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Abstract—Trajectory planning and tracking 
control are two keys of collision avoidance for 
autonomous vehicles in critical traffic scenari-
os. It requires not only the system functionality, 
but also strong real-time. In this paper, we inte-
grated trajectory planner and tracking control-
ler for autonomous vehicle to implement trace 
planning and tracking for obstacle avoidance. 
The trajectory planner is based on the state lat-
tice approach and the tracking controller is de-
signed based on the model predictive control 
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I. Introduction
ith the rapid development of sensor and control 
technologies, advanced driver assistance systems 
(ADAS) become more and more powerful [1], [2]. 
Further, the highly autonomous vehicle technol-

ogy, i.e.,SAE L4, and L5 attracts more attention from the 
academia and industry for improving the driving safety, 
efficiency and comfort.

However, the deficiency of the technology leads to the 
half-baked automated vehicle. There are still various chal-
lenges in achieving the fully autonomous vehicle for the 
masses of the public. As is well known, the key technologies 
of automated driving include environment perception, 
decision-making, trajectory planning, motion control, 
car networking, human-vehicle-interaction, etc. [3].

Among these key technologies, the vehicle’s trajec-
tory planning and motion control are two of the most 
significant ones. The trajectory planner generates viable 
trajectory based on the road environment in time, then 
the motion controller tracks the reference accurately. 
Depending on the complexity of the trajectory planner, 
these two modules can be considered as a combined 
block or independent from each other [4]. As the core 
module, both of them play an important role in driving 
safety and comfort.

Vehicle driving is a complex non-linear system consid-
ering multiple constraints. In order to simulate the real 
driving process, the literature has built a large amount 
of driver models. The main methods include various im-
proved PID control, robust control, model predictive con-
trol (MPC), etc.

There are a large amount of literature, which shows 
the success in the vehicle longitudinal control by using 
PID control. Adaptive Cruise Control (ACC) [5] and Lane 
Keeping Control (LKC) can achieve good performance us-
ing PID controllers [6], [7]. However, the vehicle lateral 
control is a comparative complex problem, which needs 
more robustness to ensure safety and comfort. The pa-
rameters of PID controller are very difficult to determine 
because handling systems with complex nonlinearities 
that requires high accuracy [8]. Over the state of the art in 
autonomous driving technology, the method of MPC has 

been shown as a promising method to achieve good con-
trol performance [9].

The MPC method utilizes the vehicle model to predict 
the vehicle’s future motion states by combining current 
sampled states and target states generated by the path 
planner. In each period, the MPC controller generates a 
control action sequence by minimizing the objective func-
tion considering the control constraints. The first control 
action of the sequence is the input variable for the vehicle 
low-level controller. As time goes by, the vehicle’s cur-
rent motion states and the target states are both changing. 
Hence, the next action of the sequence are not the most 
satisfying for the optimization requirements. So the same 
progress will be repeated at subsequent time steps. These 
iteration steps will eventually lead to the smallest error 
and the best performance.

The basic function of the MPC controller is to track the 
expected states to make the vehicle reach the destination 
with guaranteeing safety and comfort [10]. It is better to 
improve the energy efficiency at the same time [11]. An 
autonomous vehicle based on MPC with the function of 
obstacle avoidance was presented [12]. Further, it can be 
equipped with other advanced functions, i.e., the planning 
and control strategies both reflect the driver behavior. In 
other words, different trajectories and control strategies 
can be customized for different drivers in autonomous 
vehicles. A MPC controller was presented to reflect differ-
ent characteristics of the driver [8]. The MPC-based driver 
model could reflect different drivers’ skills through con-
sidering the stochastic characteristics of drivers’ steering 
features [13].

In the literature about the controller of the autonomous 
vehicle, there is a common assumption that the reference 
path tracked is known prior and completely which can be 
considered as a global path [14], [15]. However, the refer-
ence path without optimization is rough and makes the 
vehicle movement bumpy. Although there are several 
methods for finding optimized smooth path from the ori-
gin to the destination [16], [17]. However, the driver cannot 
predict the next moment trace unless the vehicle com-
pletely track the reference path. For example, if an obsta-
cle is on the reference path, in order to avoid the obstacle, 
the vehicle cannot completely track the reference path. 
At the meantime, the driver does not predict the starting 
time and the direction that the vehicle moves around the 
obstacle. These uncontrollable factors may lead to driver’s 
anxiety and potential unsafe issues. Besides, the traffic 
flow is also dynamic and the surroundings are changing 
all the time. Therefore, it is necessary to plan and opti-
mize the reference trajectory in real time during the ve-
hicle’s movement [18], [19].

The purpose of trajectory planning is to generate a 
trajectory between current and desired points that 
is as smooth as possible to avoid obstructions [20]. Path 

using the vehicle kinematics model. The simula-
tion shows that the planner can generate smooth tra-
jectories which could be selected as references for 
the controller. The maximum tracking error is less 
than 0.2 m when the vehicle speed is below 50 km/h. 
Additionally, the on field test shows that the test ve-
hicle with this method is capable of following the ref-
erence path accurately, even at sharp corners.

W



IEEE IntEllIgEnt transportatIon systEms magazInE  •  31  •  SUMMER 2019IEEE IntEllIgEnt transportatIon systEms magazInE  •  30  •  SUMMER 2019

planning and trajectory planning 
already had a great deal of success-
ful experience in the field of mo-
bile robots and unmanned aerial 
vehicle [17], [21].

In the process of autonomous 
vehicle driving, the basic idea is to 
drive through a series of discrete 
points between the start and the 
end. Each point represents a grid 
area. These grids can construct a 
complete driving scene. The ve-
hicle eventually reaches the goal 
point by passing through the se-
ries of adjacent grids, which are obtained by the heuristic 
search algorithm.

Dijkstra algorithm [22] and its extension, i.e., A-star algo-
rithm (A*) are the most common path searching algorithms. 
In 2007’ DARPA Urban Challenge (DUC), many teams used 
the A* algorithm to implement automated driving [23], [24]. 
Except for simplicity, another advantage of the algorithm is 
the strong expandability. The winner of DUC also used the 
improved algorithm based on the A* algorithm [25].

The first step in using the A* algorithm is to construct 
the environment map with many uniform grids. For the 
straight lanes, low-density or low speed, the A* algorithm 
and its improved algorithm are feasible. However, when 
it comes to complex curved road, the uniform grid can-
not satisfy the demand. To deal with large environment, 
it needs vast memory usage to construct the map. Besides, 
for the real automated vehicle, it is hard to devise a cost 
function to reflect the energy efficiency, comfort, vehicle 
physics constraints, etc.

The state lattice algorithm is an improved graph search 
algorithm that can solve these problems. The algorithm 
uses a hyper-dimensional grid of states to represent the 
planning area [26]. The major advantage of the state lat-
tice algorithm is that multiple target endpoints could be 
selected as end points. In this way, it generates multiple 
reference trajectories and then choose the best one accord-
ing to the established cost function. In [27], by choosing the 
best trajectory from the multiple reference paths, it made 
autonomous vehicle driving performs more superior.

The cost function could be divided into static cost and 
dynamic cost [28]. The static cost was related to obstacle 
and the motion state of the vehicle, while the dynamic cost 
considered the velocity and acceleration. Literature point-
ed out that the future driving progress should completely 
independent to the past state, so the driving process could 
be seen as Markov process, which could be dealt with the 
Belleman’s Principle to find the optimal actions [29].

The trajectory generation of the state lattice algorithm 
uses curvature polynomials with parameters to get the 
trajectory between two state points, so that the vehicle 

movement can be carried out with the constraints about 
the kinematic and road shape. In [30], it proposed that cur-
vature polynomials could be arbitrary order. Using quintic 
polynomials could lead to a more smooth vehicle motion at 
high speed by comparing the cubic polynomials and quin-
tic polynomials [28].

However, the trajectory generation method could only 
be applied in highway scenes [31]. Besides, in the field of 
trajectory planning, it is generally assumed that the track-
ing controller is perfect enough to track any trajectory [29]. 
Meanwhile in the trace tracking control area, the refer-
ence path is always a global path, which is not a real-time 
trajectory. The purpose of this paper is to combine the in-
dividual parts and consider the performance as a whole.

Based on these circumstances, this paper establishes a 
framework of integrating local trajectory planner and track-
ing controller for autonomous vehicle. According to the road 
information, the trajectory planner based on state lattice 
generates reference trajectory in real time for the tracking 
controller based on model predictive control. The tracking 
controller uses the reference trajectory for feedback control. 
The trace tracking error and computational efficiency are 
both better than the previous studies [10]. The trajectory 
planner is optimized to be used on medium speed and low 
speed urban roads in addition to applications on highways.

The rest of the paper is organized as follows: in Sec-
tion II, the method of trajectory planning and the trace-
tracking algorithm are both derived in detail. Section III 
presents the simulation and the on-field test for unmanned 
ground vehicle. It is followed by result summarizations and 
the future improvements.

II. Method

A. Design of the Controller

1) Vehicle Model
On urban roads, the non-holonomic vehicle kinematic 
model can be adopted to achieve the autonomous motion 
effectively [32].

The MPC method utilizes the vehicle model to predict the 
vehicle’s future motion states by combining current sampled 
states and target states generated by the path planner. In each 
period, the MPC controller generates a control action sequence 
by minimizing the objective function taking the control 
constraints into account.
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The vehicle kinematics model is given by [33]
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Where [ ]x yx T{=  represents the vehicle position 
states in the global inertial coordinate system; [ ]vu d=  
represents the controlled variables which are the outputs 
of the MPC controller. Vector x y T6 @  represents the coordi-
nate whose origin located at the center of the vehicle’s rear 
shaft; {  is the vehicle heading angle; v  is the longitudinal 
speed; d  is the front wheel steering angle; and l  is the axle 
distance of the vehicle.

In order to obtain the vehicle system control outputs, it 
needs feedback compensation by comparing the sampled 
vehicle state with the state of a reference vehicle, which 
is assumed to be driving on the reference path. The tra-
jectory planner plans the reference vehicle state. It can be 
defined as the following form

 ( , )fx x ur r r=o  (2)

Calculating the error of the sampled vehicle state through 
the Taylor series around the reference point ( , ),x ur r  then 
discretizing the system into linear time invariant formula-
tion [34]
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Where T is the sampling period, t 
is the discrete time index, k means 
the step ahead from t.

2) MPC Controller
Generally, the MPC controller se-
lects the system output variable by 
optimizing an objective function 
with constraints. Its solution can 
make the vehicle move safely and 

fast by minimizing the objective function. The most com-
mon objective function is defined as a quadratic function of 
the states and control inputs like [34].
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Where Np  is the prediction horizon and Nc  is the control 
horizon. In general, .N Np c2  Q and R  are weighting ma-
trices. For each parameters, the corresponding coefficients 
in the weighting matrices may be different. It is of signifi-
cant importance to adjust them to obtain desired control 
performance with minimum error or parallel to the route.

In reality, the vehicle speed control is implemented by 
operating the throttle and the brake, as well as the steering 
wheel for tracking its driving direction. Both of them do not 
use [ ]vu Td=  as the input variable directly but the incre-
ment of ,u  i.e., .uD

For that purpose, the discrete-time system should be 
transformed as follows.
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Referring to [35], the modified objective function of 
Equation(4) should be changed accordingly:
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This paper establishes a framework of integrating local 
trajectory planner and tracking controller for  
autonomous vehicle.
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Where f  is the slack variable. 
In this objective function, the 
first term indicates the capacity 
of tracking the reference path and 
ref lects the driving safety. The 
second term emphasizes control 
outputs smoothness, which re-
flects the driving comfort. The last 
term is not endowed with physical 
meaning of reality, but it could pre-
vent null solution of the optimiza-
tion [36]. In some cases, hard constrained MPC problem 
lead to no feasible actions can be computed. By using the 
slack variables, the hard constraint MPC problem is turned 
into soft constraint MPC problem, then the feasibility of the 
vehicle system could be recovered [35].

The modified objective function incorporates the in-
crement of the control variate directly. It also includes the 
following constraints related to the control outputs and 
their increments.

u u umin max# #

u u umin max# #D D D

In order to achieve good tracking performance, the 
constraints in this paper are the most basic. In its imple-
mentation, the key is to look for the most suitable reference 
position in the prediction horizon.

B. Trajectory Planner
Drivers are accustomed to change lanes based on lane lines 
rather than the shortest distance for saving time or energy 
[37]. In addition, due to the diversity of the road alignment, 
it is very troublesome to make the road discretization by 
only adopting the inertial X-Y coordinate. Therefore, we 
adopt S-L coordinate system to take road shapes into con-
sideration [38].

As shown in Fig. 1, we define a point ( , ),s l  where, s 
represents the arc length along the center line, which is 
also called station, and l  represents the lateral offset of 
the center line, which is also called latitude. Like the X-Y 
coordinate system, we can define the following kinematic 
vector c  about arc length s and latitude .l

 ( , ( , ( , ( ,x s l y s l s l k s lic = ) ) ) )6 @ (7)

Where, ( ,s li ) is the heading angle, ( ,k s l) is the curvature 
of the path.

Note that the vector c  is used to describe the state of the 
sampling point. In highway scenarios, the vehicle is as-
sumed to be parallel to the center line so that the vehicle’s 
heading angle and the curvature are the same in term of 
the road shape. However, the purpose here is to make the 

vehicle run at any speed. Thus, the initial sampling state 
is depending on the vehicle’s initial state. Likewise, the 
endpoint status depends on the desired vehicle state.

The vehicle model defined in Equation (1) can be re-
formed as follows in terms of the S-L coordinate system.
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The Equations (8) shows that the vehicle position state 
is determined by the curvature. Thus for the vehicle trajec-
tory planner curvature can be the only controlled variable. 
In other words, the local trajectory can be carried out by 
determining the curvature.

In [27], a curve was described by mixing cubic and 
quartic polynomials. However, the quadratic polynomials 
consume more computational resources, and need more 
time to generate the result. Besides, high-order polynomial 
curve makes the motion seem exaggerated at low speed sit-
uation. Dealing with the compromise and increase compu-
tational efficiency, here the curvature is defined as a cubic 
polynomial function of the arc length.

 ( )k s a b s c s d s2 3= + + +$ $$  (9)

In order to achieve good tracking performance, the  
constraints in this paper are the most basic. In its 
implementation, the key is to look for the most suitable 
reference position in the prediction horizon. 
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A set of parameters [ ]a b c d  can determine a path. In or-
der to reduce the magnitude error among the parameters 
[27] and make it easier to adjust the parameters, we use a 
parameter [ ]p p p p sp f0 1 2 3=  to reformulate the function 
referring to [28] and [39].

 ( ) ( ) ( ) ( ) ( )k s a b s c s d sp p p p2 3= + + +$ $$  (10)
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When the vehicle drives on the road, the initial position 
( )k p0 0=  and the desired endpoint ( )k s pf 3=  are given. 

So we only need [ ]p p sp f1 2=  to determine the path state 
of the system.

Since the vehicle drives on the road, the local trajectory 
planning should start from the current vehicle position, end-
ing to the previewed target point. Therefore, at each plan-
ning cycle, the vehicle’s current position is defined as the 
initial sampling point. Then, the arc length of the vehicle’s 
location should be defined as .s 0=  To create trajectory 
planner in highway scenarios, it is assumed that the heading 
angle 0i =  [28], [31]. However, autonomous vehicle drives 
not only on highway scenes, but also on complex urban roads 
with medium or low speeds. Therefore, the heading angle i  
cannot be assumed as .0  In each planning cycle, the vehicle 
can obtain the vehicle’s current state through the positioning 
system. Thus, Equation (8) (10) can be reformed as follows.
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Where, ( ) [ ( ) ( ) ( ) ( )]x y kxp p p p pi=0 0 0 0 0  is the initial  
sampling point state which can be obtained by the ve-
hicle’s positioning system. The endpoint of the trajectory 
is .( ) [ ( ) ( ) ( ) ( )]s x s y s s k sx f f f f fp p p p pi=  We f ind the 
parameter p  which can make the endpoint equals or very 
close to the desired point .( )sxdes  Because the form of 

( )spi  and ( )k sp  are similar, in order to simplify the com-
putation complexity, we set the endpoint status of the path 

( ) [ ( ) ( ) ( )]s x s y s sx f f f fp p p pi=  in the process of looking 
for the parameter .p

The gradient decent algorithm can achieve a wonderful 
effect on the iterative solution problems. It is useful in rap-
idly minimizing the error between ( )sxdes  and .( )sx  The 
key of the method is to calculate the Jacobian of the end-
point status vector ( ) [ ( ) ( ) ( )]s x s y s sx f f f fp p p pi=  with 
respect to the parameter .[ ]p p sp f1 2=
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Before the start of each calculate cycle, an initial value 
pinit  needs be assumed, then calculating the error between 
the desired state and the estimated state. After that, it can 
generate a new estimated pi  with the Jacobian by using 
Newton’s method.
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In order to improve the efficiency, the iteration process 
continues until reaching the maximum number of itera-
tion times or Equation (12) is smaller than a value that 
shows the error is sufficiently small. Because of the dif-
ferent characteristics of each elements in the vector c , a 
specific weight should be added to each element when cal-
culating the error.
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The local trajectory can be finally generated as the it-
eration ends. In addition, such trajectory will be input into 
the tracking controller as a reference trajectory.

III. Experiment
In order to fully demonstrate the effectiveness of the meth-
od provided. Three different kinds of experiments were 
carried out including fixed trajectory tracking, trajectory 
generation and on-field test with an autonomous vehicle.
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A. Fix-Path Tracking
The trace tracking simulation was studied via combining 
MATLAB/Simulink with CarSim on a Windows 10 PC with 
Intel Core2 Duo CPU.

Comparing with the results in [10], although the CPU 
performance was worse, the average time per itera-
tion was only 0.040 s, which was less than that in [10]. 
Moreover, the speed set is higher, but the lateral track-
ing error is much less. In [10], the errors were out of the 
safety bounds .0 3error m#^ h in up to eighteen percent 
of the time. Here, using the same standard, the vehicle 
is safe in the whole driving process. As shown in Fig. 3, 
the maximum error is 0.18 m appearing in the course 
of changing lanes. We do not study the average error, to 
protect the driver’s safety, the maximum error should be 
in safety bounds.

Specifically, in the trace tracking simulation, the double 
lane change (DLC) maneuver was adopted [40], because 
this maneuver could fully reflect the driving performance 
of the vehicle.

To verify the influence of the trajectory on the control-
ler, different trajectories are used for tracking (Fig. 4). 
These two reference paths are both based on the ISO 3888-
1 DLC maneuver. The difference between the two paths is 
that when changing lines, reference path 2 uses straight 
lines and the other uses curves generated by the method 
proposed in Method B.

As shown in Fig. 4, the maximum tracking error is 
0.18 m with the reference path 1, and the other is 0.38 m. 
The results demonstrated that the performance of the con-
troller made according to the method mentioned in the 
paper satisfied the requirements, at the meantime, proved 
the importance of trajectory planning. When changing 
lanes or driving on the corners, the optimized trajectory 

makes the tracking controller perform better to ensure the 
safety of the vehicle.

There are many adjustable parameters in MPC control-
ler. Different combinations may result in different effects, 
such as the weighting matrices .Q  Reference path 2 was 
adopted to fully reflect the influence of the weight coef-
ficient of the heading angle. As shown in Fig. 5, while the 
heading weight coefficient Qyaw  is larger, the trace of the 
vehicle is parallel to the reference path. Another situation 
is that the vehicle gradually reduced the error with the 
reference path. Adjusting the parameters in the controller 
can ref lect different drivers’ characteristic. In [8], the 

0 20 40 60 80 100 120 140
Longitudinal Displacement X (m)

–3

–2

–1

0

1

2

3

4

5

6

La
te

ra
l D

is
pl

ac
em

en
t Y

 (
m

)

Traffic Cone
Lane Line

Referencepath
Vehicle

FIg 3 Trace tracking (average speed v = 50 km/h).

0 20 40 60 80 100 120 140
Longitudinal Displacement X (m)

–3

–2

–1

0

1

2

3

4

5

6

La
te

ra
l D

is
pl

ac
em

en
t Y

 (
m

)

Referencepath 1
Referencepath 2

Vehicle 1
Vehicle 2

FIg 4 Comparison of tracking effects with the different reference 
path(average speed v = 50 km/h).

0 20 40 60 80 100 120 140
Longitudinal Displacement X (m)

–3

–2

–1

0

1

2

3

4

5

6

La
te

ra
l D

is
pl

ac
em

en
t Y

 (
m

)

Referencepath
Qyaw = 100
Qyaw = 1,000

FIg 5 Different characteristics.

Speed (km/h) 40 50 60 

Maximum error (m) 0.05 0.18 0.45

 Table I. Maximum error at different speed.
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authors used the evaluation index of steering smoothness 
and path tracking accuracy reflects the drivers’ charac-
teristic. Therefore by changing the parameters of the cost 
function, it is easy to modify the control performance to be 
the same as the human driver’s characteristic.

The choice of speed can also reflect driving character-
istics. Based on the results of tracking different reference 

paths, using the smooth one as the 
reference path shows the inf lu-
ence of different vehicle velocity. As 
show in Fig. 6 the vehicle can follow 
the reference path very well at low 
speeds. When the vehicle drives at 
high speed, the maximum error oc-
curs during the lane change process.

Using the model predictive control method, the predic-
tion model is a key part. As we introduce in the method, in 
the implementation, the key is to look for the most suitable 
reference position. The reference state is selected based on 
the predicted state. If the prediction state is not accurate, 
the reference state is not accurate too. Meanwhile under 
high-speed condition, vehicle kinematic model cannot pre-
dict the vehicle future state accurately, especially in the 
corners. Therefore, higher speed leads to higher error and 
returns to the reference path slower.

B. Trajectory Generation
In the field of trajectory planning, there are two common 
assumptions, perfect perception and perfect tracker [29]. 
Based on the assumptions, during the driving, the vehicle 
advanced one step, then planning once. Reference trajec-
tory was updated every cycle.

Two kinds of trajectory planning strategies are proposed in 
this paper. One is the key point strategy, considering the real 
drivers’ driving behavior, after reaching a key point such as 
the entrance or exit of the curves, then considering the next 
key point. In the DLC maneuver, the entrance and the exit of 
the traffic cones area are the key points (A,B,C,D). Reference 
trajectory 1 is generated based on this strategy. Until the vehi-
cle reaches the nearest key point ahead, the nearest key point 
ahead is always the desired end point in each planning cycle.
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In the field of trajectory planning, there are two common 
assumptions, perfect perception and perfect tracker.
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For example, based on the assumption that the controller 
is perfect, the vehicle perfectly tracks the reference trajec-
tory. After the vehicle travels for a certain distance, the refer-
ence trajectory will be planned again. Since the desired end 
point is the same, the trajectory planned is the same as previ-
ous reference trajectory from the vehicle current position.

The other one is the preview distance strategy. It takes a 
desired point, which is fixed ahead of the vehicle as the end 
point of each planning cycle. Reference trajectory 2 takes 
the point on the global path that is 20 meters ahead of the 
vehicle as the desired point of each planning cycle. Thus, 
in each planning cycle, the desired end point is different. 
Therefore, the trajectory planned cannot coincide with the 
previous reference trajectory.

In each planning cycle, the difference in the desired 
end-point selection has a great influence on the result. As 
shown in Fig. 8, preview points are selected on the same 
global path, the trajectories generated are different be-
cause of the different preview distances. The preview dis-
tance and the lateral offset of the global path are the main 
influence factors to generate different trajectories. If the 
preview distance is longer, then the turn is earlier when 
passing the corner. The choice of the preview distance is 
also selected according to the driver’s behavior and road 
conditions. Thus, according to the method, we can produce 
path-planning solutions that reflect different drivers’ be-
havior, which will be studied in future publications.

C. On-Filed Test
The on-field test was carried out with a car BYD Qin pro-
vided by Wuhan Kotei Technnology Corporation. The ve-
hicle is equipped with two IPC with i7 CPU. The model of 
the industrial computer is ARK-3500. The software are 
running in Windows 7 environment. The perceptual layer 
adopted multi-radar fusion system in the vehicle. On-field 
test includes fixed-path tracking and obstacle avoidance.

The experiment process was divided into several steps. 
First, a real driver drove the car around the test site for 
several circles to collect GPS data to get the global reference 
path. The fixed-path tracking experiment was carried out 
based on these data. Therefore, the fixed-path tracking ex-
periment did not necessarily need the trajectory planner.

Due to site some restrictions, the maximum vehicle 
travel speed was set as 15 km/h. Like the simulation re-
sult, the maximum trajectory tracking occurred at the 
curves. This was because of the defects of using the vehicle 
kinematic model. In order to cross the sharp curves, the 
speed was set very low when entering the curves. The sur-
roundings could influence the multi-radar fusion system 
and ultimately affected the experiment result. As shown in 
Fig. 10, the unmanned ground vehicle can finish fixed-path 
tracking successfully. As shown in simulation, the maxi-
mum error occurred in the corner, which is still in an 
acceptable range.

In the trajectory planning simulation, the tracker was 
able to track the trajectory accurately. However, it would not 
happen in real vehicle experiment, because the tracking 
process might generate errors. Therefore, it is necessary 

(a)

(b)

FIg 9 Unmanned ground vehicle: BYD Qin.
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to continuously plan new trajectory based on the current 
vehicle position during the moving to modify the errors be-
tween the desired position and the current position.

To reflect the importance of the trajectory planner, 
obstacle-avoiding experiment was carried out. The traf-
fic cones were placed on both sides of the centerline. They 
were separated by 8 meters in the longitudinal direction.

As shown in Fig. 12, the vehicle drove through the cones 
area successfully with a S-shaped trajectory. The route was not 
smooth due to the acquisition accuracy and sampling time.

IV. Conclusion
This paper proposed a joint framework for trajectory 
planning and tracking control. The planner and the 
tracker were proved through the simulation and the on-
field test. The trajectory tracking control based on model 
predictive control could ensure that the maximum error 

of vehicle tracking is less than 0.2 m 
when the speed is below 50 km/h.  
At t he meant ime, it proved the 
importance of smooth trajectory 
in autonomous vehicle movement. 
Besides, we compared the impact 
of dif ferent parameters both in 
tracking controller and trajectory 
planner. This paper also proposed 
two strategies on local planning 
strategies, i.e., the key point strate-

gy and the preview distance ahead strategy. Finally, the two 
algorithms were combined and experimentally proved by 
the on-field test.

The MPC controller based on the vehicle kinematic mod-
el can show good performance at low speed, but on highway 
roads, vehicle kinematic model cannot predict the vehicle 
future state accurately, especially in the corners. As shown 
in the simulation results, when the vehicle is driving at a 
speed higher than 50 km/h, the lateral error has exceeded 
0.2 m. So that in the future, the vehicle kinematic model 
needs to be improved with vehicle dynamic model to test 
high speed scenarios. In our controller, we set slack vari-
ables in the objective function to prevent null solution prob-
lem. However, it cannot guarantee that the soft-constrained 
MPC solution is equal to the hard-constrained MPC solution. 
In order to solve this problem, the weighting of the slack 
variable need to be expressed by an exact penalty function.

The MPC controller based on the vehicle kinematic model can 
show good performance at low speed, but on highway roads, 
vehicle kinematic model cannot predict the vehicle future state 
accurately, especially in the corners
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