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Abstract—Migration processes of customers between alterna-
tive providers are becoming more and more relevant. Providers
competing for migrating customers may adopt a delaying strategy
to retain customers who are willing to leave, facing regulatory
sanctions for that unfair behaviour. A game-theoretic model is
proposed to describe the resulting competition among providers.
For that model, both stable and unstable Nash equilibria are
shown to exist and the providers’ equilibrium strategies can be
derived, in general numerically. In the stable equilibrium case the
delaying strategy predicted by the model introduces a mean delay
that is a strongly nonlinear (decaying) function of the sanction
value.

I. INTRODUCTION

The end of the monopolistic era in telecommunications

services has spurred the entry of a number of competing

providers in the market arena. Customers can now choose

among many different offers for the same service and are

allowed to freely migrate from a provider to another. Migration

phenomena (often indicated as churn) are particulary relevant

for mobile services, where annual churn rates as high as 25%

are often observed [1] and studies have been devoted to ascer-

tain the churn determinants (see e.g. the recent [2] and [3]). In

any migration process we can identify four stakeholders: the

customer (who initiates the process), the recipient provider,

the losing provider, and the regulatory authority (which sets

the rules for migration and checks for compliance). Since

the customer’s migration represents an economic loss for the

losing provider, the latter has no interest in accelerating the

migration process. Even when that process is led by the

recipient provider, the losing provider has the possibility of

delaying it, to the extent of reducing the effectiveness of the

liberalization process [4]. In the fight for customer retention

the losing provider may often be led to adopt unfair practices,

calling for the intervention of the regulatory authority, e.g.

through appropriate economic sanctions. The losing provider

must therefore evaluate the convenience of its delaying strat-

egy, by taking into account the pros linked to retaining the

customer (continuation of the revenue stream associated to

that customer) and the cons due to the possibility of incurring

the sanctions for the undue delay in migration operations. The

analysis reported in [5] has shown that the losing provider

may identify a maximum tolerable sanction value, relating it

to the customer lifetime value, i.e. the present value of the

future revenue stream generated by the customer. Though the

analysis has so far focused on the losing provider, the relative

ease with which the customer may change his provider may

however lead to a back-and-forth situation, in which competing

providers play both roles. In fact a provider may be a losing

one as well as a recipient one for a) the same customer

at different times; b) different customers at the same time.

The resulting competition between providers may be suitably

modelled through a game, where each provider has to choose

its delaying strategy. In this paper we propose a game-theoretic

model with two providers, that takes into account the strategies

of both providers competing for a migrating customer as well

as the behaviour of the customer and the danger represented by

sanctions. The model is then used to study the Nash equilibria

of the interaction among providers, and analyze the influence

of the sanction level on those equilibria.

II. MARKOV CHAIN MODEL OF USERS’ BEHAVIOR

The goal of this section is to model the switching behavior

of a customer between two available providers called A and

B. We assume that it is represented by the Markov chain1

depicted in Figure 1, the meaning of the four states being

defined in Table I. The transition from state 1 to state 2 (and
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Figure 1. Markov chain model of the customer’s switching behaviour

from state 3 to state 4) is for the customer willing to migrate

1We therefore implicitely assume that all events leading to a state change
occur after an exponentially distributed time.



State Meaning

1 Customer staying with provider A and unwilling to leave
2 Customer staying with provider A and willing to leave
3 Customer staying with provider B and unwilling to leave
4 Customer staying with provider B and willing to leave

Table I
STATES OF THE MARKOV CHAIN

to the other provider; the reverse transitions model instead the

customer reneging to the migration (due to winback actions

by the losing provider or to its delaying strategies). The actual

migration rates (from state 2 to state 3, and from state 4 to

state 1) depend either on a) the delay introduced by the losing

provider in the porting operation, or on b) the impatience of

the customer forcing the losing provider to comply with the

migration-supporting regulations. The resulting infinitesimal

generator is

R :=









−λ12 λ12 0 0
λ21 −(λ21 + λ23) λ23 0
0 0 −λ34 λ34

λ41 0 λ43 −(λ41 + λ43)









.

From standard Markov chain analysis, the steady-state

probability for each of the four states given by line vector

π = (πi)i=1,...,4 exists2 and is given by the solution of

equations

πR = 0,

4
∑

i=1

πi = 1.

If c :=λ34λ41(λ23+λ21)+λ12λ23(λ41+λ43)+λ12λ34(λ41+λ23),
it can be readily checked that the solution is

π1 =
λ34λ41(λ23 + λ21)

c

π2 =
λ34λ41λ12

c

π3 =
λ12λ23(λ41 + λ43)

c

π4 =
λ12λ23λ34

c
.

(1)

The question is now, how do we relate some of the transition

rates appearing in the infinitesimal generator to the relevant

parameters of the problem? Our goal being to study the

retention policy of providers and defining regulation rules, we

introduce the average delay imposed by the two providers,

respectively TA and TB , and the suing rate µ taking into

account the attitude of the customer to force the migration

by taking legal actions against the delaying provider. We then

express the transition rates that mark the migration to the other

provider, i.e. λ23 and λ41, as the sum of two rates, since either

2Remark that when a provider i sets Ti = 0, the Markov chain described
before is degenerate: if TA = 0 for example then states 2 and 3 are only one
state. However the corresponding Markov chain with fewer states remains
ergodic as soon as all transmission rates are strictly positive, which will be
the case in the examples we consider.

the end of the retention period or the legal action taken by the

customer leads to a provider change:

λ23 =
1

TA

+ µ,

λ41 =
1

TB

+ µ.
(2)

With full generality, it seems also relevant that the other

rates depend on TA and TB too. Indeed, a customer could

be more inclined to switch (and to renege) depending on the

respective retention times of providers. We therefore let them

depend on the retention times, i.e., λ12 = λ12(TA, TB), λ21 =
λ21(TA, TB), λ34 = λ34(TA, TB) and λ43 = λ43(TA, TB).
Note that other parameters such as reputation of the provider,

price, etc., can also be included in those rates. Though, not

being the purpose of the current study, they are just hidden

and kept constant.

III. NON-COOPERATIVE GAME DESCRIPTION AND

ALGORITHMIC SOLUTION

The customer behavior having been described, we can now

investigate provider strategies. providers have an open interest

in keeping the customer, since any delay in the migration

allows the losing provider to keep the revenues associated

to that customer. On the other hand the legal actions taken

by the customer lead to a sanction s0. The utility function of

each provider, representing here their financial net benefits per

time unit at steady-state, is therefore given by the difference

between the average net profits associated to the customer

(respectively net revenues associated to customers pA or pB

times the probability of keeping the customer) and the average

sanction (which is levied only if the customer has expressed

his intention to leave the provider and has taken a legal action).

The resulting expressions of the utility function for the two

providers are therefore

UA = pA(π1 + π2) − s0π2µ,

UB = pB(π3 + π4) − s0π4µ.
(3)

In this competitive environment, each provider strives to find

its best strategy, i.e., its average retention time (assuming here

fixed revenues) maximizing its utility. But its utility depends

not only upon its own choice (from values of steady-state

probabilities πi, i ∈ {1, . . . , 4}), but also upon the strategy

choice of the opponent provider. In this situation, the solution

concept is that of Nash equilibrium from non-cooperative

game theory [6].

A Nash equilibrium is here an average retention time profile

T ∗ = (T ∗
A, T ∗

B) from which no provider has any incentive to

deviate unilaterally. Formally,

T ∗
A ∈ argmaxTA∈SUA(TA, T ∗

B) and

T ∗
B ∈ argmaxTB∈SUB(T ∗

A, TB),
(4)

i.e., the best strategy provider i ∈ {A, B} can use is T ∗
i given

that the strategy of the other provider is T ∗
j (with j ∈ {A, B},

j 6= i). In (4), S is the strategy set of each provider. In general

we search our solution in the set of non-negative real numbers



S := R+, however we consider that very large values of the

retention time (larger than 1 year for example) are not realistic

and should not be considered. For the numerical analysis

carried out in Section V, we therefore take S = [O, Tmax]
for a given value of Tmax, which makes the strategy set of

each provider a compact and bounded set.

To determine practically the Nash equilibria (if any) of the

game played among providers, we define the best response

of each provider as a function S 7→ 2S of the strategy of its

opponent. Those best response functions are

BRA(TB) := arg max
TA∈S

UA(TA, TB) and

BRB(TA) := arg max
TB∈S

UB(TA, TB).

If we define the best response correspondance BR : S × S 7→
2S × 2S as BR(TA, TB) := {(tA, tB) ∈ S × S : tA ∈
BRA(TB), tB ∈ BRB(TA)}, then a Nash equilibrium is simply

a fixed point of the 2-dimensional function BR.

Therefore an exhaustive way to proceed to find Nash

equilibria is to follow Algorithm 1 described below.

Alg. 1 Graphically finding the Nash equilibria of the game

Input:

• the transition rates of the Markov chain in Figure 1,

as functions of the decision variables TA and TB (and

possibly prices),

• the values of prices pA and pB ,

• the value of the sanction s0.

1) For all possible values of TB in S, find the

set BRA(TB) of TA values in S that maximize

UA(TA, TB).
2) For all possible values of TA in S, find the

set BRB(TA) of TB values in S that maximize

UB(TA, TB).
3) On a same graphic, plot the best response functions

TA = BRA(TB) and TB = BRB(TA), as exemplified

in Figure 2.

4) The set of Nash equilibria is then the (possibly empty)

set of intersection points of those functions (see Fig-

ure 2).

Note that when the analytical derivation of the best response

is not feasible in step 1 of the algorithm, only a finite number

of values can be tried in practice. In the numerical results

presented in Section V, we use a given number (say, 500) of

equally spaced values in S.

BRA(TB)
BRB(TA)

TA

TB

Nash

equilibria

Figure 2. Graphical determination of Nash equilibria (here the best response
of each user is unique, but this need not be the case in general).

IV. ANALYSIS OF THE GAME IN A SIMPLIFIED SETTING

Consider the special case where

λ12 = λ

λ34 = λ + ν

λ21 = α

λ43 = α

λ23 =
1

TA

+ µ

λ41 =
1

TB

+ µ,

for some fixed nonnegative values λ, ν, α, and µ. That is, only

the migration rates depend on retention times: the willingness

to leave or the reneging behavior are assumed constant. We

take λ34 > λ12 to introduce some asymetry into the game;

this models the fact that provider A has for instance a better

reputation (or could provide a better quality of service) than

provider B. To avoid dealing with too many parameters and

separating in several different cases, consider an arbitrarily

chosen example where λ = ν = 1, α = 2, µ = 4 and pA =
pB = 1. After simple computations, we get

UA = 2
(1 + 4TB) (1 + 7TA − 4s0TA)

3 + 18TA + 16TB + 88TBTA

UB =
(1 + 4TA) (1 + 8TB − 8s0TB)

3 + 18TA + 16TB + 88TBTA

.

We now consider the Nash equilibria of the game. Since we

manage to carry out an analytical study, we can take S = R+

here. Computing the partial derivatives of the utility functions

gives

∂UA

∂TA

= 2
(1 + 4TB) (3 − 12s0 + 8(3 − 8s0)TB)

(3 + 18TA + 16TB + 88TBTA)2

∂UB

∂TB

= 8
(1 + 4TA) (1 − 3s0 + (7 − 18s0)TA)

(3 + 18TA + 16TB + 88TBTA)2
.

We remark here that the numerator of each derivative does

not depend on the average retention time of the corresponding



provider. It can actually be easily checked that whatever the

values of parameters λ, ν, α, µ, pA and pB, this property is

verified.

Note also that ∂UA

∂TA
can be zero iff 1/4 ≤ s0 ≤ 3/8. Below,

it is always positive and above, always negative. Same thing

for ∂UA

∂TA
which can be zero iff 1/3 ≤ s0 ≤ 7/18.

Depending on the value of s0, we end up with several

possible cases.

• If s0 ≤ 1/3, provider B’s only interest is to set TB = ∞,

and therefore, the same strategy applies for provider A.

The unique Nash equilibrium is then (∞,∞). The reason

is that the sanction is too low to prevent the providers

from retaining abusively the customers.

• Similarly, if s0 ≥ 3/8, provider A’s interest is to set

TA = 0. At this value, the derivative of UB with respect to

TB is negative, meaning that TB = 0 is the best response.

The resulting unique Nash equilibrium is (0, 0). Here, the

sanction is too high for providers, their interest is to let

customers leave if they are willing to.

• Now, if 1/3 < s0 < 3/8, we then end up with three

possible Nash equilibria: (0, 0), (∞,∞) and (T ∗
A, T ∗

B) =
( 1−3s0

7−18s0

, 3−12s0

8(3−8s0) ). Indeed, in the later case, both deriva-

tives are null and we are at a (individual) maximum for

each provider. On the other hand, as soon as a player

i ∈ {A, B} plays Ti > T ∗
i , the other player has a

maximum at ∞, and then i also. The reasoning is similar

for Ti < T ∗
i , leading to (0,0).

This illustrates the interest of the analysis: determining

threshold values on the sanction fee in order to prevent

providers from retaining customers.

V. NUMERICAL ANALYSIS IN A COMPLEX CASE

In this section, we consider a more complex setting, where

all transition rates depend on the relative quality of the two

providers (via their mean retention time T ). We use here the

following model:

λ12 = λ ·

(

1 − ω + ω
TB − TA

TA + TB

)

λ34 = λ ·

(

1 − ω + ω
TA − TB

TA + TB

)

+ ν

λ21 = α ·

(

1 − ω + ω
TA − TB

TA + TB

)

λ43 = α ·

(

1 − ω + ω
TB − TA

TA + TB

)

λ23 =
1

TA

+ µ

λ41 =
1

TB

+ µ,

where λ, ν, α and µ are constant as in the previous section, and

ω is a constant that represents users sensitivity to providers

reputation in their churning decisions. This model reflects

the fact that a user is less likely to leave a provider that

retains customers, and is also more likely to renege because

he is reluctant to have to fight to churn. With such a model,

providers have an even stronger incentive to use retention

policies, because of the direct gain in terms of income during

the retention period and the indirect gain due to the fact that

users are less willing to leave.

Since an analytical study like the one carried out in the

previous section is not realizable anymore, we use numerical

computation following Algorithm 1 to determine the Nash

equilibria of the game and the influence of sanctions. We

present next an example where time is expressed in years,

with λ = 1/5 (which corresponds to around 20% of customers

willing to churn each year if TA = TB), ν = 1/10, α = 1/6
(mean reneging time of 2 months) and µ = 1/6. We also

take Tmax = 1 year, i.e. S = [0, 1], and pA = pB = p (no

price game among providers). Remark that due to the utility

functions (3), when both providers get the same revenues p
then the outcomes of the game depend only on the ratio s0/p.

Without sanctions (s0 = 0), our numerical computations

highlight that best response functions BRA and BRB simply

consist in choosing the highest possible retention time, i.e.

∀T ∈ S, BRA(T ) = BRB(T ) = Tmax. Therefore a sanction

s0 needs to be introduced to incentivize providers to reduce

their retention times. Figure 3 plots the best response functions

of both providers in the case when s0 = 10p. It appears that
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Figure 3. Nash equilibria with sanction s0 = 10p

there are two Nash equilibria, namely (TA, TB) = (0, 0) and

(TA, TB) = (0.29, 0.35). Notice however that only the latter

equilibrium is stable, since a small deviation of any of the

two providers from the point (TA, TB) = (0, 0) leads the best

response dynamics to that equilibrium. Notice also that at this

equilibrium, the provider that benefits from a better reputation

(modelled by the ν parameter) retains his customers less than

its opponent.

Increasing more the sanction value gives the same form

of best response functions as those presented in Figure 3. We

therefore focus now on the stable Nash equilibrium that a given

sanction level yields.

Figure 4 plots the strategies of each provider predicted by



our model when the sanction level s0/p changes. As could be
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Figure 4. Stable Nash equilibrium strategies when the sanction varies.

expected, increasing the sanction level indeed makes providers

reduce their mean retention time. However, unlike what was

observed in the simplified model of the previous section, it

seems that there is no threshold here for the value of s0

above which the only Nash equilibrium is (0, 0). Therefore

the sanction level has to be chosen such that the resulting

retention times be sufficiently small (say, less than 0.1 year,

which from Figure 4 corresponds to s0 ≥ 18p).

To compare the providers’ perception of both Nash equi-

libria of the game, we plot in Figure 5 their utilities at those

two possible outcomes when the sanction s0/p varies. Notice
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Figure 5. Providers’ utility at stable and unstable (if any) Nash equilibria.

that (TA, TB) = (0, 0) is not a Nash equilibrium when the

sanction is below 5.6p. In that case, the game has only one

Nash equilibrium (that is stable). This equilibrium consists in

each provider setting the largest possible retention time (here

Tmax = 1). We observe that provider A obtains a larger utility

than provider B in all cases due to its advantage ν.

Interestingly, it appears that both players would be better

off playing the unstable Nash equilibrium instead of the stable

one. Therefore the use of the sanction is justified by its effect

on the stable equilibrium: enforcing users to reduce their

retention time makes the outcome (TA, TB) get closer to the

more efficient situation (0, 0). Moreover, we also notice in

Figure 5 that when the stable equilibrium is different from

(Tmax, Tmax), i.e. for s0/p ≥ 8 in our example, an increase

in the sanction unexpectedly leads to an increase in both

providers’ utility. This also justifies the use of the sanction.

Consequently, we can say that for this model, the sanction

improves the user perceived quality of both providers (that is

decreasing in their retention times), but can also be beneficial

to both providers by enforcing their opponent to reduce its

retention time.

VI. CONCLUSIONS

A game-theoretic model has been developed to describe the

behaviour of two service providers competing for migrating

customers. The model takes into account all the stakeholders,

namely the delaying behaviour of the two providers, the sanc-

tions levied by the regulatory authorities, and the impatience

of the customer waiting for the completion of the migration

process. A simplified setting has been examined to show the

use of the model. In that setting it has been shown that both

stable and unstable Nash equilibria exist. The stable equilib-

rium retention strategies, consisting in determining appropriate

mean delaying times, have been derived for both providers.

The game outcome predicted mean delay of each provider

appears to be a strongly non linear function of the sanction

imposed by the regulator.
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