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Abstract—In recent years, the use of random walk techniques
in wireless sensor networks has attracted considerable interest
among numerous research efforts. The popularity of this ap-
proach is attributed to the natural properties of random walks
such as locality, simplicity, low-overhead and inherent robustness.
However, throughout the variety of research works that assess the
effectiveness of random walk techniques, most results are derived
from a qualitative view or by means of simulations. Furthermore,
when analytical tools are used, the obtained results often provide
bounds on various performance metrics of interest, which may
have little consequences for practical applications. Instead, our
goal in this paper is to quantify the effectiveness of such
techniques based on the derivation of closed-form expressions.
In particular, we focus on the data delivery delay taken for the
random walk to deliver messages from sensor to sink nodes and
study its statistics through closed-form derivations.

Index Terms—Wireless Sensor Networks, Random Walk The-
ory, Performance Evaluation

I. I NTRODUCTION

Wireless Sensor Networks (WSN) have been one of the
most prosperous research areas in recent years thanks to its
wide spectrum of potential applications, including environ-
ment and habitat monitoring, healthcare application, home
or industrial automation and control, precision agriculture
and inventory tracking [1]. Faced to this general trend of
application diversification, large amounts of research being
done in the WSN area are trying to provide useful tools and
design methods for better architectures and protocols [17].

Most application scenarios for WSN involve small devices
called sensor nodes, which are equipped with sensing capabil-
ities, wireless communication and limited power supply, CPU
and memory. On top of that, sensor nodes are often supposed
to operate unattended and under strict energy constraints.
Such adverse conditions make the design of robust, scalable
and energy efficient systems a considerable challenge. The
extensive research in this field, though, allowed to learn a
few principles for the design of efficient WSN [17]. For
example, topology-driven algorithms are at a disadvantage
for such networks as they induce an excessive amount of
communication, which is problematic for WSN.

In the search of an alternative solution, many earlier recent
research efforts have investigated the use of randomization to
build robust, scalable and energy efficient protocols in thecon-
text of WSN [7]. One example consists of the use of random

walks to convey data from a source node to a destination one.
The use of this technique is not new and has been extensively
explored in many networking models providing a variety of
algorithms including routing [25], self-stabilization [8], data
gathering and query processing in wireless networks [2], [19],
[23], peer-to-peer networks [14] and other distributed systems.

However, throughout the variety of research works that
assess the effectiveness of random walk techniques, most
results are derived from a qualitative view or by means of
simulations [25]. Furthermore when analytical tools are used,
the obtained results often provide bounds on various perfor-
mance metrics of interest [3], [22]. For example, different
authors are interested in the well studied concept of cover
time, which is the expected time taken by a random walk to
visit every node in a graph. This property is relevant to a wide
range of algorithmic applications [2], [6], and various methods
of bounding the cover time of graphs have been thoroughly
investigated [10], [16]. Recently, it has been proven that for
any size-n geometric graph with connectivity radiusr, when
r = Θ(rcon)1 then w.h.p.2 the optimal cover time behaves as
O

(

n ln(n)
)

wherercon growing asO(
√

ln(n)/(πn)) is the
critical radius to guarantee connectivityw.h.p. [4].

There are other properties of the random walk also that need
to be evaluated. One is the data delivery delay, which is the
time required for the random walk to deliver a message from
a given node to a destination. This property is of great interest
in many WSN applications where the primary task of the
network is to gather information from a particular location[9].
Such systems are generally composed of two kinds of nodes: a
large number of sensor nodes with limited storage, processing
and communication capabilities, and a smaller number of sink
nodes with more complex capabilities to gather, process and
control data. Each sensor node performs some sensing of a
particular confined area, and sends messages to sink nodes
through a random walk motion.

Many recent research efforts have studied this random walk
property on different classes of graphs. However, most of
the obtained results often provide upper bounds on the data

1We recall the following notation: (i)f(n) = O
(

g(n)
)

means that exists
a constantC and integerK such thatf(n) ≤ Cg(n) for n > K. (ii)
f(n) = Θ

(

g(n)
)

means thatf(n) = O
(

g(n)
)

; g(n) = O
(

f(n)
)

.
2EventEm occurs with high probability (w.h.p.) if probability Pr(Em) is

such thatlimm→∞ Pr(Em) = 1.
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Fig. 1. Dark-filled circles show sink nodes whereas sensor nodes are represented by light-filled circles.

delivery delay and not a closed form derivation [5], [12].
Clearly, results of this nature may have little consequences
for practical applications because the constants hidden inthe
bounds notation can be very large. Moreover, most of the
works concentrate on the evaluation of the mean value of
the data delivery delay [13], which makes difficult to get
statistically robust conclusions about the relevance of the
random walk efficiency.

Instead, our take in this paper is to obtain a complete
insight into the data delivery delay induced by a random walk
by constructing an analytical model that owes much to the
powerful analytic tools developed in the physics community
[20], [21], [24]. In particular, this model enables us to study
both the central tendency and the dispersion of the data
delivery delay through close form derivations. Although our
work mainly focuses on the data delivery delay, the level of
abstraction of the proposed model is such that it can be applied
to investigate other performance metrics of the random walk.

The remainder of the paper is organized as follows. A
formal network model description followed by backgrounds
and theoretical elements of random walk theory are given in
section II. In section III, we focus on the data delivery delay
with prior attention to two properties: the mean value and the
dispersion. In section IV, we show that the data delivery delay
can be approximated by a geometric distribution under some
conditions. We provide some conclusions in section V and
point out aspects that will be subject of future research.

II. RANDOM WALK MODELING

A. Network Description and Assumptions

We consider a WSN made of two kinds of nodes: a
large number of sensor nodes and a smaller number of sink
nodes with more complex capabilities to gather, process and
control data. Each sensor node performs some sensing of a
particular confined area, and sends messages to sink nodes in
a multihop fashion, using other sensor nodes as relays and
without any specific mapping between sensor and sink nodes.

We look more specifically at a common regular and periodic
deployment topology where nodes are spread over an area of
interest with a square pattern. As illustrated in Fig. 1(a),this
pattern is formed by a periodically repeated square unit cell of
sizeN ×N containingN2 nodes of whichN2 − 1 are sensor
nodes and one is a sink node.

Based on these underlying assumptions, the data delivery
process can be described as follows. When a message reaches
a given node, the next hop occurs uniformly at random only to
the nearest-neighbors. Thus, in the case of4-connectivity all
the4 nearest-neighbors away from the current node are equally
likely with transition probability1

4 . A message generated at
a given sensor node performs then a random walk until it
reaches for thefirst time a sink node where it will be trapped.
At this moment, we consider that the data delivery process has
occurred with success and then, we no longer care about the
outcome of the walk.

With sufficiently large number of unit cells, we can assume
that the envisioned network is infinite, and hence the con-
sidered deployment pattern corresponds to embedding nodes
into the space of2-dimensional integers,Z2. Recalling the
assumption that there is no specific mapping between sensor
and sink nodes, and given the structural periodicity of the
envisioned pattern, we can consider that the formed network
is equivalent to a torus latticeT of size N × N formed by
connecting the opposite ends of a unit cell. The resulting
structure, as it is shown in Fig. 1(b), contains a single sink
node located at the origin whereas the other sites are sensor
nodes. Based on this observation, the original network pattern
and the torus lattice are used interchangeably. However, for the
sake of simplicity, we actually investigate the data delivery
process in reference to torus latticeT where every node~r
is labeled with (r1, r2): r1 and r2 are integers such that
0 ≤ r1, r2 ≤ N − 1.

There are many motivations that prompted us to choose this
network structure. First, many WSN applications are often
desired to follow regular patterns for at least two reasons:



(i) convenience of deployment and (ii) to achieve a higher
degree of connectivity and coverage. Second, this divisionof
the network into unit cells suggests a very natural way of
grouping nodes together (clustering). Such a clustering isoften
required by protocols in order to deal with a large number
of nodes. Third, it is natural to start with regular patterns
before addressing more complex ones of interest to us. Finally,
this pattern is simple enough to allow a complete analytical
treatment of the random walk problem while still being useful
to incorporate specific key issues of WSN such as connectivity
and coverage.

B. Problem Formulation and Characterization

We define, forn ≥ 1, Pn(~r,~s) the probability of being at
node~s after n hops, given that a message has been issued at
node~r. We also defineFn(~r,~s) the probability of arriving at
node~s for the first time on thenth hop, given that the walk
started at node~r. We shall refer to these probabilities as the
node occupation probabilityand thefirst-passage probability
respectively. By convention we haveP0(~r,~s) = δ~r~s and
F0(~r,~s) = 0. We denote also byP (~r,~s|z) and F (~r,~s|z)
the generating functions [18] associated with{Pn(~r,~s)}n∈N

and{Fn(~r,~s)}n∈N respectively. Hereafter we present a well-
known classical relation extensively used in random walk
theory, and upon which the theoretical results derived in this
paper rely. For proof, refer to [15].

Lemma 1. F (~r,~s | z) andP (~r,~s | z) are related to each other
according to the relation

F (~r,~s | z) =
P (~r,~s | z) − δ~r~s

P (~s,~s | z)
, ~r,~s ∈ T. (1)

A key issue in random walk problem is the resolution of
the following question: how likely does the walk evolve in the
future under some initial conditions? Answering this question
consists in finding an explicit expression ofP (~r,~s | z), which
completely determines the node occupation probability distri-
bution. Globally, throughout the large number of interdisci-
plinary works in random walk theory, the exact closed-form
solution was mostly carried out under restrictive conditions
such as the periodicity of the network, the homogeneity of
the system and the infiniteness of the structure on which
the random walk takes place. Among these special cases, the
problem of random walk on finite lattices with periodic bound-
ary conditions (i.e., toroidal lattices) has been extensively
studied. Montroll and Weiss [24] originally proposed this
special problem and solved it fork-dimension. In particular,
in the case of a torus lattice, they established an explicit
expression ofP (~r,0 | z) as follows.

Lemma 2. P (~r,0 | z) can be expressed as

P (~r,0 | z) =
1

N2

N−1
∑

m1=0

N−1
∑

m2=0

ei
2π

N
m1r1 ei

2π

N
m2r2

1 − z

2

(

cos(2π

N
m1) + cos(2π

N
m2)

) ·

(2)

Even though relation (2) does not give a simple form
of P (~r,0 | z), it is of great importance and represents our

basic relation upon which relies most of our contribution in
this paper. In the following, we focus our attention on one
interesting performance metric of the proposed random walk
scheme and attempt to study its statistics through close form
derivations. Generating function techniques and asymptotic
expansion calculus are the key tools here and they are used in
tandem to elaborate interesting results.

III. D ATA DELIVERY DELAY ANALYSIS

A primary objective of the proposed random walk scheme
is to perform successful data delivery while achieving desired
guarantees on delay times. It is worth noting that although
there are different categories of delay times in WSN depending
on application requirements, the time or the number of hops
experienced by a message generated at a sensor node before
being trapped at the sink node represents one of the significant
metrics to measure the random walk performance. We refer to
this delay time as thedata delivery delay.

Formally, given a sensor node~r ∈ T, let DN (~r) be the
data delivery delay defined at this sensor node.DN (~r) is a
discrete random variable taking nonnegative integer values.
Thus, it can be characterized by its probability distribution.
Once the probability distribution ofDN (~r) is determined, all
the statistics of the data delivery delay can be theoretically
derived. Unfortunately, it is not a simple matter to derive
this probability distribution. This difficulty is well known in
random walk theory while studying first-passage times [15],
[26]. Indeed, most of the analytical works in this respect
concentrate on the derivation of either the short- or the long-
time behaviors of first-passage times and not on the exact
expression of the probability distribution.

In spite of this, we show in this paper that many statistical
properties of the data delivery delay can be deduced by
calculating its first- or higher-order moments using generating
function techniques. In particular, we are interested in this
section in central tendency, dispersion and their dependencies
on key model parameters. These two basic properties can be
reflected by calculating for example the mean value and the
standard deviation of random variableDN (~r). To do this, we
first determine the generating function associated with random
variableDN (~r) and then, we apply the generating function
techniques.

Proposition 1. Let DN (~r | z) be the generating function of
random variableDN (~r). DN (~r | z) can be then expressed as

DN (~r | z) =
P (~r,0 | z)

P (0,0 | z)
. (3)

Proof: From the definition ofDN (~r), we can see that
the probability of a message generated at sensor node~r to
be gathered at the sink node on then-th hop is equal to the
probability of being at the origin for the first time on then-th
hop, given that the walk started at node~r, that is, first-passage
probabilityFn(~r,0). Thus, in terms of probability notation, we
have

Pr
{

DN (~r) = n
}

= Fn(~r,0), n ≥ 0.
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Fig. 2. Spatial distribution of the mean value of the data delivery delay.

By multiplying both sides of this relation byzn and summing
over all n, we obtainDN (~r | z) = F (~r,0 | z). Finally, from
Lemma 1, we obtain (3).

A. Mean Value

1) Generating Function Analysis:Generally, the most fre-
quently used measure for describing central tendency is the
mean value or in probability parlance the expectation. We
propose here to study this property for the data delivery delay
by calculating its expectation denoted byE

(

DN (~r)
)

. Applying
generating function techniques, mean valueE

(

DN (~r)
)

can be
derived by taking the limit of the first-derivative of generating
functionDN (~r | z) asz → 1−, so that

E
(

DN (~r)
)

= lim
z→1−

∂

∂z
DN (~r | z).

Although this relation does not give an explicit solution
of the mean value, we can fortunately extract a closed-form
expression from the Taylor’s series expansion of generating
function DN (~r | z) at point z = 1. Indeed, if DN (~r | z) is
holomorphic atz = 1, then the limit of its first derivative
with respect toz as z → 1− is nothing but the first-order
term of its Taylor’s series expansion at pointz = 1. To
evaluate this Taylor’s series expansion, we proceed as follows.
We first estimate the asymptotic expansion ofP (~r,0 | z) as
z → 1−, which is provided by (16) in Appendix A. Second,
by setting~r = 0 in (16), we derive the asymptotic expansion
of P (0,0 | z) asz → 1− and then, after elementary calculus,
we prove that functionDN (~r | z) = P (~r,0 | z)/P (0,0 | z) is
holomorphic atz = 1. So, it can be represented by its Taylor’s
series expansion at pointz = 1, which is given by (17) in
Appendix B. By differentiating (17) with respect toz and
taking the limit asz → 1−, we obtain the following result:

Result 1. Mean valueE
(

DN (~r)
)

can be written in a closed-
form expression as

E
(

DN (~r)
)

= N2
(

ϕN (0, 1)− ϕN (~r, 1)
)

+ 2r2(N − r2), (4)

whereϕN (~r, z) is defined by (13) in Appendix A.

2) Discussion:Some general remarks can be drawn from
the previous analysis. First, from the Taylor’s series expansion
of generating functionDN (~r | z) at point z = 1 given by
(17) in Appendix B, the value ofDN (~r | z) at pointz = 1 is
equal to unit, which represents the probability that a message
issued from sensor node~r is ever gathered by the sink node.
This means that the proposed data delivery process is certain.
This result is at first glance surprising since we have assumed
that the original network is infinite (a large number of unit
cells), which implies that there would be potential infinite
paths allowing messages to escape sink nodes and diffuse
indefinitely around the entire network without being trapped.
However, since the network is equivalent to a torus lattice,
a finite-sizeeffect arises precluding messages to continuously
move away from sink nodes.

Second, referring to (4), the mean value of the data delivery
delay is finite. This is not a trivial property because it means
that only short paths between sensor and sink nodes are
significant. The main reason is that, with a regular and periodic
deployment of sink nodes, there are no network areas where
a message can spend a lot of time without meeting a sink
node. Third, the dependance ofE

(

DN (~r)
)

on parameterN
and hence, indirectly on the concentration of sink nodes
highlights the scalability property of the proposed scheme.
That is, if additional sensor nodes are added, the mean value
does not change provided that the concentration of sink nodes
(or equivalently parameterN ) remains constant. This is once
again a simple manifestation of the regular and periodic
deployment of sink nodes, which ensures that the maximum
distance between sensor and sink nodes (∼ N ) is very small
compared to the effective network size.

Let us now study the spatial distribution of expectation
E
(

DN (~r)
)

over torus latticeT. A first comment is that, for
symmetric considerations, coordinatesr1 and r2 play similar
roles in the expression ofE

(

DN (~r)
)

although at first glance
it is not obviously straightforward from (4). This propertyis
observable in Fig. 2 whereE

(

DN (~r)
)

is depicted as a function
of position~r = (r1, r2) over a unit cell of size10× 10. Other
values of parameterN are possible to plot, however, our goal
is to show numerical examples of practical interest. It should
also be emphasized that the observed properties are not limited
to valueN = 10 but are valid for all finite ones.

The first important feature of Fig. 2 is the fact that the mean
number of hops required to reach the sink node increases
initially with a high rate as we move away from the origin
towards the middle region, whereE

(

DN (~r)
)

saturates. The
relatively low value ofE

(

DN (~r)
)

observed around the origin
(or the sink node) means that messages generated in vicinityof
the sink node do not spend a lot of time exploring the neigh-
borhood they were created in and they are trapped quickly at
early time. It is then found the closer a sensor node is to the
sink node, the faster the data delivery process is performed.
However, far away from the sink node, generated messages
can escape their initial territory and visit more new sensor
nodes before being trapped, which argues the higher values of
E
(

DN (~r)
)

with low slope in the middle of the unit cell. As we
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can see in the plot, though, there is a crossover in this behavior.
Beyond the middle region, the value ofE

(

DN (~r)
)

decreases
again with low slope as we move towards the other corners.
This crossover behavior is due to the periodicity property of
the torus lattice, which means that the opposite corners of the
unit cell are connected.

To get deeper insight into the mean value efficiency in-
duced by the random walk scheme, we propose now to
compare it with the analogue one if the shortest path rout-
ing (SPR) scheme is used. This implies that whenever a
message is generated at a given sensor node, it will be
rather trapped by the closest sink node. At a given sensor
node~r, let us defineDSPR

N
(~r) as the data delivery delay

induced by the SPR scheme. Therefore, we readily obtain
DSPR

N
(~r) = min(r1, N − r1) + min(r2, N − r2). As we

should expect, the SPR scheme will achieve the optimal data
delivery delay due to its deterministic nature. For example,
the minimum/maximum mean values achieved by the random
walk scheme for a unit cell of size10 × 10 exceeds the
one achieved by the SPR scheme about one hundred/19
times respectively. In fact, this efficiency is achieved at the
expense of sophisticated capabilities required for explicit route
discovery/repair computations, and maintaining explicitstate
information about available routes at the nodes. However,
optimality is not generally a fundamental issue in many WSN
applications. Instead, the focus is more on properties suchas
scalability, robustness and load balancing.

We investigate now the worst case of the mean value
efficiency, which corresponds to the maximum value of
E
(

DN (~r)
)

. This maximum value corresponds to the maximum
possible distance between an arbitrary sensor node and its
nearest sink node. This maximum distance occurs in the
middle of the unit cell. Thus, ifN is even,E

(

DN (~r)
)

is
maximum only at the single position~r = (N

2 , N

2 ). In contrast,
if N is odd, the maximum value ofE

(

DN (~r)
)

is reached at
four positions, which are~r = (⌊N

2 ⌋+i, ⌊N

2 ⌋+j) where the⌊ . ⌋
symbol stands for the floor function andi, j = 0, 1. Merging
the two cases into one, we can see that the maximum value of
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Fig. 4. Fitting ofE
(

DN (~rM )
)

to a power law.

E
(

DN (~r)
)

is always reached at position~rM = (⌊N

2 ⌋, ⌊
N

2 ⌋).
By a linear scale plot, we can show thatE

(

DN (~rM )
)

increases initially with a slow rate and then the increase
is almost superlinear. However, the large range of produced
values makes a semi-logarithmic scale more appropriate. This
is illustrated in Fig. 3. The obtained curve suggests that
E
(

DN (~rM )
)

may follow a power law. The log-log plot
described in Fig. 4, where both horizontal and vertical axis
are plotted on a logarithmic scale confirms our prediction
of a power law growth ofE

(

DN (~rM )
)

. Indeed, by a linear
regression model, we can estimate the slope of the best
straight line fitted to this plot. Finally, the result of the fit
is E

(

DN (~rM )
)

≃ 0.97N2.27 and the quality of the fit is very
satisfactory with a coefficient of correlation equal to0.99.
Although this procedure is partially heuristic, the obtained fit
formula could help practitioners to rapidly determine the con-
centration of sink nodes to be deployed in order to guarantee
an upper bound of the mean value.

We turn now our attention to a simple example on how
the previous analysis can be applied to a concrete scenario.
We consider IEEE802.15.4 enabled nodes with supported
data transmission rate of20 kbps. One reason for choosing
the IEEE802.15.4 standard stems from its suitability for the
development and deployment of WSN. If we don’t take into
account the physical limitations posed by the radio medium,
the time required for a message to perform a single hop is
simply its size divided by the data transmission rate. Therefore,
it is interesting to study the effect of varying the message size
on the maximum mean value. This is illustrated in Fig. 5 where
E
(

DN (~rM )
)

(in seconds) is plotted as a function of parameter
N for different message sizes.

As indicated in Fig. 5, the increase in message size at fixed
values of parameterN leads to performance degradation. On
the other hand, at a given message size, it is always possible
to enhance the mean value efficiency by reducing parameter
N , or say equivalently by increasing the concentration of sink
nodes. However, this enhancement is lower-bounded by the
maximum mean value achievable at the smallest unit cell size,
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which corresponds toN = 2. To illustrate this assertion, we
can see from Fig. 5 that this lower bound is about32 ms for
a message size of20 bytes, whereas it is equal to128 ms for
a message size of80 bytes.

Since in many applications of WSN sensor nodes often send
only beep-like small messages to sink nodes to report their
status, we find that routing messages based on random walk
can achieve acceptable delay provided that the concentration
of sink nodes is carefully tuned. For illustration purposes, we
can see from Fig. 5 that in order to guarantee a delay threshold
of 1 s, the unit cell size should not exceedN2 = 82, 62, 52, 42

nodes for a message size of20, 40, 60, 80 bytes respectively.
Thus, we can conclude that the random walk scheme can be
viable in the scenarios where (i) applications do not require
too stringent delay, (ii) the sensed data to be transmitted are
of small sizes (tens bytes) and (iii) the concentration of sink
nodes to be deployed is carefully managed.

B. Dispersion

1) Generating Function Analysis:The dispersion of the
data delivery delay is another basic property that indicates the
degree of spread around the mean value. A commonly-used
measure of dispersion is the standard deviation, which is the
square root of the variance. In the context of the proposed
random walk scheme, by knowing the standard deviation of
the data delivery delay, we should be able to make statistically
robust conclusions about the relevance of the mean value that
was previously calculated. Indeed, a small standard deviation
indicates that the values actually taken by the data delivery
delay are clustered closely around the mean value thereby its
probability distribution can be reasonably summarized by the
mean value. However, a large standard deviation indicates that
they are far from the mean value and hence the latter is a bad
representative measure for the data delivery delay.

We propose here to derive the standard deviation of the
data delivery delay and study its dependence on key model
parameters. This study will provide us a somewhat different
picture of the data delivery delay efficiency than we have
previously obtained by considering the mean value alone.
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Denoting the variance byVar
(

DN (~r)
)

, the standard deviation
is found by computing first the variance using generating
function techniques and then taking the square root. So that,

Var
(

DN (~r)
)

= lim
z→1−

∂2

∂z2
DN (~r | z) + lim

z→1−

∂

∂z
DN (~r | z)

−

{

lim
z→1−

∂

∂z
DN (~r | z)

}2

·

(5)

We can see from this relation that only the first and
second partial derivatives of generating functionDN (~r | z)
with respect toz at z = 1− are involved while defining the
variance of the data delivery delay. In a similar way as that
is used for the calculation of the mean value, these partial
derivatives can be expressed in an explicit form using the
second order Taylor’s series expansion ofDN (~r | z) at point
z = 1, which is provided by (17) in Appendix B. Plugging
(17) into (5) leads to the following result:

Result 2. The variance of the data delivery delay can be
written in exact closed-form expression as

Var
(

DN (~r)
)

= 4N2r2(N − r2)ϕN (~r, 1)

+
1

3
N2(1 + 2N2)

(

ϕN (0, 1) − ϕN (~r, 1)
)

+ 2N2
(

ϕ
(1)
N

(0, 1) − ϕ
(1)
N

(~r, 1)
)

+ N4
(

ϕ2
N (0, 1) − ϕ2

N (~r, 1)
)

+
2

3
r2(N − r2)

(

2N2 − 4r2(N − r2) − 1
)

(6)

whereϕN (~r, z) is defined by (13) in Appendix A.

2) Discussion:Using this result, it is now straightforward
to derive the standard deviation by taking the square root of
both sides of (6). In the following, we propose to illustrate
numerically the basic properties of the standard deviationand
to revisit the main question, previously raised, as to whether
the mean value already investigated would be a good summary
of the data delivery delay. Fig. 6 depicts the typical form of
how the standard deviation varies over the network. We set
hereN = 10. An important property to note from Fig. 6 is
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that the standard deviation exhibits a closely similar behavior
to that found while studying the mean value. Indeed, the basic
pattern is that, except near the corners or equivalently near
any sink node, the standard deviation is reasonably similar
throughout the network and achieves its maximum value in
the middle of the unit cell.

At first glance, the relatively small values of the standard
deviation near the corners may mislead us to believe that the
mean value can be considered as a good indicator for the data
delivery delay. With the benefit of hindsight, we rather find
that near the corners the standard deviation always exceeds
the mean value regardless of the unit cell size. Furthermore,
as we move away from the corners of the unit cell towards
the middle region, the standard deviation increases rapidly but
becomes nearly constant over most of the unit cell. This high
dispersion results in a significant probability that the effective
data delivery delay will be greatly different from the mean
value. Therefore, the mean value provides us little information
about what the data delivery delay actually will be, and it
should not be interpreted as a representative value. It is largely
for this reason that a treatment of the data delivery delay based
only on the mean value is inadequate.

To have a deeper analysis of this question, it is now
convenient to defineCV

(

DN (~r)
)

as the coefficient of variation
of the data delivery delay, which is defined as the ratio of the
standard deviation to the mean value. Fig. 7 shows the spatial
distribution of the coefficient of variation over a unit cellfor
N = 10. A key observation to note from this plot is that the
coefficient of variation roughly changes around the corners
but becomes nearly constant as we move far away. Note also
that values greater than1 are achieved around the corners
where a maximum value is reached at node~rm = (0, 1), but
a slight decrease lying over a broad and flat plateau occurs
towards the middle region in which a minimum value lower
than1 is achieved at~rM = (⌊N

2 ⌋, ⌊
N

2 ⌋). The expanse of the
plateau can be characterized by more than79% and 86% of
the achieved values lying in the range[0.9, 1.1] for N = 10
and20 respectively.

This peculiar behavior can be attributed to theproximity-
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Fig. 8. Effect ofN on the maximum and minimum coefficient of variation.

sinkeffect. Indeed, consider a message that is generated in the
vicinity of a given sink node. As already demonstrated while
studying the mean value, this message does not spend a lot
of time exploring the neighborhood it was created in and it is
trapped quickly at early time on the average. If such a message
happens to avoid the sink node, it is likely to have done so by
reducing its proximity to the sink node, thereby significantly
decreasing its likelihood of being trapped soon and tending
to occupy as many nodes as possible on its way. This leads
to very high variability, and so the standard deviation will
greatly exceed the mean value. In contrast, when generated in
the middle region, the message does not initially find itselfin
a preferential position, so any escape from its initial territory
will likely transport it towards one of the four nearest sink
nodes around it, thereby significantly increasing its likelihood
of being trapped soon. This yields again high variability but
the difference between the standard deviation and the mean
value becomes no longer pronounced.

Let us now concentrate more specifically on the maximum
and minimum values of the coefficient of variation achieved
near the corners (at sensor node~rm = (0, 1)) and at the
middle of the unit cell (at sensor node~rM = (⌊N

2 ⌋, ⌊
N

2 ⌋))
respectively. We are interested here in how these typical values
depend on parameterN or equivalently on the concentration
of sink nodes. Our interest stems from the fact that the mean
value, as previously demonstrated, achieves its minimum and
maximum at sensor nodes~rm = (0, 1) and~rM = (⌊N

2 ⌋, ⌊
N

2 ⌋)
respectively, which makes particularly the following analysis
a good benchmark for the data delivery delay efficiency.

Fig. 8 shows that the maximum value of the coefficient
of variation, almost above1, monotonically grows withN
whereas the minimum value, markedly less sensitive to param-
eter N , varies a little but rapidly equilibrates to the constant
value 1 as N increases. The latter behavior suggests a good
evidence for nearly memorylessness property which charac-
terizes both the exponential distribution and the geometric
distribution with very small probability of success [11].

A heuristic explanation of such a property can be given
as follows. Consider a message that is initially generated at



sensor node~rM = (⌊N

2 ⌋, ⌊
N

2 ⌋). For sufficiently large values
of N , it is always possible to neglect the distance traveled
by the message during a given hop numbern0 in comparison
with the distance required for the message to be trapped at
the sink node. Thus, if the message has not been trapped
by hop n0, the probability that it will be trapped after an
additionaln hops can be approximated closely by the original
probability that it will be trapped after the very firstn-th hop.
This statement is nothing but one of the characterization of
memorylessness property. Formally, this can be expressed in
the form of Pr

{

DN (~rM ) > n0 + n | DN (~rM ) > n0

}

=
Pr

{

DN (~rM ) > n
}

. In passing, note that this property is not
restricted to sensor node~r = (⌊N

2 ⌋, ⌊
N

2 ⌋), which corresponds
to the maximum possible distance between an arbitrary sensor
node and its nearest sink node, but can be extended to the
surrounding region provided thatN is large enough.

IV. GEOMETRIC DISTRIBUTION APPROXIMATION

The analysis of dispersion has shown a high spread of
the data delivery delay around the mean value regardless of
sensor node positions. As a consequence, the mean value is
a poor indicator for the data delivery delay efficiency. It is
therefore interesting to look at upper bounds for the data
delivery delay rather than the mean value. The cumulative
distribution function of the data delivery delay would give
the probability that this delay is lower than a certain thresh-
old. Unfortunately, the intractability of the exact probability
distribution function makes this task difficult to be carried
out. However, exploiting memorylessness property observed
at the middle of the unit cell, and since it is also discrete,
the data delivery delay at sensor node~rM = (⌊N

2 ⌋, ⌊
N

2 ⌋) can
be reasonably approximated by a geometric random variable
provided thatN is sufficiently large (small concentration of
sink nodes).

The geometric distribution by definition deals with a series
of independent, identical trials (here, moves across nodes)
each of which has only two possible outcomes, success or
failure (here, trapping or move on) with probabilities thatare
constant from trial to trial. The geometric random variableis
the number of trials needed to get one success (here, trapping),
supported on the set{1, 2, 3, · · · }. Formally, we can therefore
express approximately the probability that a message initially
released at sensor node~rM = (⌊N

2 ⌋, ⌊
N

2 ⌋) will be trapped by
then-th hop in the form ofPr

{

DN

(

~rM

)

= n
}

≃ a(1−a)n−1

for all n ≥ 1, where0 < a < 1 is the geometric parameter
also referred to as the success probability [11]. In our case,
this parameter corresponds to the probability that the message
will be trapped while moving from one node to another.

In this simplest version of the model, only one parameter,
namelya, determines the geometric distribution approxima-
tion. An estimate ofa can be quickly obtained by remark-
ing that expectationE

(

DN (~rM )
)

can be related toa as
E
(

DN (~rM )
)

= 1/a if random variableDN (~rM ) is geomet-
rically distributed. Under such a condition, the variance of
DN (~rM ) can be also written asVar

(

DN (~rM )
)

= (1−a)/a2.
In passing, note that the given estimate ofa has obviously the

necessary condition thatE
(

DN (~rM )
)

> 1, which is consistent
with the results obtained while studying the central tendency of
the data delivery delay. The cumulative distribution function
of the data delivery delay at sensor node~rM can be then
approximately written asPr

{

DN

(

~rM

)

≤ n
}

≃ 1 −
{

1 −

1/E
(

DN (~rM )
)}n

. Knowing the exact value ofE
(

DN (~rM )
)

,
which is given by Result 1, it is then possible to infer this
cumulative distribution function as a function of parameter N .
More interestingly enough, this enables us to find the value of
N for a given percentile, or equivalently the concentration of
sink nodes to be deployed while achieving a threshold delay
with high probability.

It is now possible to assess the quality of the mean value
achieved at sensor node~rM by answering the question how
likely the data delivery delay is effectively below this mean
value. In probability parlance, this consists in calculating the
probability

Pr
{

DN

(

~rM

)

≤ E
(

DN (~rM )
)

} =

1 −
{

1 −
1

E
(

DN (~rM )
)

}E

(

DN (~rM )
)

·

Remarking that1/E
(

DN (~rM )
)

decreases rapidly to zero as
N increases (recall thatE

(

DN (~rM )
)

≃ 0.97N2.27), the
above probability can be reasonably approximated by the
constant value1−1/e ≃ 0.63. Concretely, this value indicates
that nearly two-fifth of messages issued at the middle of
the unit cell would experience a delay time larger than the
mean value. This high variability makes it interesting to look
at upper bounds for the data delivery delay. For example,
applications with strict requirements on delay would benefit
from estimating the data delivery delay with a high percentile.
For instance, we find that the95-percentile is about three times
as much as the mean value regardless of the unit cell size.
Equivalently, this means that only5% of the messages issued
at the middle of the unit cell would spend at least three times
as long as the mean value before being trapped.

V. CONCLUSION

In this paper we addressed the problem of random walk
to model data delivery in wireless sensor networks. In this
approach, a packet generated from a given sensor node per-
forms a random motion until reaching a sink node where it is
collected. The primary objective of this work was to study the
data delivery delay induced by a random walk taking place on
a regular and periodic topology.

Three different studies were reported. First, we studied
central tendency of the data delivery delay and derived a
closed-form expression for its mean value as a function of sink
node concentration. This study showed that the random walk
can achieve acceptable performance in terms of data delivery
delay in the scenarios where (i) applications do not require
too stringent delay, (ii) the sensed data to be transmitted
are of small sizes (tens bytes) and (iii) the concentration of
sink nodes to be deployed is carefully tuned. Second, we
derived a closed-form expression for the variance and showed
how it varies with the concentration of sink nodes. However,



the study of dispersion revealed a high spread of the data
delivery delay around the mean value. So, a treatment of
the data delivery delay based only on the mean value is
inadequate. Third, the analysis of the coefficient of variation
for small concentration of sink nodes argued for a reasonably
memorylessness property and suggested a geometric distribu-
tion approximation of the data delivery delay. Exploiting this
approximation, we assessed the effective quality of the mean
value as a representative indicator for the data delivery delay.
Indeed, we found that nearly two-fifth of messages issued far
away from sink nodes would experience a data delivery delay
larger than the mean value, and hence, applications with severe
requirements on delay would rather benefit from estimating the
data delivery delay with a high percentile.

To improve the data delivery delay efficiency, it is therefore
necessary to avoid the “undesirable” aspects of random walks
like visiting a node more than once or moving in the wrong
direction. Several interesting ideas in this direction canbe
investigated in further work. For example, we can consider
biased random walks that give priority to unvisited neighbors
instead of choosing uniformly at random or issuing multiple
copies of a message in parallel.

APPENDIX A
ASYMPTOTIC EXPANSION OFP (~r,0 | z)

Before calculating the asymptotic expansion ofP (~r,0 | z)
as z → 1−, we propose first to simplify the expression of
P (~r,0 | z) given by (2) and to study its singularity atz = 1.
By factorizing the denominator of the summand and using the
addition theorems of trigonometric functions, we obtain

P (~r,0 | z) =
1

N2

N−1
∑

m1=0

N−1
∑

m2=0

{

ei
2π

N
m1r1

1 − z

2 cos(2π

N
m1)

×
ei

2π

N
m2r2

1 − cm1(z) cos(2π

N
m2)

}

=
1

N2

N−1
∑

m1=0

{

ei
2π

N
m1r1

1 − z

2 cos(2π

N
m1)

× Sm1(z)

}

(7)

where functionscm1(z) andSm1(z) are defined as

cm1(z) =
z

2 − z cos(2π

N
m1)

(8a)

Sm1(z) =

N−1
∑

m2=0

ei
2π

N
m2r2

1 − cm1(z) cos(2π

N
m2)

· (8b)

Before studying the singularity ofP (~r,0 | z) at z = 1, we
propose to simplifySm1(z). The first step is to see from
(8a) that 0 < |cm1(z)| < 1 for 0 < z < 1. Using the
exponential representation of trigonometric functions,Sm1(z)
can be written as

Sm1(z) = −
2

cm1(z)

N−1
∑

m2=0

{

ei
2π

N
m2(1+r2)

ei
2π

N
m2 − αm1(z)

×
1

ei
2π

N
m2 − α−1

m1(z)

}

whereαm1(z) is the smaller root of the equation

X2 −
2

cm1(z)
X + 1 = 0

whose discriminant is positive for0 < z < 1. Thus, we find

αm1(z) =
1 −

√

1 − c2
m1

(z)

cm1(z)
· (9)

Now, using partial fraction decomposition, we can write
Sm1(z) as

Sm1(z) =
(

1 − c2
m1

(z)
)−

1
2

N−1
∑

m2=0

{

ei
2π

N
m2r2

1 − αm1(z) e−i
2π

N
m2

+
αm1(z) ei

2π

N
m2(1+r2)

1 − αm1(z) ei
2π

N
m2

}

·

Noting that |αm1(z)| < 1, it is then possible to expand each
sum involved inSm1(z) by using successively the expansion
1/(1 − x) =

∑∞

k=0 xk and the identity

N−1
∑

m=0

ei
2π

N
mn =

{

N for n = 0,±N,± 2N, · · ·
0 otherwise

which can be derived by remarking that the vectorsei
2π

N
mn

form an orthogonal basis over the set of N-dimensional
complex vectors. Therefore, we obtain

Sm1(z) =
N

(

1 − c2
m1

(z)
)

1
2

×
αr2

m1
(z) + αN−r2

m1
(z)

1 − αN
m1

(z)
· (10)

By substituting (10) into (7), we find

P (~r,0 | z) =
1

N

N−1
∑

m1=0

{

ei
2π

N
m1r1

(

1 − z

2 cos(2π

N
m1)

)(

1 − c2
m1

(z)
)

1
2

×
αr2

m1
(z) + αN−r2

m1
(z)

1 − αN
m1

(z)

}

·

(11)

Note that the summand involved in (11) is holomorphic over
0 < z < 1 for all 0 ≤ m1 ≤ N − 1. However, it diverges
at z = 1 if and only if m1 = 0. Thus, the singularity of
P (~r,0 | z) at z = 1 comes only from the first term of the sum
given by (11). It is convenient therefore to separate out the
singular and non-singular parts ofP (~r,0 | z) as follows

P (~r,0 | z) =
1

N(1 − z)
1
2

×
αr2

0 (z) + αN−r2
0 (z)

1 − αN
0 (z)

+ ϕN (~r, z)

(12)
where

ϕN (~r, z) =
1

N

N−1
∑

m1=1

{

ei
2π

N
m1r1

(

1 − z

2 cos(2π

N
m1)

)(

1 − c2
m1

(z)
)

1
2

×
αr2

m1
(z) + αN−r2

m1
(z)

1 − αN
m1

(z)

}

(13)



is holomorphic atz = 1. The first term involved in (12)
corresponds to the termm1 = 0 in (11), and the second
term, that isϕN (~s, z), corresponds to the sum over the range
1 ≤ m1 ≤ N − 1.

To obtain the first-order asymptotic expansion ofP (~r,0 | z)
as z → 1−, let us successively expand the first term of
P (~r,0 | z) involved in Eq. (12) and then functionϕN (~s, z)
close toz = 1. Hence, the first term ofP (~r,0 | z) can be
expanded as

1

N(1 − z)
1
2

×
αr2

0 (z) + αN−r2
0 (z)

1 − αN
0 (z)

= −
1

N2(z − 1)

+
N2 − 6Nr2 + 6r2

2 − 1

3N2
+

z − 1

45N2
×

{

N4 − 5N2(1 + 6r2
2)

+ 30Nr2(1 + 2r2
2) − 30r2

2(1 + r2
2) + 4

}

+ o(z − 1).

(14)

Being holomorphic atz = 1, ϕN (~r, z) can be represented by
its first-order Taylor’s series expansion at pointz = 1, so that

ϕN (~r, z) = ϕN (~r, 1) + ϕ
(1)
N

(~r, 1)(z − 1) + o(z − 1). (15)

Finally, combining (14) with (15), the asymptotic expansion
of P (~r,0 | z) asz → 1− can be written as

P (~r,0 | z) =

−
1

N2(z − 1)
+

N2
(

1 + 3ϕN (~r, 1)
)

− 6Nr2 + 6r2
2 − 1

3N2

+
z − 1

45N2
×

{

N4 − 5N2
(

1 + 6r2
2 − 9ϕ

(1)
N

(~r, 1)
)

+ 30Nr2(1 + 2r2
2) − 30r2

2(1 + r2
2) + 4

}

+ o(z − 1).

(16)

APPENDIX B
ASYMPTOTIC EXPANSION OFDN (~r | z)

Using (16), the Taylor’s series expansion of generating
functionDN (~r | z) asz → 1− can be expressed as

DN (~r | z) =

1 +
{

N2
(

ϕN (0, 1) − ϕN (~r, 1)
)

+ 2r2(N − r2)
}

(z − 1)

+
1

3

{

N4
(

ϕN (0, 1) − ϕN (~r, 1)
)(

1 + 3ϕN (0, 1)
)

+ 2N3r2

(

1 + 3ϕN (0, 1)
)

+ N2
(

ϕN (~r, 1) − ϕN (0, 1) − 3
(

ϕ
(1)
N

(~r, 1) − ϕ
(1)
N

(0, 1)
)

− 6r2
2ϕN (0, 1)

)

− 4Nr2(1 + r2
2) + 2r2

2(2 + r2
2)

}

(z − 1)2

+ o(z − 1)2.
(17)
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