An Phung-Khac
email: an.phungkhac@enst-bretagne.fr

Maria-Teresa Segarra
email: mt.segarra@enst-bretagne.fr

Jean-Marie Gilliot
email: jm.gilliot@enst-bretagne.fr

Antoine Beugnard
email: antoine.beugnard@enst-bretagne.fr

Dynamic Composition and Adaptation in Adapt-Medium

In the presence of operational context changes, many applications must use dynamic adaptations in order to meet requirements. When an application has a set of distributed objects that collaborates to offer a particular function, adaptations involving simultaneous distributed processes may affect such collaborations, planning distributed adaptations is thus a complex task for developers. This paper presents Adapt-Medium, an architecture of adaptive distributed components. In the architecture, adaptations are realized by performing dynamic compositions of distributed components. We introduce a model-based process for 1) specifying architecture variants of such distributed components and 2) automatically generating adaptation plans that are performed at runtime to switch between architecture variants.

Introduction

Increasingly, applications must support runtime adaptations and in response to changes in execution environment. Such adaptation require applications to change behaviors or even change their internal structures dynamically in maintaining continuous availability [START_REF] Oreizy | Architecture-based runtime software evolution[END_REF]. When an application has a set of distributed objects that collaborates to offer a particular function, adaptations involving simultaneous distributed processes may affect such collaborations. Supporting runtime adaptations of this class of applications can be challenging. In this paper, we introduce an architecture-based approach to dynamic adaptation of such applications.

Architecture-based adaptation is mainly concerned with structural changes at the level of software components [START_REF] Cheng | Software Engineering for Self-Adaptive Systems: A Research Road Map[END_REF]. In the context of applications having distributed functional collaborations, building runtime adaptations features requires some challenging tasks:

-Specifying consistent architecture variants: Through an adaptation, an application moves from a consistent architecture variant to another consistent architecture variant. Specifying such consistent architecture variants of the application is thus critical to ensure the correctness of the collaboration after adaptations. -Supporting runtime transitions: Runtime transitions of architectures are also critical in order to preserve states and data through adaptations. Such transitions involve simultaneous distributed processes having dependencies between them. Planning adaptations is thus a complex task for developers. Moreover, an important class of applications requires continuous availability, adaptations must be transparent to users.

Addressing these issues, we propose Adapt-Medium, an architecture of adaptive distributed collaborations. From a collaboration abstraction called medium, we can build architecture variants and embed these variants into a platform that can dynamically select a proper running variant. Thanks to a design process, all the architecture variants are consistent. Moreover, because all the variants are embedded in the platform at design time, data of a replaced variant can be transferred to the new one during runtime variant transitions.

In our approach, we specify transition actions within the refinement process (of the collaboration abstraction into architecture variants). Then, by using model-based techniques, we can automatically generate the target adaptive distributed application with adaptation plans.

The remainder of this paper is organized as follows. Section 2 presents the original medium that was proposed previously in our project [START_REF] Cariou | An architecture and a process for implementing distributed collaborations[END_REF]. Section 3 introduces the design principles of Adapt-Medium that is based on the medium architecture. Section 4 illustrates how our refinement process can build consistent architecture variants and how we can generate adaptation plans by an example. Section 5 presents related work. Finally, Section 6 summarizes the paper and discusses future work.

Medium

A medium is a collaboration abstraction represented as a software entity. An application is built by interconnecting some functional components with a medium that represents the collaboration of the functional components [START_REF] Cariou | An architecture and a process for implementing distributed collaborations[END_REF]. For example, consider an airplane seats reservation application of an airline company with travel agencies located worldwide. As shown in Figure 1 (a), we can specify a reservation medium managing seats' identifiers (IDs) and offering medium services to initialize information about seats, to reserve seats and to cancel reservations. The reservation application can then be built by interconnecting the reservation medium and local functional components representing the airline company and the agencies.

Figure 1 (b) shows the deployment architecture of the reservation medium that splits into physical role managers. Each role manager is associated with a local functional component and implements the medium services used by this functional component. As shown in the figure, the seats' IDs set may be distributed between role managers. Depending on the data distribution architecture (e.g., distributed, centralized) or the data type chosen for data management, the medium at the deployment level may be different.

Adapt-Medium

Design Principle

Our approach is to generalize the refinement process in order to obtain all planned evolutionary architecture variants from a collaboration abstraction, then compose these variants into an adaptable medium that can dynamically select a proper running variant at runtime. The architecture meta-model also allows to build and integrate new variants at runtime. Figure 2 briefly shows our development approach in building adaptable and evolvable reservation medium (called reservation adapt-medium). This adapt-medium can be used in reservation applications that can dynamically switch the data type and the data management algorithm used for managing seats' IDs when the execution context changes (e.g., the number of agencies increases, evolution of database systems).

-Refinement. From the collaboration abstraction, we specify design decision models. Each of these models contains a sequence of design alternatives that lead the refinement of the abstraction to an architecture variant. All the architecture variants conform to the abstraction. -Composition. All the role managers corresponding to a functional component are composed into an adapt-manager. A generic implementation of adapt-managers is introduced in this step. Models of the architecture variants, the adapt-medium model, and design decision models are preserved in the adapt-medium.

Planning Transitions

Because the adapt-medium contains all the implementations of the medium architecture variants at runtime, the data of a replaced architecture variant can be transferred to the new architecture variant.

Transition plans can be built by analyzing the two design decision models corresponding to the current running variant and the target variant to determine which data from which managers of the current variant should be read, and then, should be write in which managers of the target variant. The result is then a plan of Read and Write actions. Each of these actions is refined into some coordinated distributed actions by top-down goal decompositions [START_REF] Malone | The interdisciplinary study of coordination[END_REF].

Adapt-Medium Architecture

Figure 3 shows the global view of a distributed application using an adapt-medium. This application is deployed on two sites, on each site, a functional component is associated with an adapt-manager. The adapt-medium is then the logical aggregation of two adaptmanagers, one per site. Each adapt-manager consists of a composite manager, an adaptation controller and a medium logic component. The composite manager contains all the manager variants of the corresponding role manager and an adaptor. The adaptor refers called medium services to the running variant by a parameter that can be changed by the executor. The adaptation controller receives context information, makes adaptation decisions, selects a proper running variant, generates adaptation plans and executes the plans. The medium logic sub-component manages medium's meta-data (information about structures of all architecture variants and design decision models) and adapt-managers' instances information. Functional collaboration between composite managers and adaptation coordination between adaptation controllers are performed through the medium logic layer. In addition, adaptation controllers use medium information managed by medium logic sub-components to schedule adaptations. This section illustrates the refinement process in the Adapt-Medium design principle presented in the previous section by the example of the reservation adapt-medium. The following are some class diagrams of the reservation application in some steps the refinement process.

Abstraction. Figure 4 Identifying and separating design alternatives. Generally, the logical medium at this level has data or services that need to be distributed on role managers. In the reservation medium, there is only the available seats' IDs set that needs to be distributed. In this example, we have identified seven design concerns of the seats' IDs distribution: the abstract type used to represent distributed data, the abstract type implementation, the data format used to represent local data, the data distribution topology specifying role managers that can participate to the distribution, the role of role managers in the distribution (e.g., client, server, peer), the distributed protocol used to implement the data distributed strategy (e.g., Chord [START_REF] Stoica | Chord: A Scalable Peerto-Peer Lookup Service for Internet Applications[END_REF]), the distributed protocol implementation algorithm that specifies the protocol implementation (e.g., OpenChord [START_REF]Distributed System Group: Openchord[END_REF] or MIT Chord implementation [7]). For each design concern, there are several design alternatives (e.g., Chord, Pastry design alternatives for the distributed protocol design concern).

From the identified design alternatives, we create design decision models. These design decision models guide a refinement that transforms the abstraction into some medium architecture variants. With each design decision model, a medium architecture variant's model is built.

Figure 6 shows the generic design decision model (a) and a design decision model for the distribution of seats' IDs (b). For example, the available set can be distributed on ReserverManager role managers by using the Chord algorithm implemented by MIT. The available distributed data can be accessed via proxies as List data. Primitives of the List data are implemented by ListDefaultAlgorithm. With this design decision model, the implementation class diagram of the corresponding architecture variant is shown in Figure 7. By this refinement process with design decision models, all the medium architecture variants conform to the medium abstraction. Thereby, these medium architecture variants are consistent from the viewpoint of distributed functional collaboration and the distributed functional components of the application using the adapt-medium can correctly collaborate after switching variants.

Generating Adaptation Plans

Figure 8 shows another viewpoint of the refinement process. Design alternatives refine a collaboration abstraction (medium) into architecture variants through several internal variants. A sequence of design alternatives forms a design decision model. For example, the sequence of design alternatives corresponding to the internal variants {(1),(2),(3),(4),(5)} is the design decision model in Figure 6 (b).

In order to automatically generate adaptation plans, we aim to specify transition actions within the steps of the refinement process. Along every sequence of variants, from the abstraction to the architecture variant through internal variants, we specify 1) actions that Many research projects have been investigating techniques to support runtime adaptation of distributed applications. But currently, to the best of our knowledge, there does not exist an approach that supports automatically planning runtime adaptations of applications having distributed functional collaboration.

In the field of robotic, some work supported automatically planning adaptation. For example, in [START_REF] Sykes | From goals to components: a combined approach to self-management[END_REF], Daniel Sykes et al proposed a three-layer model in which adaptation plans are generated from goal models expressed in temporal logic. The plans are executed by selecting alternative components. In the context of distributed collaboration, e.g., two robots collaborate to perform a task, this work does not ensure the correctness of the collaboration between alternatives components of the robots.

A number of approaches supports adaptation mechanisms by replacing or rebinding components [START_REF] David | Towards a framework for self-adaptive component-based applications[END_REF] or by customizable frameworks to developing adaptable component-based applications [START_REF] Segarra | A framework for dynamic adaptation in wireless environments[END_REF][START_REF] Ben-Shaul | Dynamic adaptation and deployment of distributed components in hadas[END_REF]. In these approaches, the authors did not focus on the distributed functional logic of applications.

In [START_REF] Bastide | Adaptation of Monolithic Software Components by Their Transformation into Composite Configurations Based on Refactoring[END_REF], Gautier Bastide et al proposed an approach to create composite components from monolithic ones by restructuring the latter. A composite component consists of subcomponents that are deployed on distributed hosts in order to adapt to deployment policies (e.g., when the monolithic component cannot be deployed on a host). Compared with Adapt-Medium, the monolithic component corresponds to the abstraction and a composite component corresponds to an architecture variant. However, because the goal of [START_REF] Bastide | Adaptation of Monolithic Software Components by Their Transformation into Composite Configurations Based on Refactoring[END_REF] is to adapt the application deployment, this approach does not support mechanism to switch composite components. Moreover, as concluded in [START_REF] Bastide | Adaptation of Monolithic Software Components by Their Transformation into Composite Configurations Based on Refactoring[END_REF], this work does not allow runtime adaptations.

A few approaches support multiple distributed adaptations. In ACEEL [START_REF] Chefrour | Developing component-based adaptive applications in mobile environments[END_REF], an adaptive distributed application has some distributed coordinators that coordinate multiple distributed adaptation in order to maintain the cooperation of distributed components. The coordinators collaborate by using an adaptation policy provided by developers. In [START_REF] Geihs | Modeling of component-based adaptive distributed applications[END_REF], Kurt Geihs et al proposed an approach to develop component-based distributed applications that includes a framework for selecting proper variants based on the current state of the execution context. In this work, the creation of the application variants is also based on some component plans describing the components composition defined by developers. By allowing developers define the adaptation policy [START_REF] Chefrour | Developing component-based adaptive applications in mobile environments[END_REF] and the component plans [START_REF] Geihs | Modeling of component-based adaptive distributed applications[END_REF], these approaches support a large class of applications, but the capability to maintain distributed collaboration thus depends on developers.

From the viewpoint of distributed components connection, mediums have a similarity to explicit software connectors [START_REF] Shaw | Software architecture: perspectives on an emerging discipline[END_REF] used in ArchStudio [START_REF] Oreizy | Architecture-based runtime software evolution[END_REF] to supporting runtime evolution. But they differ in many aspects: In contrary to mediums being reusable components, connectors are built by compilers that analyze interfaces specifications of distributed components that need to be connected. Moreover, mediums implement functional collaboration, but connectors implement non-functional interaction of distributed components.

Conclusion

In this paper, we presented Adapt-Medium, an architecture of adaptive distributed components. In the architecture, adaptations are realized by performing dynamic compositions of distributed components. We introduced a model-based process for 1) specifying architecture variants of such distributed components and 2) automatically generating adaptation plans that are performed at runtime to switch running architecture variant. The context includes applications having distributed functional collaborations. In this class of applications, adaptations involving distributed processes may affect the collaborations, planning adaptations is thus a complex task for developers.

In our approach, a distributed application is firstly specified using a collaboration abstraction called medium. Then we presented a refinement process that transforms this abstraction into many architecture variants. These architecture variants are then composed into an adapt-medium that can select a proper running variant and dynamically switch between variants in order to adapt to context changes. We proposed to specify adaptation actions within the refinement process, thus automatically generate plans for performing adaptations.

We have automated the refinement process by model transformations [START_REF] Phung-Khac | Model-Driven Development of Component-based Adaptive Distributed Applications[END_REF]. Our future work includes defining an action meta-model, integrating specifications of transition actions into the model-based process, thus validate our approach to automatically generating distributed adaptation plans, reducing development tasks of developers.

Our current architecture does not support continuous availability [START_REF] Oreizy | Architecture-based runtime software evolution[END_REF]. An adapt-medium enables the application using it to move from a consistent architecture to another consistent architecture at runtime without loss of data, but during the data transfer, the medium services must be stopped. Our ongoing work includes specifying local data as shared objects between manager variants by analyzing common design alternatives of the design decision models. Thus we could replace the Read and Write actions in transitions by rebinding components.

Our future work investigates an integrated tool suite that 1) enables developers to specify distributed collaborations, 2) automatically generates runtime adaptable collaborations as components, and 3) automatically generates coordination models for executing distributed adaptation processes.

Fig. 1 .

 1 Fig. 1. Medium deployment architecture

Fig. 2 .

 2 Fig. 2. Adapt-Medium design principle

Fig. 3 .

 3 Fig. 3. Adapt-Medium architecture

Fig. 4 .

 4 Fig. 4. Abstract specification of the reservation adapt-medium

Fig. 5 .

 5 Fig. 5. Managers introduction

Fig. 6 .

 6 Fig. 6. (a) Generic design decision model and (b) a design decision model

Fig. 7 .

 7 Fig. 7. An architecture variant of the reservation medium

need to be executed to transfer data from a variant to the next one and 2) actions that are needed to restore data of this variant from the next variant.

For example, with the sequence {(1),(2),(3),(4),(5)}, the actions are described as follows:

From (0) to (1): for item in (0).Available [START_REF] Oreizy | Architecture-based runtime software evolution[END_REF].ListDefaultAlgorithm.Write(item) Restore (0) from (1):

(1).Available = null Do item = (1).ListDefaultAlgorithm.Read() if item <> null then (0).Available.add(item) Until item = null From (1) to [START_REF] Cheng | Software Engineering for Self-Adaptive Systems: A Research Road Map[END_REF]:

No data to be transferred From (1) to (3):

(1).ListDefaultAlgorithm.Write(item) = { (a ReserverManager).ChordObject.Write(item) } Restore (1) from (3):

(1).ListDefaultAlgorithm.Read() = { (a ReserverManager).ChordObject.Read() } From (3) to [START_REF] Malone | The interdisciplinary study of coordination[END_REF]:

No data to be transferred From (3) to [START_REF] Stoica | Chord: A Scalable Peerto-Peer Lookup Service for Internet Applications[END_REF]:

No data to be transferred

Consider another design decision model corresponding an architecture variant (call variant B) in which the Available set is organized in a centralized way. This design decision model corresponds to the sequence of internal variants: {(6),(7),(8),(9)}. With this sequence, we can specify the following transition actions:

From (0) to (6):

for item in (0).Available [START_REF] Oreizy | Architecture-based runtime software evolution[END_REF].HashTableDefaultAlgorithm.Write(item) Restore (0) from (6):

(1).Available = null Do item = (1).HashTableDefaultAlgorithm.Read() if item <> null then (0).Available.add(item) Until item = null From (6) to (7):

No data to be transferred From (6) to (8):

(1).HashTableDefaultAlgorithm.Write(item) = { (ReserverManager X).ServerObject.Write(item) } Restore (6) from (8):

(1).HashTableDefaultAlgorithm.Read() = { (ReserverManager X).ServerObject.Read() } From (8) to [START_REF] David | Towards a framework for self-adaptive component-based applications[END_REF]:

No data to be transferred

From these actions, we can automatically generate adaptation plans for switching between two architecture variants corresponding two design decision models.

In our approach presented in this section, we focus only on transitions of functional data (seats' ID). In order to optimize transitions, other data can be also transferred between architecture variants. For example in the internal variant [START_REF] Malone | The interdisciplinary study of coordination[END_REF], routing data can be transferred to other implementations of the Chord algorithm.