlobalBioIm simplifies, unifies, and standardizes the resolution of inverse
problems given by (2). Hence, the GlobalBioIm toolbox gives access to state-of-the-art
reconstruction algorithms usable in a wide range of imaging applications. Its design is
modular, with three main types of entities: forward models, cost functions, and solvers.
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This permits the user to modify each component independently, which is crucial for
the handling of a variety of imaging models and solvers within a common framework.
This modularity also makes GlobalBioIm easily extensible to new modalities and novel
reconstruction methods.

GlobalBioIm is distributed as an open-source MATLAB® software. We expect
it to respond to the needs of imaging scientists looking for reliable and easy-to-
use computational tools for the reconstruction of their images. We also believe
that GlobalBioIm will be of interest to developers of algorithms who focus on the
mathematical and algorithmic details of the reconstruction methods.

The present paper provides a functional description of the structure and the key
components of the GlobalBioIm library. It completes and extends our previous brief
communication [38]. For a detailed technical documentation, we refer the reader to
an online documentation (http://bigwww.epfl.ch/algorithms/globalbioim/).

1.3. Related Work

The development of open-source libraries/toolboxes in imaging sciences has received
considerable attention during the past two decades. The majority of existing softwares
for solving inverse problems are dedicated to specific modalities, with various degrees
of sophistication. Moreover, they cover the whole panel of programming languages.

There exists a large number of toolboxes dedicated to tomographic reconstruction
for x-ray computed tomography, positron-emission tomography, single-photon-
emission computed tomography, or (scanning) transmission electron microscopy.
These include among others ASTRA [39], CASToR [24], CONRAD [22], RTK [29],
STIR [37], or TIGRE [6].

For fluorescence microscopy, DeconvolutionLab [31] provides a set of deconvo-
lution methods that range from naive inverse filters to more sophisticated iterative
approaches. The emergence of superresolution fluorescence microscopy techniques has
also promoted the development of toolboxes tailored for their specific inverse prob-
lems. For instance, FairSIM [26] and Simtoolbox [18] are dedicated to the recon-
struction of structured-illumination microscopy data. For single-molecule localization
microscopy, one can find dedicated localization plugins such as SMAP [21] and Thun-
derSTORM [27].

Although dedicated to specific physical models, the aforementioned toolboxes
generally rely on similar reconstruction methods, ranging from Wiener filtering to
advanced regularized iterative algorithms. Conversely, libraries that are generic have
recently also been designed to handle multiple imaging modalities. The LazyAlgebra
toolbox [35] provides an operator-algebra mechanism in Julia that can be combined
with optimization packages for solving inverse problems. More complete libraries such
as AIR Tools (MATLAB®) [17], IR Tools (MATLAB®) [15], or TiPi (Java™) [36]
provide elements for the implementation of forward models, as well as iterative solvers
to tackle the associated inverse problems. The disadvantage of these toolboxes is that
the optimization algorithms they provide are generally implemented to minimize a
specific functional, thus limiting their modularity.

In contrast, GlobalBioIm provides a fully modular environment where one can not
only easily combine functionals and operators to define the loss to be minimized in (2),
but also benefit from a variety of solvers. This philosophy is shared by a few other
toolboxes with different programming languages, such as the Operator Discretization
Library (in Python) [1] and the Rice Vector Library (in C++) [28].

http://bigwww.epfl.ch/algorithms/globalbioim/
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2. General Philosophy and Organization

When tasked with the design of a reconstruction algorithm for a new imaging problem,
the common practice follows a three steps process.

(i) Modelization of the acquisition system ⇒ Implementation of H.

(ii) Formulation of the reconstruction as an optimization problem (i.e., the cost
function) ⇒ Choice of D and R in (2).

(iii) Deployment of an optimization method ⇒ Choice of a solver for (2).

This standard pipeline motivates the organization of GlobalBioIm around three
dedicated main abstract classes: LinOp, Cost, and Opti. Because linear operators and
cost functions both belong to the larger mathematical class of maps, the LinOp and
Cost classes are defined as particular instances of a generic abstract class Map. The
latter also allows for a proper inclusion of nonlinear operators. The organization of
the library is illustrated in Figure 1. It is guided by five general principles.

• Modularity. All objects are defined as individual modules that can be combined
to generate a particular reconstruction workflow. Each building block can thus
be easily changed to define new reconstruction pipelines.

• Flexibility. The constraints to fulfill during implementation are few. New
objects can easily be plugged into the framework of GlobalBioIm.

• Abstraction. The four abstract classes (LinOp, Cost, Opti, Map) define a
limited set of attributes and methods that are shared by their derived classes
(i.e., subclasses). This constitutes a common guideline for the implementation of
subclasses. Moreover, generic concepts—basically, interactions between classes—
are implemented at the level of the abstract classes and benefit directly to all
subclasses.

• Readability. Reconstruction scripts are written in a way that mimics equations
in scientific papers, hence keeping a simple connection between theory and
implementation.

• User-friendliness. The definition (or update) of a new subclass only requires
one to create (or edit) a single file. Moreover, the usage of GlobalBioIm does not
require one to understand advanced computing concepts.

3. Abstract Classes

We now present the four abstract classes that build up the skeleton of the GlobalBioIm
library. The methods within these abstract classes are prototypes that have to be
implemented in derived classes. There are exceptions for some generic concepts
(e.g., the chain rule) that are directly implemented in the abstract classes. For the
sake of conciseness, we only review here the key attributes and methods of those
classes. An exhaustive list of those features can be found in the online documentation
(http://bigwww.epfl.ch/algorithms/globalbioim/) within the sections “List of
Methods” and “List of Properties”.

3.1. Map Class

The abstract Map class defines the basic attributes and methods of an operator
H : RN → RM . These include, at the very minimum, the input size N , the output
size M , and the method apply that computes g = H{f} for a given f ∈ RN .

http://bigwww.epfl.ch/algorithms/globalbioim/
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Map

LinOp Cost Opti

LinOpConv

LinOpGrad

· · ·

CostL2

CostTV

· · ·

OptiFBS

OptiADMM

· · ·

OpEWSqrt

· · ·

Figure 1: Hierarchy of classes in GlobalBioIm. Abstract classes are represented in blue and
derived classes in gray. Nonlinear operators (such as the element-wise square-root OpEWSqrt)
directly inherit from the abstract Map class.

In addition, because optimization algorithms may require the differentiation of
the objective function in (2), the Map class defines the method applyJacobianT. Given
v ∈ RM and f ∈ RN , this method computes u = [JH{f}]Tv, where JH{f} ∈ RM×N
is the Jacobian matrix of H (assuming that the latter is differentiable). It is formed
out of the first-order partial derivatives of the operator H, with

[JH{f}]m,n =
∂Hm

∂fn
, (3)

where Hm : RN → R is such that H = [H1, . . . ,HM ]T . Similarly, for invertible maps,
the method applyInverse allows one to compute f = H−1{g} for g ∈ RM .

In addition to the “apply”-type methods, the Map class provides prototype
methods prefixed by “make”. These can be implemented in derived classes to create
new instances of Map objects that are related to H. For instance, the method
makeInversion returns a Map object that corresponds to H−1.

The prototype methods are also used to overload the MATLAB® operators
“∗” (mtimes), “+” (plus), and “−” (minus). Hence, the composition between
two Map objects can be specified easily as H = H1 * H2. This will execute the
method makeComposition of H1 with H2 as its argument. By default, the resulting
H will be a MapComposition object that benefits from the generic implementations
(e.g., successive calls for apply, chain rule for applyJacobianT) provided in the
MapComposition class.

Similarly, the operators “+” and “−” are associated to the MapSummation class. It
is noteworthy to mention that this default behavior can be specialized in derived classes
with a proper implementation of the “make” methods. This results in automatic
simplifications, as described in Section 4.2.
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3.2. LinOp Class

A particular class of map objects contains linear operators H : RN → RM that satisfy

H{αf + g} = αH{f}+ H{g} (4)

for all scalar α and vectors f ∈ RN and g ∈ RN . Linear operators are generally
represented as a matrix H ∈ RM×N . They are widely used in practice to model
imaging systems. In addition to being good approximators, they lead to convex
optimization problems for which there exist efficient solvers. An important subclass
is formed by the convolution operators that are implemented very efficiently using
FFTs. All this motivates the definition of the LinOp class, which inherits from the
attributes and the methods of Map while defining novel ones.

For linear operators, the transposed Jacobian matrix [JH{f}]T is independent of
f and is equal to the adjoint operator HT . Thus, the LinOp class provides the method
applyAdjoint that computes u = HTv for v ∈ RM and is directly used to implement
the method applyJacobianT. Hence, to allow a LinOp to be differentiated only
requires implementation of applyAdjoint, rather than applyJacobianT. In keeping
with the aforementioned philosophy, the companion method makeAdjoint allows one
to instantiate a new LinOp corresponding to the adjoint HT .

For least-squares minimization, the normal operators HTH and HHT are at the
core of many optimization algorithms. Hence, the methods applyHtH and applyHHt

as well as their “make” counterparts are defined in the LinOp class. They can
be implemented in derived classes to provide implementations that are faster than
the default successive application of H and HT . This is particularly useful when
HTH turns out to be a convolution, as is the case for deconvolution, cryo-electron
microscopy [13, 41], and x-ray computed tomography [23].

3.3. Cost Class

Cost functions are mappings for which M = 1 (i.e., J : RN → R). Hence, the
abstract Cost class inherits from all the attributes and methods defined by the Map

class. However, the Cost class also defines new attributes and methods that are
specific to cost functions. For instance, the method applyProx is dedicated to the
computation of the proximity operator of J , which is required for a broad range of
optimization algorithms. It is defined by [25] as

proxJ (z) = arg min
f∈RN

(
1

2
‖f − z‖22 + J (f)

)
. (5)

The method applyGrad computes the gradient ∇J of the functional J . Similarly
to the method applyAdjoint for LinOp, applyGrad can be seen as an alias for the
method applyJacobianT. This ensures consistency with the standard terminology
employed in scientific publications.

3.4. Opti Class

The last abstract class Opti is a prototype for optimization algorithms. Given a cost
function J resulting from the composition/addition of Map, LinOp, and Cost objects,
the run method of the Opti class implements a general iterative scheme to minimize
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J . It includes calls to the methods initialize, doIteration, and updateParams,
which are implemented in every derived class.

The method initialize performs the computations required prior to starting the
main loop of the iterative scheme. Then, doIteration is executed at each iteration,
preceded by a call to updateParams that modifies the parameters of the algorithm
(e.g., by modifying the step size in a descent method).

The convergence of the algorithm is monitored during the optimization using
a TestCvg object (set as an attribute of the Opti object). GlobalBioIm

contains various TestCvg classes that implement different convergence criteria (e.g.,
TestCvgStepRelative, TestCvgCostRelative). They can also be combined using the
class TestCvgCombine. Finally, the verbose output is controlled by an OutputOpti

object (again, set as an attribute of the Opti object). Hence, one can easily tune the
information displayed and saved during iteration by defining a custom OutputOpti

class.

4. Key Features of the Library

In this section, we highlight some of the most remarkable features of GlobalBioIm,
which are intended to simplify the development process.

4.1. Interface and Core Methods

Map, LinOp, and Cost classes contain two types of methods, which come in pairs.
Interface methods are only implemented in abstract classes and cannot be overridden
in derived classes (sealed methods). However, they can be executed by an instantiated
object of the class. On the other hand, core methods are not implemented in abstract
classes, but in derived classes only. In addition, they cannot be executed by an
instantiated object (private methods).

This scheme allows for the separation of preprocessing computations, which are
common to all derived classes, from the core computations of the method, which are
class-dependent. When executed, an interface method checks that inputs are the
correct size prior to executing the associated core method. Interface methods are also
used to manage the memoize mechanism (see Section 4.3).

From a user viewpoint, only core methods matter. They have to be implemented
in derived classes without having to deal with input checking and the memoize
mechanism. In the library, the core methods differ from the interface methods by
the suffix “ ” (e.g., apply versus apply).

4.2. Composition of Operators and Automatic Simplification

Up to now, the reader may wonder why it is useful to allow “make”-type methods to be
overloaded in derived classes. Actually, these methods are the key ingredients for the
automatic simplification mechanism deployed by GlobalBioIm. When compositions
between maps occur, they allow for the instantiation of specific classes instead of the
default generic classes such as MapComposition, MapInversion, or MapSummation.
Consequently, the resulting object generally enjoys faster implementations.

To illustrate this feature, let us consider a convolution operator H. Its adjoint
HT and the normal operator HTH turn out to be convolution operators as well, whose
kernels can be precomputed from that of H. Hence, the LinOpConv class implements
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the makeAdjoint and makeHtH methods by instantiating a new LinOpConv with the
adequate kernel.

function M = makeAdjoint (this)
% Reimplemented from parent class :class:‘LinOp‘.
M=LinOpConv(conj(this.mtf),this.isReal,this.index);

end
function M = makeHtH (this)

% Reimplemented from parent class :class:‘LinOp‘.
M=LinOpConv(abs(this.mtf).ˆ2,this.index);

end

Because makeAdjoint and makeHtH are used to overload the operators “′” and “∗”,
respectively, we obtain the following automatic simplification.

>> H=LinOpConv(fftn(psf));
>> L=H’∗H
L =
LinOpConv with attributes:

mtf: [256x256 double]
...

There are many more examples of “make” methods in GlobalBioIm (see also the
methods plus and mpower ). For instance, the LinOpConv class provides the following
implementation for the method plus (which is used to overload “+”).

function M = plus (this,G)
% Reimplemented from parent class :class:‘LinOp‘.
if isa(G,’LinOpDiag’) && G.isScaledIdentity % If sum with a constant diagonal operator

M=LinOpConv(G.diag+this.mtf,this.isReal,this.index);
elseif isa(G,’LinOpConv’) % If sum with a convolution operator

M=LinOpConv(this.mtf+G.mtf,this.isReal,this.index);
else % Otherwise call superclass plus method

M=plus @LinOp(this,G);
end

end

This allows the following simplification.

>> H=LinOpConv(fftn(psf));
>> I=LinOpIdentity(H.sizein);
>> L=H’∗H + I
L =
LinOpConv with attributes:

mtf: [256x256 double]
...

We conclude this section with two examples that demonstrate the relevance of
this automatic simplification mechanism.

Example 4.1 (Proximity operator with semiorthogonal linear transform). Let J be
a lower semicontinuous convex functional and L be a semiorthogonal linear operator
(i.e., LLT = νI for ν > 0). Then, as demonstrated in [11, Lemma 2.4], the proximity
operator of αJ (L · ) is given by

proxαJ (L · )(z) = z + ν−1LT
(
proxναJ (Lz)− Lz

)
. (6)

Due to the automatic simplification mechanism of GlobalBioIm, one can easily verify
whether L is semiorthogonal in the constructor of the CostComposition class (L →
this.H2).
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T=this.H2∗this.H2’; % Build L’∗L
if isa(T,’LinOpDiag’) && T.isScaledIdentity && T.diag>0 % Check if scaled identity

this .isH2SemiOrtho=true;
this .nu=T.diag;

end

Then, (6) is exploited in the implementation of the applyProx method of the
CostComposition class (J → this.H1).

function x=applyProx (this,z,alpha)
if this .isConvex && this.isH2LinOp && this.isH2SemiOrtho

H2z=this.H2∗z;
x = z + 1/this.nu∗this.H2.applyAdjoint(this.H1.applyProx(H2z,alpha∗this.nu)−H2z);

else
x = applyProx @Cost(this,z,alpha);

end
end

As a result, the composition of a Cost object that has an implementation of its
proximity operator with a semi-orthogonal LinOp object automatically leads to a
CostComposition object that has an implementation of the applyProx method.

Example 4.2 (Woodbury matrix identity). Let J (f) = 1
2‖SHf − g‖22, where S is a

downsampling operator and H is a convolution operator. It follows from (5) that

proxαJ (u) =
(
αHTSTSH + I

)−1 (
αHTSTg + u

)
=
(
I− αHTST

(
I + αSHHTST

)−1
SH
) (
αHTSTg + u

)
, (7)

where the Woodbury matrix identity [16] is used to get (7). Moreover, it turns
out that αSHHTST is a convolution operator [33, Lemma A.3] and, thus, that(
I + αSHHTST

)
can easily be inverted in the Fourier domain. In order to apply (7),

the specification of αSHHTST as a convolution is implemented in GlobalBioIm.
This is done in the makeComposition method of LinOpDownsample, which returns a
LinOpConv object when appropriate.

function G = makeComposition (this, H)
% Reimplemented from parent class :class:‘LinOp‘
% ...
if isa(H, ’LinOpComposition’)

if isa(H.H2,’LinOpAdjoint’) && isequal(H.H2.TLinOp,this)
if isa(H.H1, ’LinOpConv’)

P=LinOpSumPatches(this.sizein,this.sizein./this.df) ;
G = LinOpConv(P∗H.H1.mtf/prod(this.df),H.H1.isReal);

% ...

As a result,
(
I + αSHHTST

)
is identified as being an invertible operator, and (7) can

be directly implemented as follows.

H=LinOpConv(fftn(psf)); S=LinOpDownsample(H.sizein,[2,2]); fwd=S∗H; % Forward model
In=LinOpIdentity(S.sizein); Im=LinOpIdentity(S.sizeout); % Identity operators
prox=(In − alpha∗fwd’∗(Im + alpha∗(fwd∗fwd’))ˆ(−1)∗fwd)∗(alpha∗fwd’∗g+u);

A complete script (TestProxL2DownSampledConv) in which this example is
implemented can be found in the folder Cost/Tests/ of the GlobalBioIm library.
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4.3. The Memory versus Computational Cost Dilemma

The computation and storage of fixed quantities can significantly accelerate iterative
reconstruction methods. For instance, let us consider the least-squares functional
J (f) = 1

2‖Hf − g‖22, where H is a convolution operator. Then, the minimization of
J by a gradient-descent algorithm requires the evaluation of

∇J (f) = HT (Hf − g) (8)

= HTHf −HTg (9)

at each iteration. The computational burden of this operation is directly related to
the implementation strategy. The formulation in (8) requires the evaluation of both H
and HT , leading to the overall cost of two FFTs plus two iFFTs. Instead, since HTH
turns out to be a convolution in this example, the formulation in (9) opens the door
to a faster computation of ∇J . The price to pay, however, is storage for the quantity
HTg. Imposing one of the above implementations to users could lead to severe memory
issues or extremely slow computations, depending on the considered problem and
the available hardware resources. Therefore, in GlobalBioIm, the choice between
speed and memory consumption is left to the user by means of the Boolean attribute
doPrecomputation of the abstract class Map. When activated, the instanciated object
is allowed to store relevant quantities for acceleration purposes, at the expense of
larger memory consumption. For instance, consider the Cost object corresponding to
J = 1

2‖H · − g‖22 for which the doPrecomputation option is activated.

>> H=LinOpConv(fftn(psf)); % Convolution operator with a 256x256x256 kernel
>> L2=CostL2([],y); % L2 cost function
>> J=L2∗H; % Composition of L2 with H
>> J.doPrecomputation=true; % Activation of the doPrecomputation option

Then, we evaluate the gradient of J at the two random points f1 and f2.

>> f1=rand(J.sizein);f2=rand(J.sizein); % Generation of the random points f1 and f2
>> tic; g=J.applyGrad(f1); toc; % Computation of the gradient at f1
Elapsed time is 1.870925 seconds.
>> tic; g=J.applyGrad(f2); toc; % Computation of the gradient at f2
Elapsed time is 0.942075 seconds.

We observe that the second gradient computation is twice as fast as the first one.
This is because the quantity HTg is computed and stored at the first call of the
applyGrad method. For all subsequent calls, the computational burden is reduced to
the application of HTH in (9).

Another feature that allows for faster computations at the expense of larger
memory consumption is provided by the structure attribute memoizeOpts of the
abstract class Map. When this attribute is activated, both the input and the result of
the evaluation are stored whenever the corresponding Map object is evaluated. Hence, if
the object is subsequently evaluated with the same input, the stored result is returned
without any computation.

>> H=LinOpConv(fftn(psf)); % Convolution operator with a 256x256x256 kernel
>> H.memoizeOpts.apply=true; % Activation of memoize for the apply method
>> f1=rand(H.sizein);f2=rand(H.sizein); % Generation of the random points f1 and f2
>> tic; g=H∗f1; toc; % First H∗f1
Elapsed time is 0.822508 seconds.
>> tic; g=H∗f1; toc; % Second (consecutive) H∗f1. Returns the stored result
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Elapsed time is 0.020624 seconds.
>> tic; g=H∗f2; toc; % Computation for the new input f2
Elapsed time is 0.823498 seconds.

This option proves to be particularly useful to avoid multiple computations within
iterative methods. For instance, at each iteration of OptiVMLMB, both the cost J
and its gradient ∇J need to be evaluated at the same point f . For least-squares
minimization, this involves computing J (f) = 1

2‖Hf−g‖22 and ∇J (f) = HT (Hf−g),
which both call for the quantity Hf . Hence, activating the memoize option for the
apply method of H allows for the savings of one evaluation of Hf per iteration.

4.4. GPU Computing

GlobalBioIm provides two functions that allow the user to easily run any
reconstruction pipeline on the GPU for faster computation. The function
useGPU, which is typically called at the beginning of the script, allows selection
of the computation mode: CPU computation (default), GPU computation
with the MATLAB® Parallel Computing Toolbox™, or GPU computation with
CudaMat (https://github.com/RainerHeintzmann/CudaMat). Next, the function
gpuCpuConverter converts the input variable to the appropriate data type as specified
by useGPU. A typical use of these functions is presented below.

useGPU(1); % Set the GPU mode to 1 −> Matlab Parallel Computing Toolbox (TM)

%−− Load data
load(’data’) ; % Variable g
g=gpuCpuConverter(g); % Convert them to the correct type
% ... load and convert other variables

5. An Example with MultiChannel Deconvolution

5.1. Simulation Setting

We consider the sample depicted in Figure 2a. It has been extracted from the
neuronal culture acquisition shared by Schmoranzer on the Cell Image Library website
(http://cellimagelibrary.org/images/41649). It contains three channels that
we process independently. Our simulation pipeline is illustrated in Figure 2. It
encompasses several steps to account for the fact that, for real-world experiments,
(i) the underlying sample is generally not supported within the field-of-view of the
microscope; (ii) the sample is not periodic (contrary to what is implicitly assumed
when using FFTs to perform the convolution). The three point-spread functions
(PSF) have been generated in the Fourier domain. They are related to the classical
Airy disk model, which is a radial function with the profile

h(ρ) =


1

π

(
2 cos−1

(
ρ

ρc

)
− sin

(
2 cos−1

(
ρ

ρc

)))
, ∀ρ < ρc

0, otherwise,

(10)

where ρc = 2NA/λexc is the cutoff frequency which depends on the numerical
aperture NA and the excitation wavelength λexc. Here, we set NA = 1.4 and λexc
to 654nm (CY3 dye, red), 542nm (FITC dye, green), and 477nm (DAPI dye, blue)

https://github.com/RainerHeintzmann/CudaMat
http://cellimagelibrary.org/images/41649
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a
b c

d

Figure 2: Simulation of multichannel blurred data. a) Input image (512× 512× 3). b) The
image is zero-padded. c) Each channel is convolved with its corresponding PSF and a central
region of size (460× 460× 3) is extracted (simulated field-of-view). d) Data are corrupted by
additive Gaussian noise so that the resulting signal-to-noise ratio (SNR) is equal to 10dB.

for the three channels, respectively. Finally, the spatial sampling step (i.e., the camera
pixel size) is set to 64.5nm. Note that the data generated with this pipeline contain
contributions from structures that lie outside the field-of-view.

5.2. Deconvolution

Given the blurred and noisy data {gk ∈ RM}3k=1, we formulate the deconvolution task
as the optimization problem

{f̂k}3k=1 = arg min
{fk∈RN}3k=1

(
3∑
k=1

1

2
‖SHkfk − gk‖22 + λR(Lfk) + i≥0(fk)

)
, (11)

where Hk ∈ RN×N , k ∈ {1, 2, 3}, is the convolution operator for the kth channel, and
S ∈ RM×N selects the region of Hf that corresponds to the field-of-view. Indeed, since
the sample is not fully included in the field-of-view, we seek a wider reconstruction
that is larger than the field-of-view (i.e., N > M) in order to avoid reconstruction
artifacts [3, 31]. Finally, i≥0(f) = {0 if f ∈ RN≥0; +∞ otherwise} is a nonnegativity
constraint.

With GlobalBioIm, the construction of the operators Hk, k ∈ {1, . . . , 3}, and S
is done as follows.

%−− Load Data −−
load(’psf ’ ) ; szin=size(psf) ; % Variable psf (512x512x3)
load(’ground truth’); % Variable gt (460x460x3)
load(’data’) ; szout=size(g); % Variable g (460x460x3)

%−− Forward Model −−
H=LinOpConv(fft2(psf),1,[1 2]);
S=LinOpSelectorPatch(szin,[1 1 1],szout);

Here, the three PSFs are stacked within the same LinOpConv operator which is set by
the argument [1 2] to apply a convolution only to the first two dimensions. Hence,
it performs independent 2D convolutions for each channel. The selector operator S
then extracts a region that has the same size as the data.



Pocket Guide to Solve Inverse Problems with GlobalBioIm 13

Next, both the data fidelity term (i.e., 1
2‖ · − g‖22) and the nonnegativity

constraint (i.e., i≥0) can be defined with two lines of code.

%−− L2 Loss function and nonnegativity constraint
L2=CostL2([ ],g);
P=CostNonNeg(szin);

For the regularization term R(L · ), we propose to illustrate the modularity of
GlobalBioIm by providing a set of examples (see Figures 3 and 4) that include various
regularizers.

• The total-variation (TV) [8, 9, 30] combines the gradient operator L = [D1 D2]T

with the (`2, `1)-mixed norm R = ‖ · ‖2,1. More precisely, for f ∈ RN , we have
that

R(Lf) =

N∑
n=1

√
[D1f ]2n + [D2f ]2n, (12)

where D1 (D2, respectively) is the finite-difference operator along the first
(second, respectively) dimension.

• The Hessian-Schatten-norm (HS) [19, 20] computes the (∗, `1)-mixed norm R =
‖ · ‖∗,1 of the Hessian operator L = [Dij ]1≤i,j≤2 applied to f ∈ RN as

R(Lf) =

N∑
n=1

∥∥∥∥∥
[

[D11f ]n [D12f ]n

[D21f ]n [D22f ]n

]∥∥∥∥∥
∗

, (13)

where ‖ · ‖∗ denotes the nuclear norm (i.e., the first-order Schatten norm). It is
defined as the `1-norm of the singular values of its argument. Finally, Dij denotes
the operator of second-order finite difference along the dimensions i and j.

• The smoothed total-variation (S-TV) [4, 8] is defined, for ε > 0, by

R(Lf) =

N∑
n=1

√
[D1f ]2n + [D2f ]2n + ε2. (14)

• The Good’s roughness (GR) [40] is defined, for ε > 0, by

R(Lf) =

N∑
n=1

[D1f ]2n + [D2f ]2n√
|fn|2 + ε2

. (15)

Since the TV and HS regularizers are not differentiable, gradient-based methods
cannot be used to minimize the objective function (11). However, for both these
regularizers, the proximity operator of R( · ) can be efficiently computed (see [11] for
‖ · ‖2,1 and [10, 19] for ‖ · ‖S1,1). Hence, the optimization problem can be tackled using
proximal-splitting algorithms such as the alternating direction method of multipliers
(ADMM) [2, 7, 14, 32] or the primal-dual method proposed in [12]. These algorithms

are designed to minimize cost functions of the form J =
∑P
p=1 Jp(Tp · ), where

{Tp}Pp=1 are linear operators and the {Jp}Pp=1 are “simple” functions in the sense
that their proximity operator can be evaluated efficiently.

The scripts provided in Figure 3 illustrate how these two algorithms can be
implemented within the framework of GlobalBioIm to solve Problem (11) with TV
or HS regularization. The modified lines of code between each setting have been
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%−− Regularizer −−−−−−−−−−−−−−−
lamb=5e−3;
L=LinOpGrad(szin,[1 2]);
R=CostMixNorm21(L.sizeout,4);

%−− Optimization Algorithm −−−−−−−−
Fn={L2∗S,lamb∗R,P};
Hn={H,L,LinOpIdentity(szin)};
rho n=[1,1,1]∗5e−1;
Opt=OptiADMM([],Fn,Hn,rho n);
Opt.OutOp=OutputOpti(1,S’∗gt,50);
Opt.CvOp=TestCvgStepRelative(1e−4);
Opt.maxiter=500; Opt.ItUpOut=50;
Opt.run(S’∗y);

%−− Regularizer −−−−−−−−−−−−−−−
lamb=5e−3;
L=LinOpHess(szin,[ ],[1 2]);
R=CostMixNormSchatt1(L.sizeout,1);

%−− Optimization Algorithm −−−−−−−−
Fn={L2∗S,lamb∗R,P};
Hn={H,L,LinOpIdentity(szin)};
rho n=[1,1,1]∗5e−1;
Opt=OptiADMM([],Fn,Hn,rho n);
Opt.OutOp=OutputOpti(1,S’∗gt,50);
Opt.CvOp=TestCvgStepRelative(1e−4);
Opt.maxiter=500; Opt.ItUpOut=50;
Opt.run(S’∗y);

%−− Regularizer −−−−−−−−−−−−−−−
lamb=5e−3;
L=LinOpGrad(szin,[1 2]);
R=CostMixNorm21(L.sizeout,4);

%−− Optimization Algorithm −−−−−−−−
Fn={L2∗S,lamb∗R,P};
Hn={H,L,LinOpIdentity(szin)};
Opt=OptiPrimalDualCondat([ ],[ ],Fn,Hn);
T=H’∗H+L’∗L+LinOpIdentity(szin);
Opt.tau=1;Opt.sig=1/(Opt.tau∗T.norm);
Opt.OutOp=OutputOpti(1,S’∗gt,50);
Opt.CvOp=TestCvgStepRelative(1e−4);
Opt.maxiter=500; Opt.ItUpOut=50;
Opt.run(S’∗y);

%−− Regularizer −−−−−−−−−−−−−−−
lamb=5e−3;
L=LinOpHess(szin,[ ],[1 2]);
R=CostMixNormSchatt1(L.sizeout,1);

%−− Optimization Algorithm −−−−−−−−
Fn={L2∗S,lamb∗R,P};
Hn={H,L,LinOpIdentity(szin)};
Opt=OptiPrimalDualCondat([ ],[ ],Fn,Hn);
T=H’∗H+L’∗L+LinOpIdentity(szin);
Opt.tau=1;Opt.sig=1/(Opt.tau∗T.norm);
Opt.OutOp=OutputOpti(1,S’∗gt,50);
Opt.CvOp=TestCvgStepRelative(1e−4);
Opt.maxiter=500; Opt.ItUpOut=50;
Opt.run(S’∗y);

Total-variation [8, 9, 30]
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Figure 3: GlobalBioIm scripts for minimizing (11) with non-differentiable regularizersR(L · ).
Differences with respect to the script corresponding to ADMM with TV are highlighted.

highlighted—observe that very few modifications are needed. This underlines the
simplicity of changing the regularizer and/or the algorithm within the GlobalBioIm

framework.
For both algorithms, the splitting strategy is specified by the two cell arrays Fn

and Hn. Note that, since S is a semi-orthogonal linear operator, the composition L2*S

results in a Cost object that has an implementation of the proximity operator (see
Example 4.1). Moreover, the two scripts that use the primal-dual method illustrate
the relevance of the automatic simplification features described in Section 4.2. In
order to ensure the convergence of the algorithm, the two parameters σ > 0 and
τ > 0 have to be chosen so that τσ‖

∑P
p=1 TT

p Tp‖ ≤ 1 holds true [12]. The norm
which is involved in this inequality is easily obtained with GlobalBioIm by building
the operator T=H’*H + L’*L + LinOpIdentity(szin) explicitly and computing its
norm T.norm. The key is that the composition used to build T is automatically
simplified to a convolution operator with the proper kernel. Finally, observe that, as
for the convolution operator, the gradient and Hessian operators are defined using the
argument [1 2], which implies that these operators are applied independently to each
channel.
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%−− Regularizer −−−−−−−−−−−−−−−
lamb=5e−3;
L=LinOpGrad(szin,[1 2]);
RL=CostHyperBolic(L.sizeout,1e−7,4)∗L;

%−− Optimization Algorithm −−−−−−−−
C = L2∗S∗H + lamb∗RL;
Opt=OptiVMLMB(C,0.,[]);
Opt.OutOp=OutputOpti(1,S’∗gt,50);
Opt.CvOp=TestCvgStepRelative(1e−4);
Opt.maxiter=500; Opt.ItUpOut=50;
Opt.run(S’∗y);

%−− Regularizer −−−−−−−−−−−−−−−
lamb=5e−3;
L=LinOpGrad(szin,[1 2]);
RL=CostGoodRoughness(L,1e−2);

%−− Optimization Algorithm −−−−−−−−
C = L2∗S∗H + lamb∗RL;
Opt=OptiVMLMB(C,0.,[]);
Opt.OutOp=OutputOpti(1,S’∗gt,50);
Opt.CvOp=TestCvgStepRelative(1e−4);
Opt.maxiter=500; Opt.ItUpOut=50;
Opt.run(S’∗y);

%−− Regularizer −−−−−−−−−−−−−−−
lamb=5e−3;
L=LinOpGrad(szin,[1 2]);
RL=CostHyperBolic(L.sizeout,1e−7,4)∗L;

%−− Optimization Algorithm −−−−−−−−
C = L2∗S∗H + lamb∗RL;
Opt=OptiFBS(C,P);
Opt.fista=true; Opt.gam=5e−2;
Opt.OutOp=OutputOpti(1,S’∗gt,50);
Opt.CvOp=TestCvgStepRelative(1e−4);
Opt.maxiter=500; Opt.ItUpOut=50;
Opt.run(S’∗y);

%−− Regularizer −−−−−−−−−−−−−−−
lamb=5e−3;
L=LinOpGrad(szin,[1 2]);
RL=CostGoodRoughness(L,1e−2);

%−− Optimization Algorithm −−−−−−−−
C = L2∗S∗H + lamb∗RL;
Opt=OptiFBS(C,P);
Opt.fista=true; Opt.gam=5e−2;
Opt.OutOp=OutputOpti(1,S’∗gt,50);
Opt.CvOp=TestCvgStepRelative(1e−4);
Opt.maxiter=500; Opt.ItUpOut=50;
Opt.run(S’∗y);

Smoothed Total Variation [4, 8]
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Figure 4: GlobalBioIm scripts for minimizing (11) with differentiable regularizers R(L · ).
Differences with respect to the script corresponding to VMLMB with S-TV are highlighted.

As opposed to TV and HS, the S-TV and the GR regularizers are differentiable.
Hence, the optimization problem in (11) can be addressed through gradient-based
methods. In Figure 4, we present scripts in which the objective function in (11)
with S-TV or GR regularization is minimized using either the variable-metric limited-
memory-bounded (VMLMB) algorithm [34] or the fast iterative shrinkage-thresholding
algorithm (FISTA) [5]. For these two minimization algorithms, each iteration requires

the evaluation of the gradient of
∑3
k=1 ‖SHk · −gk‖22+λR(L · ) as well as a projection

onto the set of nonnegative vectors. Once again, changing the regularizer or the
optimization method only requires the modification of very few lines, as highlighted
in Figure 4.

5.3. Numerical Comparisons

The modularity of GlobalBioIm, which was demonstrated in the scripts presented in
Section 5.2, offers a simple way to compare the effect of regularizers as well as the
efficiency of optimization algorithms.

We first present the quality of the deconvolution obtained with the four
regularizers TV, HS, S-TV, and GR. Here, we used ADMM to minimize (11) with
non-differentiable regularizers (i.e., TV and HS), and FISTA to minimize (11) with
differentiable regularizers (i.e., S-TV and GR). The SNR of the deconvolved image
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Figure 5: Evolution of the signal-to-noise ratio of the deconvolved image with respect to the
regularization parameter λ.

as a function of the regularization parameter λ is depicted in Figure 5, while the
deconvolved images that maximize the SNR are presented in Figure 6. As expected,
HS and GR lead to better results by avoiding the well-known staircasing effect of TV
and S-TV. Although GR is slightly below HS in terms of SNR, it provides comparable
qualitative (i.e., visual) results.

We now fix the parameter λ to the value that maximizes the SNR in Figure 5
for TV and S-TV. The convergence curves generated by ADMM and the primal-dual
method for the minimization of (11) with TV, as well as those generated by FISTA
and VMLMB when the regularizer is set to be S-TV, are presented in Figure 7. We
would like to emphasize that the parameters of the algorithms have not been tuned to
obtain the fastest convergence. Hence, these results constitute more an illustration of
the kind of comparisons that can be easily performed with GlobalBioIm rather than
an empirical demonstration of the convergence speed of these algorithms. Moreover,
both ADMM and the primal-dual method offer alternative splitting strategies that
may lead to improved convergence speed. Note that the adaptation of the scripts in
Figure 3 to these variations is straightforward with GlobalBioIm. We refer the reader
to the online documentation of the corresponding two Opti classes for more details on
how to establish such adaptations.

5.4. Other examples

One can find an example of three-dimensional deconvolution on real data within the
Section “Examples” of the online documentation. Moreover, references to papers that
use GlobalBioIm are listed in the Section “Related Papers” of this documentation.
We distinguish between works that provide open-source codes and those which do not.
Hence, this list constitutes a growing source of examples of use of GlobalBioIm on
concrete problems.
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Figure 6: Deconvolution results obtained with different regularizers for the optimal λ
extracted from Figure 5. A zoom of the region delimited by the white square is also presented.
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Figure 7: Convergence curves for the minimization of (11) with TV (left) or S-TV (right).
The solution f̂ has been computed by performing 10,000 iterations of ADMM (FISTA,
respectively).
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6. Discussion

Open-source software is an essential component of modern research. Not only does it
shape theoretical developments, but it also turns out to be a critical tool to bridge
the gap that separates researchers specialized in computer science/mathematics from
scientists versed in biophysical sciences/medicine. Moreover, open-source software
can act as a catalyst for engaging in new collaborations by promoting external
contributions.

Motivated by the observation that the image-formation models of most of the
commonly used biomedical imaging systems can be expressed as a composition of
a limited number of elementary operators, we developed the open-source MATLAB
library GlobalBioIm. This library provides a unified and user-friendly framework for
the resolution of inverse problems. It is designed around three entities, namely, forward
models, cost functions, and optimization algorithms, which constitute the building
blocks of any inverse problem. This organization gives GlobalBioIm a modularity that
greatly facilitates the comparison between regularizers and or solvers, as illustrated
in Section 5. Moreover, GlobalBioIm enjoys an operator-algebra mechanism able to
perform automatic simplification of composed operators. Finally, new modalities, cost
functions, or solvers are easily added to the framework of GlobalBioIm.
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