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Abstract—In recent years, the use of random walk techniques walks to convey data from a source node to a destination one.
in wireless sensor networks has attracted considerable iatest The use of this technique is not new and has been extensively
among numerous research efforts. The popularity of this ap- explored in many networking models providing a variety of

proach is attributed to the natural properties of random walks . . . . g
such as locality, simplicity, low-overhead and inherent rbustness. algorithms including routing [25], self-stabilization][&data

However, throughout the variety of research works that asses the gathering and query processing in wireless networks [, [1
effectiveness of random walk techniques, most results areedved  [23], peer-to-peer networks [14] and other distributedeys.

from a qualitative view or by means of simulations. Furthermore, However, throughout the variety of research works that

when analytical tools are used, the obtained results oftenrpvide  jqqaqq the effectiveness of random walk techniques, most
bounds on various performance metrics of interest, which mgp

have little consequences for practical applications. Ingad, our r(_asults_are derived from a qualitative view or by means of
goal in this paper is to quantify the effectiveness of such Simulations [25]. Furthermore when analytical tools aredjs
techniques based on the derivation of closed-form expressis. the obtained results often provide bounds on various perfor
In particular, we fogus on the data delivery delay taken for he mance metrics of interest [3], [22]. For example, different
random walk to deliver messages from sensor to sink nodes and 5,,thors are interested in the well studied concept of cover
study its statistics through closed-form derivations. . S .

Index Terms—Wireless Sensor Networks, Random Walk The- t'_m_e' which is th_e expected t'me taken b_y a random Walk_ to
ory, Performance Evaluation visit every node in a graph. This property is relevant to aewid
range of algorithmic applications [2], [6], and various hds
of bounding the cover time of graphs have been thoroughly
investigated [10], [16]. Recently, it has been proven thoat f

Wireless Sensor Networks (WSN) have been one of they sizen geometric graph with connectivity radius when
most prosperous research areas in recent years thanks tg itsQ(r.,,, ) then w.h.p? the optimal cover time behaves as
wide spectrum of potential applications, including enuo O(nIn(n)) wherer.,, growing asO(y/In(n)/(mn)) is the
ment and habitat monitoring, healthcare application, honggitical radius to guarantee connectivity.h.p. [4].
or industrial automation and control, precision agrictétu  There are other properties of the random walk also that need
and inventory tracking [1]. Faced to this general trend @b be evaluated. One is the data delivery delay, which is the
application diversification, large amounts of researcmdpeitime required for the random walk to deliver a message from
done in the WSN area are trying to provide useful tools arglgiven node to a destination. This property is of great éster
design methods for better architectures and protocols [17] in many WSN applications where the primary task of the

Most application scenarios for WSN involve small devicesetwork is to gather information from a particular locat[®h
called sensor nodes, which are equipped with sensing dapaguch systems are generally composed of two kinds of nodes: a
ities, wireless communication and limited power supplyUCPlarge number of sensor nodes with limited storage, proegssi
and memory. On top of that, sensor nodes are often suppoagd communication capabilities, and a smaller number d¢f sin
to operate unattended and under strict energy constraimsdes with more complex capabilities to gather, process and
Such adverse conditions make the design of robust, scalagd@itrol data. Each sensor node performs some sensing of a
and energy efficient systems a considerable challenge. Tg#ticular confined area, and sends messages to sink nodes
extensive research in this field, though, allowed to learntarough a random walk motion.
few principles for the design of efficient WSN [17]. For Many recent research efforts have studied this random walk
example, topology-driven algorithms are at a disadvantaggoperty on different classes of graphs. However, most of

for such networks as they induce an excessive amounttfé obtained results often provide upper bounds on the data
communication, which is problematic for WSN.
In the search of an alternative solution, many earlier recen*We recall the following notation: (iff(n) = O(g(n)) means that exists
research efforts have investigated the use of randomizégio 2 constaniC' and integerK' such thatf(n) < Cg(n) for n > K. (i)
b 1oh abls and 9 e i 2! () = ©(g(n)) means thatf(n) = O(g(m); a(n) = O(f(m).
uild robust, scalable and energy e '_C|ent protocols | 2Event&,, occurs with high probability.h.p) if probability Pr(&y,) is
text of WSN [7]. One example consists of the use of randognch thatlim,,—,c0 Pr(Em) = 1.

I. INTRODUCTION
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(a) Original deployment pattern (b) Equivalent deployment pattern

Fig. 1. Dark-filled circles show sink nodes whereas sensdes@re represented by light-filled circles.

delivery delay and not a closed form derivation [5], [12]We look more specifically at a common regular and periodic
Clearly, results of this nature may have little consequsncgeployment topology where nodes are spread over an area of
for practical applications because the constants hiddehean interest with a square pattern. As illustrated in Fig. 1¢hjs
bounds notation can be very large. Moreover, most of tipattern is formed by a periodically repeated square uniitofel
works concentrate on the evaluation of the mean value size N x N containingN? nodes of whichV? — 1 are sensor

the data delivery delay [13], which makes difficult to gehodes and one is a sink node.

statistically robust conclusions about the relevance & th gased on these underlying assumptions, the data delivery
random walk efficiency. process can be described as follows. When a message reaches
Instead, our take in this paper is to obtain a completggiven node, the next hop occurs uniformly at random only to
insight into the data delivery delay induced by a random wafke nearest-neighbors. Thus, in the case-ebnnectivity all
by constructing an analytical model that owes much to thge nearest-neighbors away from the current node are equally
powerful analytic tools developed in the physics communitely with transition probabilityl. A message generated at
[20], [21], [24]. In particular, this model enables us todtu 5 given sensor node performs then a random walk until it
both the central tendency and the dispersion of the datches for théirst time a sink node where it will be trapped.
delivery delay through close form derivations. Althoughr ouat this moment, we consider that the data delivery process ha

work mainly focuses on the data delivery delay, the level @ccurred with success and then, we no longer care about the
abstraction of the proposed model is such that it can beepplpytcome of the walk.

to investigate other performance metrics of the random walk

section Il. In section lll, we focus on the data delivery @elaassumption that there is no specific mapping between sensor

with prior attention to two properties: the mean value arel ﬂ}jlnd sink nodes, and given the structural periodicity of the

dispersion. In ;echon IV, we show that the ,dat‘?‘ deliverpglel envisioned pattern, we can consider that the formed network
can be approximated by a geometric distribution under Sor%eequivalent to a torus lattic& of size N x N formed by

conditions. We provide some conclusions in section V a'?:%nnecting the opposite ends of a unit cell. The resulting

point out aspects that will be subject of future research.

II. RANDOM WALK MODELING

A. Network Description and Assumptions

structure, as it is shown in Fig. 1(b), contains a single sink
node located at the origin whereas the other sites are sensor
nodes. Based on this observation, the original networlepatt
and the torus lattice are used interchangeably. Howewvethé&o

We consider a WSN made of two kinds of nodes: §a&ke of simplicity, we actually investigate the data dejve
large number of sensor nodes and a smaller number of sRflecess in reference to torus lattiGe where every node
nodes with more complex capabilities to gather, process afdlabeled with (ri,r2): 71 and r, are integers such that
control data. Each sensor node performs some sensing dt a 71,72 < N -1
particular confined area, and sends messages to sink nodes iFhere are many motivations that prompted us to choose this
a multihop fashion, using other sensor nodes as relays armatwork structure. First, many WSN applications are often
without any specific mapping between sensor and sink noddssired to follow regular patterns for at least two reasons:



(7) convenience of deployment andi)(to achieve a higher basic relation upon which relies most of our contribution in
degree of connectivity and coverage. Second, this diviefon this paper. In the following, we focus our attention on one
the network into unit cells suggests a very natural way dfteresting performance metric of the proposed random walk
grouping nodes together (clustering). Such a clusterinftén scheme and attempt to study its statistics through close for
required by protocols in order to deal with a large numbelerivations. Generating function techniques and asynaptot
of nodes. Third, it is natural to start with regular patternsxpansion calculus are the key tools here and they are used in
before addressing more complex ones of interest to us.lfinatandem to elaborate interesting results.

this pattern is simple enough to allow a complete analytical

treatment of the random walk problem while still being usefu lIl. DATA DELIVERY DELAY ANALYSIS

to incorporate specific key issues of WSN such as connegctivit A primary objective of the proposed random walk scheme
and coverage. is to perform successful data delivery while achieving @esi
B. Problem Formulation and Characterization guarantees_ on delay timgs. It is Wor'_[h noj[ing that although
) o o . there are different categories of delay times in WSN dependi
We define, forn > 1, P,(r, ) the probability of being at ,, 5 jication requirements, the time or the number of hops
nodei aftern hops,_glven#thqat a messagg_has bee_n_ IssueOIe%erienced by a message generated at a sensor node before
noder. We also definé, (r, s) the probability of arriving at being trapped at the sink node represents one of the sigttifica

nodes for tthLrSt time on thenth hop, given tha_t. t_he walk metrics to measure the random walk performance. We refer to
started at nod&. We shall refer to these probabilities as thft:xniS delay time as thdata delivery delay

node occupation probabilitand thefirst-passage probability Formally, given a sensor nodé € ¥, let Dy (F) be the

reseei:tlvely. By convention we havaOSr’S) ~ 5F§ fmd data delivery delay defined at this sensor nobg:(F) is a
Fo(r,s) = 0. We denote also byP(r,s|z) and F(F,s[z) giserete random variable taking nonnegative integer walue
the generating functions [18] associated W{tR, (F.8)}nen Ty it can be characterized by its probability distrionti
and {,,(r', 8) }nen respectively. Hereafter we present a welly .o 1o probability distribution aPy () is determined, al
known  classical rela_tlon extenswe!y used in ran_dom_ Wa@e statistics of the data delivery delay can be theordyical
theory, and upon which the theoretical results derived is thderived. Unfortunately, it is not a simple matter to derive
paper rely. For proof, refer to [15] this probability distribution. This difficulty is well know in
Lemma 1. F(¥,s]| 2) and P(¥, | z) are related to each other random walk theory while studying first-passage times [15],

according to the relation [26]. Indeed, most of the analytical works in this respect
P(F,5]2) — 6ss concentrate on the derivation of either the short- or thgdon
F(r,8|z) = W, r,se%. (1) time behaviors of first-passage times and not on the exact
) z

expression of the probability distribution.

A key issue in random walk problem is the resolution of |n spite of this, we show in this paper that many statistical
the following question: how likely does the walk evolve ireth properties of the data delivery delay can be deduced by
future under some initial conditions? Answering this quSt Ca|cu|aﬂng its first- or higher-order moments using gemega
consists in finding an explicit expression Bt §'| z), which  function techniques. In particular, we are interested iis th
completely determines the node occupation probabilitirielis section in central tendency, dispersion and their depesiegn
bution. Globally, throughout the large number of interéliscon key model parameters. These two basic properties can be
plinary works in random walk theory, the exact closed-foryeflected by calculating for example the mean value and the
solution was mostly carried out under restrictive condi$io standard deviation of random variatiiey (). To do this, we
such as the periodicity of the network, the homogeneity @fst determine the generating function associated witkoan

the system and the infiniteness of the structure on WthBr|ab|e’DN(F) and then, we app|y the generating function
the random walk takes place. Among these special cases, {thniques.

problem of random walk on finite lattices with periodic bound i ~ ] )
ary conditions e, toroidal lattices) has been extensively’ToPosition 1. Let Djv(r|z)abe the generating function of
studied. Montroll and Weiss [24] originally proposed thié@ndom variableDy (r). Dy (r| z) can be then expressed as
special problem and solved it fdr-dimension. In particular, B P(F,0]2)
in the case of a torus lattice, they established an explicit Dn(F|2) = W 3)
expression ofP(r,0] z) as follows. ’
Proof: From the definition ofDy(r), we can see that
the probability of a message generated at sensor @otte
1 Nzl N-d ciZEmary i ZEmars be gathered at the sink node on theh hop is equal to the
P(F,0]z) = el Z Z = - probability of being at the origin for the first time on theth
m1=0 m2=0 2 hop, given that the walk started at nogflehat is, first-passage
(2) probability F,, (7', 0). Thus, in terms of probability notation, we
Even though relation (2) does not give a simple forrhave
of P(¥,0]z2), it is of great importance and represents our Pr{Dn(F) =n} = F,(T,0), n > 0.

Lemma 2. P(¥,0]z) can be expressed as

(cos(2Fmy) + cos(ZFms))



2) Discussion:Some general remarks can be drawn from
the previous analysis. First, from the Taylor’s series espan
of generating functiorDy (r'| z) at pointz = 1 given by
(17) in Appendix B, the value oDy (F| z) at pointz =1 is
equal to unit, which represents the probability that a mgssa
issued from sensor nodeéis ever gathered by the sink node.
This means that the proposed data delivery process is itertai
This result is at first glance surprising since we have asdume
that the original network is infinite (a large number of unit
cells), which implies that there would be potential infinite
paths allowing messages to escape sink nodes and diffuse
indefinitely around the entire network without being tragpe
However, since the network is equivalent to a torus lattice,
a finite-sizeeffect arises precluding messages to continuously
move away from sink nodes.
Fig. 2. Spatial distribution of the mean value of the datavdey delay. Second, referring to (4), the mean value of the data delivery
delay is finite. This is not a trivial property because it mean
that only short paths between sensor and sink nodes are
significant. The main reason is that, with a regular and piéio
deployment of sink nodes, there are no network areas where
a message can spend a lot of time without meeting a sink
A. Mean Value node. Third, the dependance B{Dy(r)) on parameterV

1) Generating Function AnalysisSenerally, the most fre- and hence, indirectly on the concentration of sink nodes

qguently used measure for describing central tendency is ighlights the scalability property of the proposed scheme
mean value or in probability parlance the expectation dé1at is, if additional sensor nodes are added, the mean value
propose here to study this property for the data deliversydel oes not change provided that the_ concentration O.f s_lnkmode
by calculating its expectation denotedlE{/DN(F)). Applying (or equivalently parameteN) remains constant. This is once

generating function techniques, mean vali@y () can be again a simple_ manifestation. of the regular and per.iodic
derived by taking the limit of the first-derivative of genting dgployment of sink nodes, Wh'(?h ensures that the maximum
function Dy (F| z) sz — 1-, so that distance between sensor and sink nodes\) is very small

compared to the effective network size.
E(DN(F)) — lim QDN(FM). Let us now study the spatial distribution of expectation
z—1- 02 E(Dn(F)) over torus latticeT. A first comment is that, for
Although this relation does not give an explicit solutiofymmetric considerations, coordinatesandr, play similar
of the mean value, we can fortunately extract a closed-fori@les in the expression @& (Dx(r)) although at first glance
expression from the Taylor's series expansion of genegatift iS not obviously straightforward from (4). This propeiity
function Dy (| z) at pointz = 1. Indeed, if Dy (F|z2) is observable in Fig. 2 WheE(DN(f’)) is depicted as a function
holomorphic atz = 1, then the limit of its first derivative Of positiont = (rq,72) over a unit cell of sizel0 x 10. Other
with respect toz asz — 1~ is nothing but the first-order values of parameteN are possible to plot, however, our goal
term of its Taylor's series expansion at poiat= 1. To IS to show numerical examples of practical interest. It dthou
evaluate this Taylor’s series expansion, we proceed amisll also be emphasized that the observed properties are ntedimi
We first estimate the asymptotic expansion/fr,0|z) as to valueN =10 but are valid for all finite ones.
z — 17, which is provided by (16) in Appendix A. Second, The firstimportant feature of Fig. 2 is the fact that the mean
by setting¥ = 0 in (16), we derive the asymptotic expansiofumber of hops required to reach the sink node increases
of P(0,0]z) asz — 1~ and then, after elementary calculusinitially with a high rate as we move away from the origin
we prove that functiorDy (F|z) = P(F,0]z)/P(0,0]z) is towards the middle region, wheE(DN(F)) saturates. The
holomorphic at: = 1. So, it can be represented by its Taylor'gelatively low value ofe(Dy (r)) observed around the origin
series expansion at point = 1, which is given by (17) in (or the sink node) means that messages generated in viomity
Appendix B. By differentiating (17) with respect to and the sink node do not spend a lot of time exploring the neigh-

taking the limit asz — 1, we obtain the following result: borhood they were created in and they are trapped quickly at
early time. It is then found the closer a sensor node is to the

X sink node, the faster the data delivery process is performed
form expression as However, far away from the sink node, generated messages
E(Dn(F)) = N?(on(0,1) — o (F, 1)) + 2r2(N — 1), (4) Can escape theilr initial territory and visit more new sensor

o _ _ _ nodes before being trapped, which argues the higher vafues o
wherepy (¥, z) is defined by (13) in Appendix A. E(Dn () with low slope in the middle of the unit cell. As we

By multiplying both sides of this relation by* and summing
over all n, we obtainDy (7| z) = F(¥,0] z). Finally, from
Lemma 1, we obtain (3). ]

Result 1. Mean valueE(Dy (T)) can be written in a closed-
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Fig. 3. Semi-logarithmic plot oE (D (¥as)) as a function ofN. Fig. 4. Fitting of E(Dy (¥as)) to @ power law.

can see in the plot, though, there is a crossover in this behavE (D (F)) is always reached at positiah, = (L%J, L%J).

Beyond the middle region, the value B{Dy (r)) decreases By a linear scale plot, we can show thB{Dy (¥ar))
again with low slope as we move towards the other corneiscreases initially with a slow rate and then the increase
This crossover behavior is due to the periodicity propefty ¢ almost superlinear. However, the large range of produced
the torus lattice, which means that the opposite cornerbef tvalues makes a semi-logarithmic scale more appropriate. Th
unit cell are connected. is illustrated in Fig. 3. The obtained curve suggests that

To get deeper insight into the mean value efficiency ifE(Dn(Far)) may follow a power law. The log-log plot
duced by the random walk scheme, we propose now described in Fig. 4, where both horizontal and vertical axis
compare it with the analogue one if the shortest path rodtre plotted on a logarithmic scale confirms our prediction
ing (SPR) scheme is used. This implies that wheneverofa power law growth ofE(Dy(Fy/)). Indeed, by a linear
message is generated at a given sensor node, it will Iggression model, we can estimate the slope of the best
rather trapped by the closest sink node. At a given sensiraight line fitted to this plot. Finally, the result of the fi
node ¥, let us defineDPR(F) as the data delivery delayis E(Dn(Far)) ~ 0.97N?27 and the quality of the fit is very
induced by the SPR scheme. Therefore, we readily obtaiatisfactory with a coefficient of correlation equal @®9.
DIPE(F) = min(ry, N — 1) + min(ro, N — ). As we Although this procedure is partially heuristic, the obearfit
should expect, the SPR scheme will achieve the optimal d&imula could help practitioners to rapidly determine tiosc
delivery delay due to its deterministic nature. For exampleentration of sink nodes to be deployed in order to guarantee
the minimum/maximum mean values achieved by the randa@n upper bound of the mean value.
walk scheme for a unit cell of sizé0 x 10 exceeds the We turn now our attention to a simple example on how
one achieved by the SPR scheme about one huridredthe previous analysis can be applied to a concrete scenario.
times respectively. In fact, this efficiency is achieved l# t We consider IEEES02.15.4 enabled nodes with supported
expense of sophisticated capabilities required for eitplicite data transmission rate @0 kbps. One reason for choosing
discovery/repair computations, and maintaining expltitte the IEEE802.15.4 standard stems from its suitability for the
information about available routes at the nodes. Howevelevelopment and deployment of WSN. If we don’t take into
optimality is not generally a fundamental issue in many WShccount the physical limitations posed by the radio medium,
applications. Instead, the focus is more on properties sischthe time required for a message to perform a single hop is
scalability, robustness and load balancing. simply its size divided by the data transmission rate. Tioees

We investigate now the worst case of the mean valiids interesting to study the effect of varying the message s
efficiency, which corresponds to the maximum value ¢fnthe maximum mean value. This s illustrated in Fig. 5 where
E(Dx(¥)). This maximum value corresponds to the maximur (D (Far)) (in seconds) is plotted as a function of parameter
possible distance between an arbitrary sensor node and/tdor different message sizes.
nearest sink node. This maximum distance occurs in theAs indicated in Fig. 5, the increase in message size at fixed
middle of the unit cell. Thus, ifN is even,E(Dy(F)) is values of parameteN leads to performance degradation. On
maximum only at the single positiah= (%, Y. In contrast, the other hand, at a given message size, it is always possible
if NV is odd, the maximum value cE(DN(Fﬁ is reached at to enhance the mean value efficiency by reducing parameter
four positions, which ar€ = (| 5|+, | 5 |+j) where thel . | N, or say equivalently by increasing the concentration ok sin
symbol stands for the floor function andj = 0,1. Merging nodes. However, this enhancement is lower-bounded by the
the two cases into one, we can see that the maximum valuen@ximum mean value achievable at the smallest unit cell size
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Fig. 5. Effect of message size on the maximum mean value.

] . ] ) Denoting the variance byar (DN (f’)), the standard deviation
which corresponds t&V = 2. To illustrate this assertion, weis found by computing first the variance using generating

can see from Fig. 5 that this lower bound is ab82tms for  fnction techniques and then taking the square root. So that
a message size @b bytes, whereas it is equal @8 ms for

. 2
a message size @D bytes. Var (D (¥)) = lim 8—2DN(F|Z) +lim LDy )
Since in many applications of WSN sensor nodes often send z—1- 0z z—1- 0%
only beep-like small messages to sink nodes to report their I Du(F 2
status, we find that routing messages based on random walk R e N (] 2)
can achieve acceptable delay provided that the concemirati (5)

of sink nodes is carefully tuned. For illustration purpgses . . i
can see from Fig. 5 that in order to guarantee a delay thrtilesholWe can see frqm _thls relation th_at only t_he fLrSt and
of 1 s. the unit cell size should not excedi — 8262, 52. 42 second partial derivatives of generating functitn (7] z)

nodes for a message size 2, 40, 60, 80 bytes respectively, "ith respect toz at z = 1~ are involved while defining the
Thus, we can conclude that the random walk scheme can f5&'2"¢€ of the data delivery delay. In a similar way as that
' is used for the calculation of the mean value, these partial

viable in the scenarios where (i) applications do not r&qu'PS

| X L :
too stringent delay, (ii) the sensed data to be transmitted gerlvagvesd car_1r ble e,zxpre_ssed in an exIr;;fl]mE forthS'n% the
of small sizes (tens bytes) and (iii) the concentration oksi second order Taylor's series expansioniyi (r| z) at poin

- z = 1, which is provided by (17) in Appendix B. Plugging
nodes to be deployed is carefully managed. (17) into (5) leads to the following result:

B. Dispersion Result 2. The variance of the data delivery delay can be
1) Generating Function AnalysisThe dispersion of the \yritten in exact closed-form expression as

data delivery delay is another basic property that ind#te . 9 .
degree of spread around the mean value. A commonly—us}@(pN(r)) =4N"ry(N —r2) on (T, 1)
measure of dispersion _is the standard deviation, whichas th 1N2(1 4 2N2)(¢N(07 1) — on(F, 1))
square root of the variance. In the context of the proposed 3
random walk scheme, by knowing the standard deviation of 282 () (0,1) — o\ (F,1)) + N*(%(0,1) — ¥% (%, 1))
the data delivery delay, we should be able to make statiistica 2 )
robust conclusions about the relevance of the mean valte tﬁ%\§7°2(N —12) (2N = dry(N —12) — 1)
was previously calculated. Indeed, a small standard dewiat (6)
indicates that the values actually taken by the data deliver oo ' . .
delay are clustered closely around the mean value therebyV\l/theresDN(r’ #) is defined by (13) in Appendix A.
probability distribution can be reasonably summarizedh®y t 2) Discussion:Using this result, it is now straightforward
mean value. However, a large standard deviation indichggs tto derive the standard deviation by taking the square root of
they are far from the mean value and hence the latter is a Haath sides of (6). In the following, we propose to illustrate
representative measure for the data delivery delay. numerically the basic properties of the standard devizdiah

We propose here to derive the standard deviation of the revisit the main question, previously raised, as to wieth
data delivery delay and study its dependence on key modie mean value already investigated would be a good summary
parameters. This study will provide us a somewhat differenf the data delivery delay. Fig. 6 depicts the typical form of
picture of the data delivery delay efficiency than we haveow the standard deviation varies over the network. We set
previously obtained by considering the mean value alorteere N = 10. An important property to note from Fig. 6 is
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that the standard deviation exhibits a closely similar bita sink effect. Indeed, consider a message that is generated in the

to that found while studying the mean value. Indeed, thecbaé’iicmit_y of a given sink node._As already demonstrated while
pattern is that, except near the corners or equivalently né&”dy'”g the mean valu_e, this message does not_spend_a_ lot
any sink node, the standard deviation is reasonably simifdrtime explorlng the nelghborhood it was created in and it is
throughout the network and achieves its maximum value ffppped quickly at early time on the average. If such a messag
the middle of the unit cell. happens to avoid the sink node, it is likely to have done so by
At first glance, the relatively small values of the standarr(?ducmg_ Its proximity to the S'r_]k node, thereby S|gn|f|¢ﬁnt_
deviation near the corners may mislead us to believe that {fiecreasing its likelihood of being trapped soon and tending
mean value can be considered as a good indicator for the dCCUPY @s many nodes as possible on its way. This leads
delivery delay. With the benefit of hindsight, we rather findf Very high variability, and so the standard deviation will

that near the corners the standard deviation always exce%esatlydzi(ceed_ the ?ean value. I(;‘ contras_t, _"thfnfgzn_e_“affd !
the mean value regardless of the unit cell size. Furthermop%e middie _reg|0n,_'_[ € message does not |n|_t|a 'y Tind Itye
preferential position, so any escape from its initialitery

as we move away from the corners of the unit cell towards

the middle region, the standard deviation increases rapial will likely transport it towards one of the four nearest sink
becomes nearly constant over most of the unit cell. This hig{fdes around it, thereby significantly increasing its Ikebd

dispersion results in a significant probability that thesefive being trapped soon. This yields again high variability bu

data delivery delay will be greatly different from the meafhe difference between the standard deviation and the mean
value. Therefore, the mean value provides us little infdoma ValU€ becomes no longer pronounced.

about what the data delivery delay actually will be, and it Let us now concentrate more specifically on the maximum
should not be interpreted as a representative value. ltgela and minimum values of the coefficient of variation achieved
for this reason that a treatment of the data delivery delaptha N€@r the corners (at sensor nodlg = (0,1)) and at the
only on the mean value is inadequate. middle of the unit cell (at sensor noda; = ([5],[5]))

To have a deeper analysis of this question, it is nolgspectively. We are mterested_ here in how these tymdabga
convenientto defin€V (D (7)) as the coefficient of variation dépend on parametey or equivalently on the concentration
of the data delivery delay, which is defined as the ratio of tff Sink nodes. Our interest stems from the fact that the mean
standard deviation to the mean value. Fig. 7 shows the pa¥@lue, as previously demonstrated, achieves its minimutdh an
distribution of the coefficient of variation over a unit cér Maximum at sensor nodes, = (0,1) andty = (5], [5])

N = 10. A key observation to note from this plot is that thdespectively, which makes particularly the following grsié
coefficient of variation roughly changes around the corne®sgood benchmark for the data delivery delay efficiency.
but becomes nearly constant as we move far away. Note alsdig. 8 shows that the maximum value of the coefficient
that values greater thah are achieved around the corner®f variation, aimost above, monotonically grows withV
where a maximum value is reached at nage= (0, 1), but Whereas the minimum value, markedly less sensitive to param
a slight decrease lying over a broad and flat plateau occ@tér IV, varies a little but rapidly equilibrates to the constant
towards the middle region in which a minimum value lowevalue 1 as N increases. The latter behavior suggests a good
than1 is achieved aFy; = (|5 ], |5 ]). The expanse of the evidence for nearly memorylessness property which charac-
plateau can be characterized by more tfi&fh and86% of terizes both the exponential distribution and the geometri
the achieved values lying in the ranffe9,1.1] for N = 10 distribution with very small probability of success [11].
and 20 respectively. A heuristic explanation of such a property can be given
This peculiar behavior can be attributed to thximity- as follows. Consider a message that is initially generated a



sensor nod&y; = (|5 ], |5 ]). For sufficiently large values necessary condition th&(Dy (¥a)) > 1, which is consistent

of N, it is always possible to neglect the distance traveletth the results obtained while studying the central tercgiart

by the message during a given hop numhbgiin comparison the data delivery delay. The cumulative distribution fumact

with the distance required for the message to be trappedoétthe data delivery delay at sensor nodg can be then

the sink node. Thus, if the message has not been trapmggroximately written a®r{Dy (Fa;) < n} ~ 1 — {1 —

by hop ng, the probability that it will be trapped after an1/E(Dy(Fa))}". Knowing the exact value o (Dy (far)),

additionaln hops can be approximated closely by the originabhich is given by Result 1, it is then possible to infer this

probability that it will be trapped after the very firgtth hop. cumulative distribution function as a function of paramete

This statement is nothing but one of the characterization ®fore interestingly enough, this enables us to find the vafue o

memorylessness property. Formally, this can be expressedM for a given percentile, or equivalently the concentratiéon o

the form of Pr{Dy(¥y) > no + n | Dn(Fu) > no} = sink nodes to be deployed while achieving a threshold delay

Pr{Dy(Fun) > n}. In passing, note that this property is notith high probability.

restricted to sensor node= (| £, 4 ]), which corresponds It is now possible to assess the quality of the mean value

to the maximum possible distance between an arbitrary senaohieved at sensor nod&, by answering the question how

node and its nearest sink node, but can be extended to likely the data delivery delay is effectively below this mea

surrounding region provided tha&{ is large enough. value. In probability parlance, this consists in calculgtthe
probability

) < 'y, =
The analysis of dispersion has shown a high spread o?r{DN(rM) - E(DN(rM))}
the data delivery delay around the mean value regardless of 1— {1 _ %}E(DN@M)).
sensor node positions. As a consequence, the mean value is E(DN(I‘M))

a poor indicator for the data delivery delay efficiency. It i??emarking thatl/E(DN(FM)) decreases rapidly to zero as
therefore interesting to look at upper bounds for the daj jncreases (recall thaE(DN(f’M)) ~ 0.97N227), the

delivery delay rather than the mean value. The cumulatiyg,ye probability can be reasonably approximated by the
distribution function of the data delivery delay would giv§gnstant valua —1/e ~ 0.63. Concretely, this value indicates
the probability that thls_delay |s_l_ower than a certam_ f‘hFeSthat nearly two-fith of messages issued at the middle of
old. Unfortunately, the intractability of the exact proidy he ynit cell would experience a delay time larger than the
distribution function makes this task difficult to be cadie o530 value. This high variability makes it interesting toko
out. However, exploiting memorylessness property ObsErvg: nner bounds for the data delivery delay. For example,
at the middle of the unit cell, and since |t]\|]s al?vo discretenplications with strict requirements on delay would benefi
the data delivery delay at sensor natle = (| 3], 5 ]) €@n  from estimating the data delivery delay with a high perdenti

IV. GEOMETRICDISTRIBUTION APPROXIMATION

2

be reasonably approximated by a geometric random variapig; instance, we find that tHgs-percentile is about three times
provided thatV is sufficiently large (small concentration ofas mych as the mean value regardless of the unit cell size.

sink nodes). Equivalently, this means that onb% of the messages issued

The geometric distribution by definition deals with a serieg the middle of the unit cell would spend at least three times
of mdepeno!ent, identical trials (hgre, moves across nodeg long as the mean value before being trapped.
each of which has only two possible outcomes, success or
failure (here, trapping or move on) with probabilities tlaag V. CONCLUSION
constant from trial to trial. The geometric random variaisle In this paper we addressed the problem of random walk
the number of trials needed to get one success (here, t@ppito model data delivery in wireless sensor networks. In this
supported on the s€tl, 2,3, - - - }. Formally, we can therefore approach, a packet generated from a given sensor node per-
express approximately the probability that a messagailyiti forms a random motion until reaching a sink node where it is
released at sensor nodig; = (| 4], |4 ) will be trapped by collected. The primary objective of this work was to studg th
then-th hop in the form oPr{Dy (F1s) = n} ~ a(1—a)"~! data delivery delay induced by a random walk taking place on
for all n > 1, where0 < a < 1 is the geometric parametera regular and periodic topology.
also referred to as the success probability [11]. In our ,case Three different studies were reported. First, we studied
this parameter corresponds to the probability that the agess central tendency of the data delivery delay and derived a
will be trapped while moving from one node to another.  closed-form expression for its mean value as a functionri{ si

In this simplest version of the model, only one parametarpde concentration. This study showed that the random walk
namely a, determines the geometric distribution approximazan achieve acceptable performance in terms of data dgliver
tion. An estimate ofa can be quickly obtained by remark-delay in the scenarios where (i) applications do not require
ing that expectatiorE(DN(fM)) can be related tax as too stringent delay, (ii) the sensed data to be transmitted
E(DN(FM)) = 1/a if random variableDy (s) is geomet- are of small sizes (tens bytes) and (iii) the concentratibn o
rically distributed. Under such a condition, the variande sink nodes to be deployed is carefully tuned. Second, we
Dy (rar) can be also written agar (DN (FM)) = (1—a)/a®. derived a closed-form expression for the variance and stiowe
In passing, note that the given estimatexdfas obviously the how it varies with the concentration of sink nodes. However,



the study of dispersion revealed a high spread of the datherec,,,(z) is the smaller root of the equation
delivery delay around the mean value. So, a treatment of 9
the data delivery delay based only on the mean value is X2~ _X+4+1=0
inadequate. Third, the analysis of the coefficient of vaiat ema (2)
for small concentration of sink nodes argued for a reasgnalwhose discriminant is positive fdr < z < 1. Thus, we find
memorylessness property and suggested a geometric distrib
tion approximation of the data delivery delay. Exploitirst - V1-cp,(2) )
approximation, we assessed the effective quality of thenmea Cm, (2)
value as a representative indicator for the data delivelgyde Now, using partial fraction decomposition, we can write
Indeed, we found that nearly two-fifth of messages issued fgf, (z) as
away from sink nodes would experience a data delivery delay N1
larger than the mean value, and hence, applications widrsev S (2) = (1 _ 2 (z))_% Z e
requirements on delay would rather benefit from estimatiegt ~™* m = 11— am, (2) o—i1ZEms
data delivery delay with a high percentile. e o

To improve the data delivery delay efficiency, it is therefor Uy (2) e Fma(r2) |

1 — am, (2) iR m2

QOmy (2) =

;27
’LngTQ

necessary to avoid the “undesirable” aspects of randomswalk

like visiting a node more than once or moving in the WronRI _ o _
direction. Several interesting ideas in this direction dsn oting that|a:, (2)| <1, it is then possible to expand each

investigated in further work. For example, we can consid§Fm involved iQOSml,gZ> by using successively the expansion
biased random walks that give priority to unvisited neigtsbo /(1 — %) = 225~ «" and the identity

instead of choosing uniformly at random or issuing multiple ~-1

) . o N for n=0,£N,+2N,---
copies of a message in parallel. iZFmn _ o ’ )

P 9 P 2_:06 " { 0 otherwise

APPENDIXA

ASYMPTOTIC EXPANSION OF P(T, 0] z)
Before calculating the asymptotic expansionfr,0 | z)

which can be derived by remarking that the vectors mn
form an orthogonal basis over the set of N-dimensional

asz — 1-, we propose first to simplify the expression ofomplex vectors. Therefore, we obtain

P(r,0|z) given by (2) and to study its singularity at= 1.

By factorizing the denominator of the summand and using the S, (z) =

addition theorems of trigonometric functions, we obtain
ei%m]’l‘]

| No1 N
P(r,0 = — -
(¥,012) N2 Z Z {1—%005(%7711)

m1=0mo=0

ei%mg’l‘g 7
X
1 — Cm, (2) cos(ZEmsa) 0
S S S LN
= — ————— X Sy (2
N2 =, 1— %cos(%”ml)
where functions:,,, (z) andS,,, (z) are defined as
z
mi = 5 8a
e (2) 2 — zcos(%Fmy) (82)
N-1 eizﬁﬂmgTQ
Smz) = 3 - (8b)

=1 —cm (2) cos(FFma)

Before studying the singularity oP(¥,0]z) at z = 1, we

propose to simplifyS,,, (z). The first step is to see from
(8a) that0 < |cm,(2)] < 1 for 0 < z < 1. Using the

exponential representation of trigopnometric functiofis, (2)
can be written as

N-—1 27
2 61Wm2(1+r2)
Sy (2) = — D VoEme o
Cm, (Z) ma2=0 erN T — Qmyy (Z)

1
eiFm: —anl(z) }

N ame)+al )
(1-c2,(2)? 1—ap, (2)

By substituting (10) into (7), we find

(10)

N-1

1
P(r,0|z)=—= { T
N mgo (1= 2cos(3Fm1))(1—c2,(2))?

apy (2) +an " (2)
1—al (2)

2
eZWﬂmlTl

(11)

Note that the summand involved in (11) is holomorphic over
0<z<1lforal 0 <m; < N — 1. However, it diverges

at z = 1 if and only if my = 0. Thus, the singularity of
P(r,0|z) atz =1 comes only from the first term of the sum
given by (11). It is convenient therefore to separate out the
singular and non-singular parts &f(r, 0] z) as follows

. 1 b2 (2) + ol 72 (2) .
P(r,0|z) = n 0 8 + r,z
R T R e I B
(12)
where
1 N-1 ei%’mlrl
@N(Fa Z) = X Z { 1
N2 L= 2cos(Zm)) (1— 2, (2)) 2

ap (2) + a2 (2)

1—-af (2)

(13)



is holomorphic atz = 1. The first term involved in (12)
corresponds to the terrm; = 0 in (11), and the second
term, that ispx (S, z), corresponds to the sum over the range
1<m; <N-1. [4]
To obtain the first-order asymptotic expansion/if, 0 | z)
as z — 17, let us successively expand the first term of[5]
P(r,0|z) involved in Eq. (12) and then functiopy (S, 2)
close toz = 1. Hence, the first term of(r,0|z) can be
expanded as

(3]

(6]

L og(@)ta) () _ 1
N(1-2)? 1—a (2) N2(z— 1) 7]
N? —6Nrg+6r3—1 2z-1 4 ) )
+ e 45N2><{N — 5N2(1+ 612)

8]
£ 30NT(1 +2r2) — 30r2(1 + #2) + 4} +o(z—1).
(14)

9
Being holomorphic at = 1, ¢n(T, z) can be represented by g

its first-order Taylor’s series expansion at paint 1, so that
on(T,2) = on(F,1) + oW (F, 1) (z — 1) + o(z — 1).  (15)

Finally, combining (14) with (15), the asymptotic expamsio
of P(¥,0]z) asz — 1~ can be written as

[20]
[11]

[12]

P(r,0]z) = [13]
N S N2(1+43pn(F,1)) —6Nry +6rf —1 1y
N2(z—1) 3N?
1 [15]

_|_

7 X {N4 — 5N (14 6r2 — 990V (¥, 1))

+ 30N (1 + 2r2) — 30r2(1 + 12) + 4} Yolz—1).

[16]
[17]

(16) 18]

APPENDIXB

ASYMPTOTIC EXPANSION OFDy (7| 2) (1]

Using (16), the Taylor's series expansion of generatiqgo]
function Dy (Y| z) asz — 1~ can be expressed as

Dy (F|2) =
1+ {N2(¢N(o, 1) — on(F, 1)) + 2ra (N — 7‘2)}(2 ~1)

2 { IV (on(0.1) — pn(E 1) (1 + 3px(0, 1))
+ 2N3r5 (14 3pn(0,1))
+ N (pn(F,1) — o (0,1) = 3( (£,1) — o (0, 1)) 23]
— 630N (0,1)) — 4N (1 +73) +2r3(2+ r%)}(z —1)?
+o(z —1)2

[21]

[22]

[24]
(17)
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