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The crystal structures of LaAlO3 films grown by pulsed laser deposition on SrTiO3 substrates at

oxygen pressure of 10�3 millibars or 10�5 millibars, where kinetics of ablated species hardly

depend on oxygen background pressure, are compared. Our results show that the interface between

LaAlO3 and SrTiO3 is sharper when the oxygen pressure is lower. Over time, the formation of

various crystalline phases is observed while the crystalline thickness of the LaAlO3 layer remains

unchanged. X-ray scattering as well as atomic force microscopy measurements indicate

three-dimensional growth of such phases, which appear to be fed from an amorphous capping layer

present in as-grown samples. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4866439]

The interface between LaAlO3 (LAO) and SrTiO3

(STO) has attracted enormous attention since the discov-

ery of its metallicity1 even though both compounds are

band insulators. Furthermore, recent findings of magne-

tism,2 superconductivity,3 and their coexistence4 make this

system even more popular. An intrinsic electronic recon-

struction model in which electrons rearrange to avoid the

so-called polar catastrophe5 provides attractive explana-

tions for novel properties, such as a metal-insulator transi-

tion depending on the LAO thickness6,7 or an applied

electric field,7 but the intrinsic model does not account for

some observations.8 The dependence of the properties on

growth parameters in particular indicates that extrinsic

factors play crucial roles.1,2,9–17 An important growth pa-

rameter in pulsed laser deposition (PLD) is the back-

ground oxygen partial pressure, which has been believed

to influence the conductivity by controlling the density of

oxygen vacancies.9–12 Recent studies, however, reveal that

aspects of the interface structure such as intermixing and

lattice distortion are also strongly influenced by the oxy-

gen partial pressure during the LAO deposition.15–17 So

far, it has been found that an oxygen pressure high enough

to reduce significantly the kinetic energy of growth spe-

cies results in sharp interfaces,16 but the relation between

the interface roughening and the oxygen pressure in the

region where the oxygen pressure hardly affects the ki-

netic energy of species still remains unexplored. In addi-

tion, cation intermixing across the interface has been

suggested to be an important factor for the interface

conductivity;5,17–20 and therefore, knowledge of the struc-

tural roughening depending on the oxygen pressure and

sample age may help us to resolve the inconsistent obser-

vations of interface properties.

Surface x-ray scattering (SXS) is a powerful tool widely

used to study the structure of thin films. SXS has been

applied to investigate the interface structure between LAO

and STO and has revealed lattice distortion and cation inter-

mixing occurring at the interface depending on growth

conditions.18–22 Here, we applied SXS to study the influence

of the oxygen pressure on the structure of LAO/STO interfa-

ces, and SXS data measured on LAO films grown at oxygen

partial pressures of 10�3 and 10�5 millibars are compared. In

this range of oxygen pressures, the kinetics of species ablated

by lasers are almost independent of the oxygen pressure,15,16

so similar roughnesses for the films were expected.

However, we find that the films grown at the lower oxygen

pressure have sharper boundaries than those at the higher

pressure, independent of the film thickness. In addition, we

observe a serious degradation of the film over time, consist-

ing of significant roughening of the film morphology and for-

mation of new phases, which may result in seemingly

inconsistent experimental results, e.g., electrical transport,

for the same sample as it ages.

STO and LAO have perovskite structures with (pseudo)-

cubic lattice constants of 3.905 Å and 3.79 Å, respectively. A

set of LAO films with different nominal thicknesses were

grown on TiO2-terminated STO (001) substrates by PLD at

oxygen partial pressure of 10�3 millibars and another set at

10�5 millibars. Two-dimensional layer-by-layer growth was

confirmed by in-situ monitoring of reflection high-energy

electron diffraction (RHEED) oscillations. The laser wave-

length, fluence, and pulse repetition rate were 248 nm,

1.5 J/cm2, and 1 Hz, respectively. The target-to-sample dis-

tance was 5 cm, the size of the ablated area was 6 mm2, and

the substrate temperature was held at 800 �C. X-ray scatter-

ing measurements were performed at X20A and X18A

beamlines of the National Synchrotron Light Source at

Brookhaven National Laboratory in April and September

2011, respectively. Double Si (111) and Ge (111) crystals

were used to obtain monochromatic x-rays at 8 keV at X18A

and X20A, respectively. All measurements were carried out

in air at room temperature using a standard four-circlea)Email: yeongahsoh@gmail.com
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diffractometer equipped with a scintillation counter. A Si

(111) analyzer in front of the detector was used only at

X20A.

Fig. 1 presents the reflectivity of 11 unit cell (uc) thick

films measured in April 2011 and fitted assuming that the

stoichiometry of the LAO layers is conserved, which is justi-

fied by carefully adjusting the laser fluence in the PLD

growth to maintain the stoichiometric transfer of ablated spe-

cies.23 We can set a bound of 2% on the La deficiency of our

samples based on the calibration of our PLD system done

using X-ray photoelectron spectroscopy and the transport

measurements carried out on our as-grown samples (data not

presented here) that look very similar to the stoichiometric

sample in Ref. 23. The fits show that the LAO films have an

additional layer at the top in addition to the layer with the

expected thickness and electron density. The first layer

directly on top of the substrate has the same electron density

as that of bulk LAO (Ref. 24) for both samples within exper-

imental error, and its thickness is 39.3 6 0.3 Å for the 10�3

millibars-grown sample and 40.9 6 0.2 Å for the 10�5

millibars-grown sample, which correspond to the nominal

thickness of 11 uc. The second layer has an electron density

of 32% 6 2% of that expected in bulk LAO for both samples.

The thickness of the second layer is 21.5 6 0.1 Å for the

10�3 millibars sample and 19.4 6 0.1 for the 10�5 millibars

sample. The roughnesses of the surface and interfaces

obtained by fitting the reflectivity data are summarized in

Table I. The interface between the LAO layer and the STO

substrate (interface II) is rougher than that between the addi-

tional layer and the LAO layer (interface I) for both samples.

The roughnesses of the surface and the interface II for the

10�3 millibars sample are 1.8 6 1.1 Å larger than those for

the 10�5 millibars sample, while the roughnesses of the

interface I are the same for both samples within the experi-

mental error as seen in Table I.

Fig. 2 shows x-ray diffraction (XRD) intensities meas-

ured in April 2011 along (00L) and (10L) crystal truncation

rods (CTRs), where momenta are denoted by the crystallo-

graphic axes of the STO substrate, and its c axis is defined to

be perpendicular to the interface. Laue oscillations originat-

ing from the finite thickness of the LAO layer are seen in

addition to the STO and LAO Bragg peaks. The LAO layer

thicknesses corresponding to these oscillations are 27 6 4 Å

and 42.5 6 2 Å for the nominal thicknesses of 7 uc and

11 uc, respectively, which are largely independent of the ox-

ygen pressure. The LAO layer thickness obtained from the

Laue oscillations for the 11 uc films is the same as the thick-

ness of the first layer directly on top of STO obtained from

surface reflectivity. Since the Laue oscillations beside the

Bragg peaks originate from interference of all crystal lattices

within a finite thickness so that only crystalline regions con-

tribute, whereas any abrupt change of electron density across

the interface contributes to the reflectivity, we can conclude

that the first layer directly on top of STO consists of crystal-

line LAO and the additional layer seen in the reflectivity

data is amorphous. All films are fully strained, i.e., their in-

plane lattice constants are the same as those of STO, which

FIG. 1. X-ray reflectivity of the 11 uc-thick LAO films measured in April

2011. Black squares and red circles represent the samples grown at oxygen

pressures of 10�3 and 10�5 millibars, respectively, and solid lines represent

their corresponding fits. The curves have been shifted along the y-axis for

clarity. The fits show the samples have two layers; the first layer from the

STO substrate has a thickness consistent with 11 uc LAO and the same elec-

tron density as the bulk LAO within experimental errors while the second

one has an electron density of 32 6 2% of the bulk LAO for both samples

and a thickness of 21.5 6 0.1 Å for the 10�3millibars sample and 19.4 6 0.1

for the 10�5millibars sample. The surface and the interface between the sub-

strate and the first layer of the 10�3 millibars sample are rougher than those

of the 10�5 millibars sample, and the roughness of the interface between the

two layers is similar for both samples. Inset: Schematic structure of the fresh

as-grown films.

TABLE I. Roughnesses obtained from the reflectivity fits of the 11-uc thick

LAO samples as shown in Fig. 1 (units in Å).

Positiona 10�3 millibars 10�5 millibars

Surface 5.4 6 0.2 3.6 6 0.2

Interface I 2.5 6 0.1 2.4 6 0.1

Interface II 7.6 6 0.5 5.8 6 0.6

aInterfaces I and II represent the boundaries of the crystalline LAO layer

with the additional amorphous top layer and the STO substrate, respectively.

FIG. 2. XRD measurements in April 2011. Scattered intensities measured

along the (00L) (a) and (10L) (b) directions of the films with a nominal

LAO thickness of 11 uc. Panels (c) and (d) represent those for the films with

nominal thickness of 7 uc. Black and red lines represent data on the samples

grown at oxygen partial pressure of 10�3 millibars and 10�5 millibars,

respectively. The curves have been shifted along the y-axis for clarity.

Clearer oscillations for 10�5 millibars indicate that the films grown at 10�5

millibars oxygen pressure have sharper boundaries than those at 10�3

millibars.

081604-2 Park et al. Appl. Phys. Lett. 104, 081604 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

192.93.101.169 On: Fri, 28 Feb 2014 11:08:33



was confirmed by reciprocal space maps measured around

the (103) reflection (not shown).

The Laue oscillations in Fig. 2 show strong asymmetric

shapes. Larger intensities at the lower angle side of each

Bragg peak than those with the same satellite orders at the

larger angle side indicate that the LAO lattices along the

surface normal direction are elongated near the interface,

consistent with previous reports.18,20–22 Here, we did not

characterize the lattice distortions quantitatively because

of the lack of experimental data for reliable fitting.

Nevertheless, the similar intensity ratios of the 6nth order

satellite peaks near the Bragg positions indicate that the lat-

tice distortion is largely insensitive to the oxygen pressure.

The oscillations far from the Bragg peak, by contrast,

show clear distinction between the samples grown at differ-

ent oxygen pressures. The oscillation for the sample grown

at the oxygen pressure of 10�5 millibars is clearer than that

of 10�3 millibars and this feature is independent of the LAO

thickness. Blue lines in Fig. 3(b) show how the intensity pro-

file of scattered x-rays evolves as a function of surface or

interface roughness. We modeled the local atomic distribu-

tions of the surface and the LAO/STO interface by a

Gaussian function, in which its standard deviation corre-

sponds to the roughness, as depicted in Fig. 3(a). In this

model, therefore, the La and Al ions (or Sr and Ti) move to-

gether. In addition, lattice elongation of LAO along the sur-

face normal direction is modeled by a power law plus a

constant ((xþ a)�bþ c), in which the out-of-plane lattice

constant far from the interface is 3.73 Å,21 and no deficiency

of cations is assumed. The calculation shows that the inten-

sity of high order satellites and the visibility of the oscilla-

tions decrease as the roughness increases. In addition, the

oscillations of the satellites to the left of the Bragg peaks are

stronger if the interface roughness is larger than the surface

roughness, and vice versa. By comparing our experimental

results to the calculations we can, therefore, infer that the

boundaries of the 10�3 millibars-grown films are rougher

than those of the 10�5 millibars-grown films and the interfa-

ces are rougher than the surfaces for all the samples.

Although the model is too simplified to provide quantitative

agreement with the experimental data, the trends in rough-

ness are consistent with the interface roughnesses obtained

by fitting the x-ray reflectivity data of the 11 uc-thick LAO

samples. This conclusion is consistent with the fact that Sr

diffusion in STO is minimized at low oxygen pressures,25

and the preservation of ordered TiO2-terminated STO sur-

face during the PLD growth improves the interface sharpness

in low pressure grown samples.

Since interdiffusion of La and Sr is known to occur at

LAO/STO interfaces, we considered the contribution of

interdiffusion to the interface roughness, and incorporated

population of Sr sites by La ions and vice versa into the

same model as above. Based on the report18 that the interdif-

fusion depth of La is larger by around one unit cell than that

of Al, and that La1�xSrxTiO3 can, therefore, be formed

around the interface, we assume a TiO2 layer is above the

interdiffusion-derived interface layer consisting of 50% LaO

and 50% SrO that results in the formation of La0.5Sr0.5TiO3.

We model the depth profile of the ratio of LaO or SrO over

the total rare earth oxide (LaOþ SrO) by an error function

with the roughness defined by its standard deviation. The

XRD patterns obtained after incorporating composition

roughness, ranging from 0 to 6 Å, introduced by interdiffu-

sion in addition to the morphological roughness are qualita-

tively the same as before incorporating composition

roughness, as shown in Fig. 3(b). Our calculated XRD pat-

terns show that the influence of compositional roughness

introduced by the interdiffusion of La and Sr to the XRD pat-

tern is much smaller than that due to the roughness from

morphology. Therefore, the contribution of the interdiffusion

to the roughness measured with XRD is negligible and there-

fore, the XRD data mostly reflects the roughness due to

morphology.

Fig. 4 shows the XRD patterns measured in September

2011, five months after the first experiments. Strikingly, the

results show dozens of additional peaks with different inten-

sity profiles, indicating that the samples have undergone

aging. The samples were stored at ambient atmosphere and

temperature between the two experiments. The additional

peaks are detected as long as the specular condition is satis-

fied, which indicates that the additional phases are crystalline

with well-defined orientations. The full width at half

FIG. 3. (a) [Left] Schematic structure for the calculation. Orange and blue

circles represent LAO and STO unit cells, respectively. [Right] Atomic den-

sity of LAO and STO as a function of the height along the direction normal

to the surface. (b) Calculated XRD patterns with the kinematical theory with

an average LAO thickness of 11 uc. In the calculation, we assumed (1) a

Gaussian distribution of the surface and interface heights, (2) elongation of

the out-of-plane lattice constant of LAO near the interface according to a

power law, and (3) absence of any deficiency of cations and oxygen. Blue

lines represent the limit where there is not interdiffusion, and green, black,

and red lines are for interdiffusion widths of 2, 4, and 6 Å (standard devia-

tions in Gaussian error function), respectively. The numbers on the right

side of the curves represent the standard deviations of the Gaussian func-

tions, i.e., roughnesses, in units of Å; the first number is for the surface and

the second for the interface. (c) Measured peak height of the nth order satel-

lite of the 11 uc thick LAO film. A constant background has been subtracted.

Black squares and red circles represent the 10�3 and 10�5 millibars oxygen

pressures, respectively. In every case, the peak height of the 10�5 millibars

film is higher than that of the 10�3 millibars one.

081604-3 Park et al. Appl. Phys. Lett. 104, 081604 (2014)
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maximum (FWHM) of the rocking curve of every additional

peak was smaller than 0.1� for the LAO sample with 31 uc

thickness grown at 10�5 millibars oxygen pressure. We have

performed reciprocal line scans along the direction normal to

the surface on nine LAO films with various thicknesses

grown under the same conditions except for the oxygen par-

tial pressure being either 10�3 or 10�5 millibars. 61 different

positions of additional peaks have been observed and an

additional peak at L¼ 2.931 seen in the first experiment

became absent. Table II lists the samples that exhibit

additional peaks and their corresponding L values and candi-

date materials composed of La, Sr, Ti, Al, or O that present

Bragg reflections corresponding to the measured L values.

Since there are many candidate materials, we cannot specify

exactly which materials have formed after the growth,

beyond noting that there are many possibilities which

researchers will need to be aware of. Despite, the huge

changes of the diffraction pattern after aging, the crystalline

thickness obtained from the Laue oscillation remains essen-

tially the same.

Atomic force microscopy (AFM) images show consider-

able changes of the surface morphology over time. An AFM

image obtained on the 7 uc-thick LAO film grown under

10�5 millibars-oxygen-pressure in April 2011, just after the

sample growth, shows terraces with unit cell step height, as

presented in Fig. 5(a). This sharp surface degrades over time,

as shown in Fig. 5(b) taken in April 2012. The height varia-

tion of the aged surface where the towers have heights of

5–50 nm is one order of magnitude larger than the original

film thickness, 2.7 nm, even while we know from the x-ray

data that the LAO layer on top of the STO remains flat and

of the same thickness. All of our observations are therefore

consistent with each other, and lead to the conclusion that

the majority of the crystalline layer of the film remains

unchanged with age, and it is the initially amorphous layer

which provides the material from which the crystalline

phases responsible for the tower-like surface structures in

AFM images and the three-dimensional Bragg peaks grow.

Degradation of the conductivity at the LAO/STO inter-

face over time has been reported and it has been proposed

that oxygen diffusion induces the degradation by filling oxy-

gen vacancies.26 However, in that previous study, the struc-

ture of the films was not tracked, and based on our data we

FIG. 4. XRD measurements in September 2011 of the same samples as in

Fig 2. Scattered intensities measured along the (00L) ((a) and (c)) and (10L)

((b) and (d)) directions on the films with a nominal LAO thickness of 11 uc

and 7 uc, respectively. Black and red lines represent the oxygen pressures of

10�3 millibars and 10�5 millibars, respectively. The curves have been

shifted along the y-axis for clarity. Dozens of additional peaks satisfying the

specular condition are observed, which indicates the presence of additional

crystalline phases with well-defined orientations.

TABLE II. Materials candidates for the additional x-ray diffraction peaks in Fig. 4.

Number of

samplesa L Candidates

Aprilb 2.931 LaAl4, Ti4O7, Al2Ti7O15, SrAl4O7, Sr2Al6O11, La2SrAl2O7

1 0.760c, 1.083, 1.284, 1.347, 1.390,

1.406, 1.526, 1.644, 1.654, 2.315,

2.576, 2.595, 2.597, 2.609

Al2O3, LaAl4, SrAl2, Sr5Al9, TiO, TiO2, Ti3O5, Ti7O13, AlTiO5, Al2Ti7O15, La2Ti2O7, La4Sr3O9,

La4Ti9O24, SrAl4O7, SrTi11O20, Sr2Al6O11, Sr2Ti6O13, Sr4Al14O25, Sr4Ti3O10, Sr4Ti3O10, Sr10Al6O19,

La3Al15Ti5O37

2 0.752, 0.772, 0.806c, 1.299, 1.519,

1.612, 1.630, 1.656, 1.834, 2.164,

2.444, 2.525

Al2O3, LaAl4, SrAl, Sr5Al9, Sr8Al7, TiO2, Ti3O, Ti6O, Ti7O13, Ti8O15, Ti9O17, LaAlO3, LaTiO3, La2Ti2O7,

La4Ti3O12, La4Ti9O24, La5Ti5O17, SrAl2O4, SrTi11O20, Sr2Al6O11, Sr2Ti6O13, Sr4Al14O25, Sr10Al6O19,

La2SrAlO7, La3Al15Ti5O37

3 0.815, 1.623 La9Ti7O27, SrAl2O4, SrAl4O7, Sr4Al14O25

4 0.861, 1.251, 1.290, 1.607, 1.804,

2.580

LaAl4, La2O3, La3Al11, SrO, TiO2, Ti3O5, Ti5O9, Ti6O11, Ti7O13, Ti8O15, La4Sr3O9, Sr2Al6O11,

Sr4Al14O25, SrAl2O4, SrTi11O20, Sr4Al14O25, La3Al15Ti5O37

5 1.220, 1,543, 1.585, 1.720, 2.439,

2.885, 2.961

LaAl, LaAl4, La3Al11, SrAl2, TiO2, Ti2O3, Ti4O5, Ti4O7, Ti6O, Ti6O11, Ti8O15, LaTiO3, La4Sr3O9,

La2Ti2O7, La5Ti5O17, SrAl2O4, SrAl4O7, SrAl12O19, SrAl14O25, SrTi11O20, Sr4Al14O25, Sr10Al6O19,

La3Al15Ti5O37

6 2.500 LaAl4, La3Al11, SrAl12O19, Sr10Al6O19

7 2.431 Al2O3, La3Al11, Ti7O13, Al2TiO5, La4Sr3O9, La4Ti3O12, La5Ti4O15, La9Ti7O27, SrTi11O20, La3Al15Ti5O37

8 0.722c, 1.530, 1.647, 1.945, 2.333 LaAl4, La3Al11, TiO2, Ti2O, Ti4O7, Ti5O9, Ti6O, Ti6O11, Ti7O13, La2Ti2O7, SrAl2O4, SrTi11O20,

Sr2Al6O11, Sr2Ti6O13, Sr3Ti2O7, Sr4Al14O25, Sr4Ti3O10, Sr7Al12O25, Sr10Al6O19, La3Al15Ti5O37

9 0.781, 0.974, 1.334, 1.443, 1.459,

1.501, 1.560, 1.667, 2.340, 2.667,

2.917, 3.120, 3.332

Al2O3, AlTi, AlTi3, LaAl4, La3Al11, SrAl, Sr5Al9, Sr8Al7, SrO2, TiO, TiO2, Ti2O3, Ti3O5, Ti4O5, Ti4O7,

Ti5O9, Ti6O11, Ti7O13, Ti8O15, Ti9O17, Al2TiO5, Al2Ti7O15, LaAlO3, LaTiO3, La2TiO5, La2Ti2O7,

La4Sr3O9, La4Ti9O24, La5Ti5O17, SrAl2O4, SrAl12O19, Sr2Al6O11, Sr2TiO4, Sr2Ti6O13, Sr3Al2O6,

Sr4Al14O25, Sr4Ti3O10, Sr10Al6O19, La3Al15Ti5O37

aNumber of samples represents how many samples show a peak at the (00L).
bAll four samples measured in April 2011 show the additional peak. All other results in this table are for the measurements of September 2011.
cThere is no candidate material corresponding to this L value which may come from materials having non-stoichiometric compositions.

081604-4 Park et al. Appl. Phys. Lett. 104, 081604 (2014)
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suspect that, besides the possible dynamics of oxygen-

related defects, the increase of the resistivity can be attrib-

uted to the replacement of the amorphous, two-dimensional

layer by much more textured crystalline phases. The obser-

vation that other phases are more easily formed from amor-

phous LAO films than for crystalline films27 can explain

well the fact that the resistivity of amorphous films was

found to increase much more rapidly over time than that of

crystalline films.26

In summary, we have compared LAO films grown at the

oxygen pressures of 10�3 millibars or 10�5 millibars and

found that the films at lower oxygen pressure have sharper

boundaries. We observed strong evidence, indicating that the

films undergo aging, which may cause the degradation of

the interface conductivity. The amorphous layer on top of

the LAO layer appears to be at the root of the aging phenom-

ena in LAO/STO heterostructures. Understanding such

dynamic processes and the surface reactions involved will

facilitate the development of strategies for the preservation

of the desired physical properties of interface-based materi-

als and devices.
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FIG. 5. AFM images (higher panels)

and line profiles (lower panels) of the 7

uc thick LAO sample grown at 10�5

millibars oxygen pressure measured in

April 2011 (a) and in April 2012 (b).

While the image taken just after the

growth shows terraces with unit cell

steps, the image taken one year later

shows that the film surface has under-

gone ageing and became inhomogene-

ous. (c) Schematic diagram of the

LAO/STO heterostructure before and

after ageing. The scale parallel to the

film surface is one order larger than

that normal to the surface.

081604-5 Park et al. Appl. Phys. Lett. 104, 081604 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

192.93.101.169 On: Fri, 28 Feb 2014 11:08:33

http://dx.doi.org/10.1038/nature02308
http://dx.doi.org/10.1038/nmat1931
http://dx.doi.org/10.1126/science.1146006
http://dx.doi.org/10.1038/nphys2080
http://dx.doi.org/10.1038/nphys2079
http://dx.doi.org/10.1038/nmat1569
http://dx.doi.org/10.1126/science.1131091
http://dx.doi.org/10.1038/nmat1675
http://dx.doi.org/10.1038/nmat1675
http://dx.doi.org/10.1002/adma.200903800
http://dx.doi.org/10.1103/PhysRevLett.98.196802
http://dx.doi.org/10.1103/PhysRevLett.98.216803
http://dx.doi.org/10.1103/PhysRevB.75.121404
http://dx.doi.org/10.1038/nmat2223
http://dx.doi.org/10.1209/0295-5075/82/17003
http://dx.doi.org/10.1103/PhysRevB.87.075435
http://dx.doi.org/10.1063/1.3529487
http://dx.doi.org/10.1002/adma.201202691
http://dx.doi.org/10.1209/0295-5075/93/37001
http://dx.doi.org/10.1103/PhysRevLett.99.155502
http://dx.doi.org/10.1016/j.surfrep.2010.09.001
http://dx.doi.org/10.1103/PhysRevB.85.045401
http://dx.doi.org/10.1103/PhysRevLett.106.036101
http://dx.doi.org/10.1103/PhysRevLett.106.036101
http://dx.doi.org/10.1103/PhysRevLett.107.036104
http://dx.doi.org/10.1103/PhysRevLett.110.196804
http://dx.doi.org/10.1063/1.555974
http://dx.doi.org/10.1063/1.1321055
http://dx.doi.org/10.1111/j.1151-2916.1997.tb03157.x
http://dx.doi.org/10.1016/j.ssi.2012.08.005
http://dx.doi.org/10.1088/0256-307X/24/9/058

