
HAL Id: hal-02162371
https://hal.science/hal-02162371

Submitted on 21 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic composition and adaptation in adapt-medium
An Phung Khac, Maria-Teresa Segarra, Jean-Marie Gilliot, Antoine Beugnard

To cite this version:
An Phung Khac, Maria-Teresa Segarra, Jean-Marie Gilliot, Antoine Beugnard. Dynamic composition
and adaptation in adapt-medium. Workshop on autonomic and SELF-adaptive systems, Oct 2008,
Gijon, Spain. �hal-02162371�

https://hal.science/hal-02162371
https://hal.archives-ouvertes.fr

Dynamic Composition and Adaptation in

Adapt-Medium

An Phung-Khac, Maria-Teresa Segarra, Jean-Marie Gilliot, and
Antoine Beugnard

Department of Computer Science, TELECOM Bretagne
Technopôle Brest-Iroise - CS 83818 - 29238 Brest Cedex 3 - France

{an.phungkhac,mt.segarra,jm.gilliot,antoine.beugnard}
@enst-bretagne.fr

Abstract. In the presence of operational context changes, many applications must
use dynamic adaptations in order to meet requirements. When an application has a
set of distributed objects that collaborates to offer a particular function, adaptations
involving simultaneous distributed processes may affect such collaborations, planning
distributed adaptations is thus a complex task for developers. This paper presents
Adapt-Medium, an architecture of adaptive distributed components. In the archi-
tecture, adaptations are realized by performing dynamic compositions of distributed
components. We introduce a model-based process for 1) specifying architecture vari-
ants of such distributed components and 2) automatically generating adaptation plans
that are performed at runtime to switch between architecture variants.

1 Introduction

Increasingly, applications must support runtime adaptations and in response to changes in
execution environment. Such adaptation require applications to change behaviors or even
change their internal structures dynamically in maintaining continuous availability [1]. When
an application has a set of distributed objects that collaborates to offer a particular function,
adaptations involving simultaneous distributed processes may affect such collaborations.
Supporting runtime adaptations of this class of applications can be challenging. In this paper,
we introduce an architecture-based approach to dynamic adaptation of such applications.

Architecture-based adaptation is mainly concerned with structural changes at the level
of software components [2]. In the context of applications having distributed functional
collaborations, building runtime adaptations features requires some challenging tasks:

– Specifying consistent architecture variants: Through an adaptation, an application moves
from a consistent architecture variant to another consistent architecture variant. Spec-
ifying such consistent architecture variants of the application is thus critical to ensure
the correctness of the collaboration after adaptations.

– Supporting runtime transitions: Runtime transitions of architectures are also critical in
order to preserve states and data through adaptations. Such transitions involve simulta-
neous distributed processes having dependencies between them. Planning adaptations is
thus a complex task for developers. Moreover, an important class of applications requires
continuous availability, adaptations must be transparent to users.

Addressing these issues, we propose Adapt-Medium, an architecture of adaptive dis-
tributed collaborations. From a collaboration abstraction called medium, we can build ar-
chitecture variants and embed these variants into a platform that can dynamically select a
proper running variant. Thanks to a design process, all the architecture variants are consis-
tent. Moreover, because all the variants are embedded in the platform at design time, data
of a replaced variant can be transferred to the new one during runtime variant transitions.

In our approach, we specify transition actions within the refinement process (of the
collaboration abstraction into architecture variants). Then, by using model-based techniques,
we can automatically generate the target adaptive distributed application with adaptation
plans.

The remainder of this paper is organized as follows. Section 2 presents the original
medium that was proposed previously in our project [3]. Section 3 introduces the design
principles of Adapt-Medium that is based on the medium architecture. Section 4 illustrates
how our refinement process can build consistent architecture variants and how we can gen-
erate adaptation plans by an example. Section 5 presents related work. Finally, Section 6
summarizes the paper and discusses future work.

2 Medium

A medium is a collaboration abstraction represented as a software entity. An application
is built by interconnecting some functional components with a medium that represents the
collaboration of the functional components [3].

Agency 1

Agency 2

Reservation
medium

Company
id

Agency 2

Logical medium

CompanyMiddleware

Agency 1

Physical medium

id Data

Role
Managers

(a)

Abstraction

(b)

Deployment

reserve or cancel

initialize

id

id

id

Legend

Fig. 1. Medium deployment architecture

For example, consider an airplane seats reservation application of an airline company
with travel agencies located worldwide. As shown in Figure 1 (a), we can specify a reser-

vation medium managing seats’ identifiers (IDs) and offering medium services to initialize
information about seats, to reserve seats and to cancel reservations. The reservation appli-
cation can then be built by interconnecting the reservation medium and local functional
components representing the airline company and the agencies.

Figure 1 (b) shows the deployment architecture of the reservation medium that splits into
physical role managers. Each role manager is associated with a local functional component
and implements the medium services used by this functional component. As shown in the
figure, the seats’ IDs set may be distributed between role managers. Depending on the data
distribution architecture (e.g., distributed, centralized) or the data type chosen for data
management, the medium at the deployment level may be different.

3 Adapt-Medium

3.1 Design Principle

Our approach is to generalize the refinement process in order to obtain all planned evolu-
tionary architecture variants from a collaboration abstraction, then compose these variants

into an adaptable medium that can dynamically select a proper running variant at runtime.
The architecture meta-model also allows to build and integrate new variants at runtime.

* 1

Collaboration abstraction

1 11

arch. variant 1

11

1 1* 1 11

arch. variant n

1 1*

1 11

Adapt-medium

1 1*

Refinement

…

Composition
Source

adapt-manager

Design decision
model

Reserver

local func. component
Source

local func. component

Fig. 2. Adapt-Medium design principle

Figure 2 briefly shows our development approach in building adaptable and evolvable
reservation medium (called reservation adapt-medium). This adapt-medium can be used in
reservation applications that can dynamically switch the data type and the data management
algorithm used for managing seats’ IDs when the execution context changes (e.g., the number
of agencies increases, evolution of database systems).

– Refinement. From the collaboration abstraction, we specify design decision models. Each
of these models contains a sequence of design alternatives that lead the refinement of
the abstraction to an architecture variant. All the architecture variants conform to the
abstraction.

– Composition. All the role managers corresponding to a functional component are com-
posed into an adapt-manager. A generic implementation of adapt-managers is introduced
in this step. Models of the architecture variants, the adapt-medium model, and design
decision models are preserved in the adapt-medium.

3.2 Planning Transitions

Because the adapt-medium contains all the implementations of the medium architecture
variants at runtime, the data of a replaced architecture variant can be transferred to the
new architecture variant.

Transition plans can be built by analyzing the two design decision models corresponding
to the current running variant and the target variant to determine which data from which
managers of the current variant should be read, and then, should be write in which managers
of the target variant. The result is then a plan of Read and Write actions. Each of these
actions is refined into some coordinated distributed actions by top-down goal decompositions
[4].

3.3 Adapt-Medium Architecture

Figure 3 shows the global view of a distributed application using an adapt-medium. This
application is deployed on two sites, on each site, a functional component is associated

with an adapt-manager. The adapt-medium is then the logical aggregation of two adapt-
managers, one per site. Each adapt-manager consists of a composite manager, an adaptation

controller and a medium logic component. The composite manager contains all the manager

variants of the corresponding role manager and an adaptor.

Adaptation
controller

Functional
component A

control

Medium logic

Adaptation
controllerManager B2

Functional
component B

control

Medium functions Medium functions

Middleware

Adapt-Medium

A medium
variant

Adaptation coordination

Functional communication

Medium logic

Manager B1 Manager A1

Manager A2

Adapt-manager

Fig. 3. Adapt-Medium architecture

The adaptor refers called medium services to the running variant by a parameter that
can be changed by the executor. The adaptation controller receives context information,
makes adaptation decisions, selects a proper running variant, generates adaptation plans
and executes the plans. The medium logic sub-component manages medium’s meta-data
(information about structures of all architecture variants and design decision models) and
adapt-managers’ instances information. Functional collaboration between composite man-
agers and adaptation coordination between adaptation controllers are performed through the
medium logic layer. In addition, adaptation controllers use medium information managed
by medium logic sub-components to schedule adaptations.

4 Example: Reservation Adapt-Medium

4.1 Building Architecture Variants

<<interface>>
ISourceMediumServices

/source

ReservationMedium

1..*

1

initialize(ReserveId[], Boolean)

Boolean usable = false
Boolean cancelerIsReserver

<<interface>>
IReserverMediumServices

ReserveId reserve()
Cancel(ReserveId)

/reserver

ReserveId

reserved *

+ available

0..1

*

Fig. 4. Abstract specification of the reservation adapt-medium

This section illustrates the refinement process in the Adapt-Medium design principle
presented in the previous section by the example of the reservation adapt-medium. The
following are some class diagrams of the reservation application in some steps the refinement
process.

Abstraction. Figure 4 shows the class diagram of the reservation application at the
abstract level. Class ReservationMedium represents the logical medium that implements the
ISourceMediumServices interface used by the Source class and the IReserverMediumServices
interface used by the Reserver class. Class ReserveId represents a seat’s ID. The medium
manages the (available) set of available seats’ IDs. Each instance of the Reserver class
has a (reserved) set of seats’ IDs reserved by the corresponding agency.

<<interface>>
ISourceMediumServices

SourceManager

ReservationMedium

1..*

1

initialize(ReserveId[], Boolean)

Boolean usable = false
Boolean cancelerIsReserver

<<interface>>
IReserverMediumServices

ReserveId reserve()
Cancel(ReserveId)

ReserverManager

ReserveId

+ reserved

+ available

0..1

/source

/reserver

1 1

1 1

*

*

Fig. 5. Managers introduction

Introducing role managers. In order to identify and separate design alternatives,
role managers are introduced, one per functional component. Figure 5 shows the class di-
agram of the application after the role managers introduction. The SourceManager and
ReserverManager classes are introduced. These two classes implement the medium services,
but the available data are still managed by the ReservationMedium class representing the
logical medium. The reserved data of the Reserver class in the abstract specification is
now managed by the ReserverManager class.

Medium

AbstractType
AbstractType

Algorithm Manager DataFormat

ProtocolObject
Algorithm

+ data format + storage nodes+ data structure

+ implementation algorithm

+ distributed protocol + protocol roles

1 *

1

1

1 1..*
1 1

1

1

1

1..*

1 1..*

1 1

1 1
Protocol ProtocolObject

Property

Reservation
Medium

List
ListDefault
Algorithm

Reserver
Manager

HashTable
Format

MITAlgorithm

+ data format + storage nodes+ data structure

+ implementation algorithm

+ distributed protocol + protocol roles

1 *

1

1

1 1..*
1 1

1

1

1

1..*

1 1..*

1 1

1 1
Chord ChordObject

Available

(a)

(b)

Fig. 6. (a) Generic design decision model and (b) a design decision model

Identifying and separating design alternatives. Generally, the logical medium at
this level has data or services that need to be distributed on role managers. In the reservation
medium, there is only the available seats’ IDs set that needs to be distributed. In this
example, we have identified seven design concerns of the seats’ IDs distribution: the abstract

type used to represent distributed data, the abstract type implementation, the data format

used to represent local data, the data distribution topology specifying role managers that
can participate to the distribution, the role of role managers in the distribution (e.g., client,
server, peer), the distributed protocol used to implement the data distributed strategy (e.g.,
Chord [5]), the distributed protocol implementation algorithm that specifies the protocol
implementation (e.g., OpenChord [6] or MIT Chord implementation [7]). For each design
concern, there are several design alternatives (e.g., Chord, Pastry design alternatives for the
distributed protocol design concern).

From the identified design alternatives, we create design decision models. These design
decision models guide a refinement that transforms the abstraction into some medium archi-
tecture variants. With each design decision model, a medium architecture variant’s model
is built.

Figure 6 shows the generic design decision model (a) and a design decision model for
the distribution of seats’ IDs (b). For example, the available set can be distributed on
ReserverManager role managers by using the Chord algorithm implemented by MIT. The
available distributed data can be accessed via proxies as List data. Primitives of the
List data are implemented by ListDefaultAlgorithm. With this design decision model,
the implementation class diagram of the corresponding architecture variant is shown in
Figure 7.

1

<<interface>>
ISourceMediumServices

SourceManager

ReserverManager

<<interface>>
IReserverMediumServices

ListData
Manager

HashTable
Scheme

<<interface>>
IHashTableSchemeServices

ChordObject MITAlgorithm

<<interface>>
IChordObjectServices

ListDefault
Algorithm

<<interface>>
IListServices ListObject

+ available

+ available

+ reserved

1 1

1 1

0..1

*

1

1

1
1

1
1

1 1

1 1

1

1 1

ListDataProxy

ReserveId

Source

Reserver

Fig. 7. An architecture variant of the reservation medium

By this refinement process with design decision models, all the medium architecture
variants conform to the medium abstraction. Thereby, these medium architecture variants
are consistent from the viewpoint of distributed functional collaboration and the distributed
functional components of the application using the adapt-medium can correctly collaborate
after switching variants.

4.2 Generating Adaptation Plans

Figure 8 shows another viewpoint of the refinement process. Design alternatives refine a
collaboration abstraction (medium) into architecture variants through several internal vari-
ants. A sequence of design alternatives forms a design decision model. For example, the
sequence of design alternatives corresponding to the internal variants {(1),(2),(3),(4),(5)} is
the design decision model in Figure 6 (b).

In order to automatically generate adaptation plans, we aim to specify transition actions
within the steps of the refinement process. Along every sequence of variants, from the ab-
straction to the architecture variant through internal variants, we specify 1) actions that

Collaboration
Abstraction

Managers
Introduction

Distributed List Centralized
Hash Table

Participants:
ReserverManagers

Data need to be
managed:

Available IDs set

Local data
format: List

Local data format:
Hash Table

Centralized
Algorithm X

ListDefaultAlgorithm

ChordObjects

ServerObject

ClientObject

Server:
ReserverManagerX

Clients: Other
ReserverManagers

6

3

5

Impl:
MITAlgorithm

4

Chord

Impl:
ImplementationA

HashTableDefault
Algorithm

1

2
7

8

9

0

Fig. 8. Specifying architecture variants transitions

need to be executed to transfer data from a variant to the next one and 2) actions that are
needed to restore data of this variant from the next variant.

For example, with the sequence {(1),(2),(3),(4),(5)}, the actions are described as follows:

From (0) to (1):

for item in (0).Available

(1).ListDefaultAlgorithm.Write(item)

Restore (0) from (1):

(1).Available = null

Do

item = (1).ListDefaultAlgorithm.Read()

if item <> null then (0).Available.add(item)

Until item = null

From (1) to (2):

No data to be transferred

From (1) to (3):

(1).ListDefaultAlgorithm.Write(item) = {

(a ReserverManager).ChordObject.Write(item)

}

Restore (1) from (3):

(1).ListDefaultAlgorithm.Read() = {

(a ReserverManager).ChordObject.Read()

}

From (3) to (4):

No data to be transferred

From (3) to (5):

No data to be transferred

Consider another design decision model corresponding an architecture variant (call vari-
ant B) in which the Available set is organized in a centralized way. This design decision

model corresponds to the sequence of internal variants: {(6),(7),(8),(9)}. With this sequence,
we can specify the following transition actions:

From (0) to (6):

for item in (0).Available

(1).HashTableDefaultAlgorithm.Write(item)

Restore (0) from (6):

(1).Available = null

Do

item = (1).HashTableDefaultAlgorithm.Read()

if item <> null then (0).Available.add(item)

Until item = null

From (6) to (7):

No data to be transferred

From (6) to (8):

(1).HashTableDefaultAlgorithm.Write(item) = {

(ReserverManager X).ServerObject.Write(item)

}

Restore (6) from (8):

(1).HashTableDefaultAlgorithm.Read() = {

(ReserverManager X).ServerObject.Read()

}

From (8) to (9):

No data to be transferred

From these actions, we can automatically generate adaptation plans for switching be-
tween two architecture variants corresponding two design decision models.

In our approach presented in this section, we focus only on transitions of functional data
(seats’ ID). In order to optimize transitions, other data can be also transferred between
architecture variants. For example in the internal variant (4), routing data can be transferred
to other implementations of the Chord algorithm.

5 Related Work

Many research projects have been investigating techniques to support runtime adaptation of
distributed applications. But currently, to the best of our knowledge, there does not exist an
approach that supports automatically planning runtime adaptations of applications having
distributed functional collaboration.

In the field of robotic, some work supported automatically planning adaptation. For
example, in [8], Daniel Sykes et al proposed a three-layer model in which adaptation plans
are generated from goal models expressed in temporal logic. The plans are executed by
selecting alternative components. In the context of distributed collaboration, e.g., two robots
collaborate to perform a task, this work does not ensure the correctness of the collaboration
between alternatives components of the robots.

A number of approaches supports adaptation mechanisms by replacing or rebinding com-
ponents [9] or by customizable frameworks to developing adaptable component-based appli-
cations [10, 11]. In these approaches, the authors did not focus on the distributed functional
logic of applications.

In [12], Gautier Bastide et al proposed an approach to create composite components
from monolithic ones by restructuring the latter. A composite component consists of sub-
components that are deployed on distributed hosts in order to adapt to deployment poli-
cies (e.g., when the monolithic component cannot be deployed on a host). Compared with
Adapt-Medium, the monolithic component corresponds to the abstraction and a composite

component corresponds to an architecture variant. However, because the goal of [12] is to
adapt the application deployment, this approach does not support mechanism to switch
composite components. Moreover, as concluded in [12], this work does not allow runtime
adaptations.

A few approaches support multiple distributed adaptations. In ACEEL [13], an adap-
tive distributed application has some distributed coordinators that coordinate multiple dis-
tributed adaptation in order to maintain the cooperation of distributed components. The
coordinators collaborate by using an adaptation policy provided by developers. In [14], Kurt
Geihs et al proposed an approach to develop component-based distributed applications that
includes a framework for selecting proper variants based on the current state of the exe-
cution context. In this work, the creation of the application variants is also based on some
component plans describing the components composition defined by developers. By allowing
developers define the adaptation policy [13] and the component plans [14], these approaches
support a large class of applications, but the capability to maintain distributed collaboration
thus depends on developers.

From the viewpoint of distributed components connection, mediums have a similarity to
explicit software connectors [15] used in ArchStudio [1] to supporting runtime evolution. But
they differ in many aspects: In contrary to mediums being reusable components, connectors
are built by compilers that analyze interfaces specifications of distributed components that
need to be connected. Moreover, mediums implement functional collaboration, but connec-
tors implement non-functional interaction of distributed components.

6 Conclusion

In this paper, we presented Adapt-Medium, an architecture of adaptive distributed compo-
nents. In the architecture, adaptations are realized by performing dynamic compositions of
distributed components. We introduced a model-based process for 1) specifying architecture
variants of such distributed components and 2) automatically generating adaptation plans
that are performed at runtime to switch running architecture variant. The context includes
applications having distributed functional collaborations. In this class of applications, adap-
tations involving distributed processes may affect the collaborations, planning adaptations
is thus a complex task for developers.

In our approach, a distributed application is firstly specified using a collaboration ab-
straction called medium. Then we presented a refinement process that transforms this ab-
straction into many architecture variants. These architecture variants are then composed
into an adapt-medium that can select a proper running variant and dynamically switch
between variants in order to adapt to context changes. We proposed to specify adaptation
actions within the refinement process, thus automatically generate plans for performing
adaptations.

We have automated the refinement process by model transformations [16]. Our future
work includes defining an action meta-model, integrating specifications of transition actions
into the model-based process, thus validate our approach to automatically generating dis-
tributed adaptation plans, reducing development tasks of developers.

Our current architecture does not support continuous availability [1]. An adapt-medium
enables the application using it to move from a consistent architecture to another consistent
architecture at runtime without loss of data, but during the data transfer, the medium
services must be stopped. Our ongoing work includes specifying local data as shared objects
between manager variants by analyzing common design alternatives of the design decision
models. Thus we could replace the Read and Write actions in transitions by rebinding
components.

Our future work investigates an integrated tool suite that 1) enables developers to specify
distributed collaborations, 2) automatically generates runtime adaptable collaborations as
components, and 3) automatically generates coordination models for executing distributed
adaptation processes.

References

1. Oreizy, P., Medvidovic, N., Taylor, R.N.: Architecture-based runtime software evolution. In:
ICSE ’98: Proceedings of the 20th international conference on Software engineering, Washing-
ton, DC, USA, IEEE Computer Society (1998) 177–186

2. Cheng, B.H.C., et al: Software Engineering for Self-Adaptive Systems: A Research Road Map.
(In: Dagstuhl Seminar, http://drops.dagstuhl.de/opus/volltexte/2008/1500/)

3. Cariou, E., Beugnard, A., Jézéquel, J.M.: An architecture and a process for implementing
distributed collaborations. In: Proceedings of the 6th IEEE International Enterprise Distributed
Object (EDOC 2002), Lausanne, Switzerland, IEEE Computer Society (2002) 132–143

4. Malone, T.W., Crowston, K.: The interdisciplinary study of coordination. ACM Computing
Surveys 26(1) (1994) 87–119

5. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A Scalable Peer-
to-Peer Lookup Service for Internet Applications. In: ACM SIGCOMM Conference, San Diego
(2001)

6. Bamberg University, Distributed System Group: Openchord. http://www.uni-
bamberg.de/projects/openchord (2007)

7. Massachusetts Institute of Technology: lsd. http://www.pdos.lcs.mit.edu/chord/ (2004)
8. Sykes, D., Heaven, W., Magee, J., Kramer, J.: From goals to components: a combined ap-

proach to self-management. In: SEAMS ’08: Proceedings of the 2008 international workshop
on Software engineering for adaptive and self-managing systems, ACM (2008) 1–8

9. David, P.C., Ledoux, T.: Towards a framework for self-adaptive component-based applications.
In Stefani, J.B., Demeure, I., Hagimont, D., eds.: Proceedings of Distributed Applications and
Interoperable Systems 2003 DAIS2003). Volume 2893 of Lecture Notes in Computer Science.,
Paris, Federated Conferences, Springer-Verlag (2003) 1–14

10. Segarra, M.T., André, F.: A framework for dynamic adaptation in wireless environments.
In: TOOLS ’00: Proceedings of the Technology of Object-Oriented Languages and Systems
(TOOLS 33), Washington, DC, USA, IEEE Computer Society (2000) 336

11. Ben-Shaul, I., Holder, O., Lavva, B.: Dynamic adaptation and deployment of distributed com-
ponents in hadas. IEEE Trans. Softw. Eng. 27(9) (2001) 769–787

12. Bastide, G., Seriai, A., Oussalah, M.: Adaptation of Monolithic Software Components by
Their Transformation into Composite Configurations Based on Refactoring. In: Proceedings of
The 9th International ACM SIGSOFT Symposium on Component-Based Software Engineering.
Lecture Notes in Computer Science, Springer-Verlag (2006) 368–375

13. Chefrour, D.: Developing component-based adaptive applications in mobile environments. In:
SAC ’05: Proceedings of the 2005 ACM symposium on Applied computing, New York, NY,
USA, ACM Press (2005) 1146–1150

14. Geihs, K., Khan, M.U., Reichle, R., Solberg, A., Hallsteinsen, S., Merral, S.: Modeling of
component-based adaptive distributed applications. In: Proceedings of the 2006 ACM sympo-
sium on Applied Computing (SAC’06), ACM Press (2006) 718–722

15. Shaw, M., Garlan, D.: Software architecture: perspectives on an emerging discipline. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA (1996)

16. Phung-Khac, A., Beugnard, A., Gilliot, J.M., Segarra, M.T.: Model-Driven Development of
Component-based Adaptive Distributed Applications. In: Proceeding of the 23rd ACM Sym-
posium on Applied Computing (SAC’2008), track on Dependable and Adaptive Distributed
Systems (DADS), Fortaleza, Ceará, Brazil, ACM Press (2008)

