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A constellation of observation satellites allows to cover a large Earth surface, with a good revisit frequency, 

ensuring different kinds of pictures and the robustness of the system. Planning a mission for a constellation is a 

complex task: a lot of parameters and constraints, often contradictory, must be taken into account. This huge number 

of entities make this problem highly combinatorial. Nowadays, the number of constellations of satellites drastically 

increases, as the number of satellites that compose them (i.e. Google Skybox project). Such a system must 

dynamically take into account new requests, but this dynamism cannot be taken into account in current approaches.  

This paper contributes to this challenge with a new way to plan on-ground the mission of satellites: the ATLAS 

planning system (Adaptive saTellites pLanning for dynAmic earth obServation). ATLAS is an Adaptive Multi-Agent 

System, designed to plan missions of constellations of Earth observation satellites. The proposed system brings a 

major contribution: it is an open and continuous planning system. It has the capability to handle in real-time changes 

of constraints and/or new request arrivals. ATLAS possesses self-adaptation mechanism in order to locally self-adapt 

itself according to the dynamic arrival of requests to plan. Thus, ATLAS can dynamically reorganize the mission 

plan in order to propose a better one (integrating the changes). Because changes are made locally, the whole plan is 

not challenged and the new plan is provided in a reasonable time. ATLAS can also be stopped at any time and 

provides a good mission plan. Indeed, the system globally makes the mission plan by local interactions. To enable 

this capability for real-time adaptation, we use the Adaptive Multi-Agent Systems theory (AMAS). Such systems 

naturally provide self-adaptation capabilities required to solve this kind of problem. To design our system, we rely on 

the Adaptive Multi-Agent System For Optimization agent model, providing some design patterns to solve 

optimization problems using AMAS. In this model, agents are designed as close as possible to the natural description 

of the problem entities.  

Finally, a comparison with a classical greedy algorithm, commonly used in the Europe spatial domain, 

highlights the advantages of the presented system. 

I. INTRODUCTION

A constellation of agile observation satellites allows 

to cover a large Earth surface, with a good revisit time, 

ensuring pictures with different characteristics and the 

robustness of the system. Planning an observation 

mission for a constellation of agile satellites is a 

complex task: a lot of parameters and constraints, often 

contradictory, must be taken into account. This huge 

number of entities makes this problem highly 

combinatorial. Currently, in Europe, a satellite system 

works on a chronological basis relying on regular 

“appointments” between satellites and control ground 

stations. During this “appointments”, the already 

computed and validated work plan is uploaded on-

board. The clients' requests arriving in the system are 

stored and before each “appointment”, they are taken as 

input of a planning algorithm. If a request arrives after 

the start of the planning, it is stored for the next 

programming period. Thus, currently used planning 

algorithms, such as greedy algorithms [1], fail to take 

into account dynamic changes in a short time and to 

properly manage linked requests (for example requests 

that require several acquisitions like stereoscopic ones). 

Moreover, Earth observation is subject to an 

important evolution. Nowadays, the number of 

constellations of satellites drastically increases, as the 

number of satellites that compose them. For example, 

the new Google Skybox constellation project plans to 

amount to more than 24 satellites in 2017, encouraging 

near real-time client requests to grow drastically. Thus, 

there is a need for a near real-time planning system. 

Such a system must dynamically take into account new 

requests during runtime, which is not the case of 

currently used approaches ([2], [3] and [1]). 

This paper is organized as follows. Section 2 

describes the problem and presents its context. Section 3 
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develops the functioning of the ATLAS system 

(Adaptive saTellites pLanning for dynAmic earth 

obServation). Finally, Section 4 presents an evaluation 

of the ATLAS system for near real-time planning and 

its comparison to ChronoG, a greedy algorithm. 

II. MULTI-SATELLITE SCHEDULING

PROBLEM 

In this section, a description of the problem and a 

summary of solving methods currently used are 

presented. 

II.I Problem Description

As the planning problem is a complex and difficult 

problem, we propose a description that helps us to 

design our system. Based on the work presented in [4], 

the considered problem can be described as follows: 

A set of Earth observation satellites called 

constellation Sat = {S1,S2,..,Sn} where each satellite Si 

has its own characteristics: 

 a quasi-circular orbit around the Earth,

 an energy management module,

 a storage capacity,

 a payload, in this case observation

instruments (optical or radar), and their

characteristics,

 an orbital and attitude control system,

allowing the satellite to control its position

and pointing (towards the area to be

observed).

A set of clients’ requests. Each defined by: 

 the type of the request (optical or radar for

example),

 a submission date,

 a temporal validity range (from hours to

several days or weeks),

 a geographic area,

 a priority given by the customer,

 the tolerated cloud coverage, w,

(0<= w <=1),

 a set of meshes, associated to the request.

The geographic area defines the earth zone requested 

by the client. This area can be large: a country or a 

continent, for example. Satellites cannot necessarily 

acquire the whole request in a single shot. Thus, 

requests are divided into a set of meshes.  

A mesh is the elementary entity that a satellite can 

acquire in a single shot. Each mesh possesses the 

constraints of its request, but it is defined by a smaller 

geographic area. Thus, a request is satisfied if all its 

meshes are acquired. The decomposition of a request on 

a set of meshes is outside the scope of the work 

presented in this paper, we suppose that this 

decomposition is already made.   

To each mesh, one or several access(es) matching to 

a period where the mesh is visible by the satellite are 

defined in among, using satellite ephemerids. It is 

during one of these accesses that the acquisition must be 

performed. The duration of the acquisition slot is 

usually drastically smaller than the duration of the 

access. Those accesses are computed by an external 

module. 

To those entities, a set of hard and soft constraints 

must be taken into account. The set of hard constraints 

(validity range of the request for example) must be 

satisfied. The set of soft constraints (constraints whose 

operator can tolerate degradation like the cloud 

coverage), can be released. 

The objective of the problem is to provide a 

mission plan where the maximum number of meshes are 

affected to satellites. The satellites must ensure the 

coverage while: 

1. satisfying all the hard constraints,

2. maximizing the satisfied soft constraints,

3. maximizing the number of planned meshes.

4. taking dynamically into account new

requests or constraints.

The problem is dynamic. Thus, the whole set of 

requests to plan is not known at the beginning: requests 

(and so meshes) arrive during runtime. In addition to 

this, constraints can be dynamically changed (or added 

or removed). For example, new weather forecasts are 

taken into account during planning. 

In this work, the problem is solved using a 

decentralized and distributed multi-agent system where 

agents cooperate locally to reach their own goals. The 

global objective of the problem is not known by the 

agents, it emerges from their local interactions. 

II.II Mission Planning: a Survey

Its important dynamic, its large number of entities 

and constraints interacting together make so that we 

consider here a complex optimization problem, with a 

high combinatorial level. In [1], the problem is 

categorized as NP-Hard. In literature, several studies 

investigate classical optimization approaches to solve it. 

Most commonly used or studied approaches are exposed 

here and compared with their capacity to provide a 

mission plan while handling dynamic perturbations, for 

example insertion of new requests to plan. 

As described in Section II.I, the planning problem 

can be formalized as a constraint satisfaction problem 

(CSP). Nevertheless, and because of its complexity, it is 

hard to propose a correct mathematical modeling for the 



entire problem. Thus, it is necessary to simplify it [1]. 

To perform this simplification some constraints can be 

relaxed: the duration of the planning horizon can be 

shortened or the modeling of the satellite’s agility can 

be lightened. Even if the simplified problem is correct, 

the obtained solutions remain sub-optimal. Once 

modeled as a CSP, it is possible to solve the problem 

using exact resolution methods. In several papers [4], 

[5] and [6], efficient tools like ILOG Solver have been

used. [7] studied Dynamic Programming to

decompose the problem in simpler sub-problems. Given

the difficulty to decompose recursively the problem, the

usage of those algorithms is limited. Moreover, in case

of requests requiring an history, the algorithm cannot be

applied. This problem occurs for example for

stereoscopic acquisitions: several acquisitions of a

single target are linked, preventing to decompose the

problem. In [8], the same critics are established to

Branch and Bound algorithms. Indeed, even if all

solutions are not explored, algorithms based on Branch

and Bound technique use problem properties to guide

the search, consume a lot of memory, and require

potentially high execution time to reach a solution.

The large number of constraints and parameters 

make these approaches extremely slow. In addition to 

this, any modification like the introduction of new 

requests, imposes to re-establish the search tree. These 

methods are not suitable to handle the high dynamic 

level of the studied problem. 

To overcome these drawbacks, approximate 

methods can be applied. A good solution can be 

produced in a reasonable time thanks to the use of a 

heuristic function. 

The most used algorithm, in Europe, is the Greedy 

Algorithm. This last allows a fast execution and its 

implementation is quite easy depending on the 

implemented variant. Several versions exist but the 

principle is the same: the algorithm crosses the requests 

and when it makes a choice, this one is never 

challenged. Thus, variations concern the way to look 

over the requests pool. The most used families are:  

Chronological Greedy Search [2]: the plan is 

chronologically constructed. At each step, the algorithm 

searches for the more pertinent mesh (acquisition) to 

schedule (generally the one with the highest priority) at 

the end of the last scheduled one respecting precedence 

constraints. 

Hierarchical Greedy Search [9]: the first step 

consists to sort the pool of meshes using several criteria: 

priority, image quality, weather information, etc. Then, 

the list is unstacked: each mesh is inserted at the best 

place, respecting its constraints. 

Genetic algorithms as presented in [10] or [8] can 

also be used. The main underlined limits of these 

approaches are the modeling and the slowness of their 

execution (several hours), that is prejudicial in order to 

quickly produce a good solution. 

All these algorithms, even if they produce quite 

good results, have limitations. When adding new 

requests during runtime, the process must be resumed to 

the first possible visibility access of the meshes of the 

added request. Indeed, operational systems work step by 

step: during the building of the plan, no request can be 

added. In addition to this, those algorithms are generally 

designed to plan the mission of a single satellite. Thus, 

they don’t profit very well of the advantages of a 

constellation in order to increase the planning 

capacities. 

Recently, self-organizing systems such as adaptive 

multi-agent systems have proven valuable for solving 

highly dynamic problems, thanks to their ability to 

adapt themselves to their environment. For example, 

[11] proposes an adaptive multi-agent approach to

provide self-regulated manufacturing control. Today,

such systems are applied in a multitude of domains, like

smart grids and management of electric vehicles [12] or

self-control of heat engines [13]. As it is close to the

natural description of the problem, this approach allows

to define solving algorithms which are then more robust

to dynamics, flexible, open and provide a relevant level

of adaptation in real-time.

In this work, we focus on the usage of self-adaptive 

multi-agent systems as defined by the AMAS Theory 

(Section III.I), in order to plan on-ground the mission of 

a constellation of satellites. 

III ATLAS PLANNING SYSTEM 

In the presented work, we propose to use adaptive 

multi-agent systems to plan missions for a constellation 

of Earth observation satellites in near real-time. This 

approach allows to naturally consider a large number of 

entities and constraints while providing self-

organization mechanisms to handle the problem 

dynamics. In this section, we present the AMAS 

approach and the contribution of this article, the 

ATLAS system. 

III.I AMAS Approach

In the AMAS theory (Adaptive Multi-Agent Systems) 

[14], agents are considered as autonomous and 

cooperative entities, having a partial knowledge on their 

environment and searching to reach a local objective. 

Agents of these systems interact locally in a 

cooperative manner producing partial functions. 

Cooperation is defined as the capacity of the agents to 



work together in order to reach a common objective. 

Thus, any activity between agents is complementary and 

solidarity links exist between them. Using cooperation, 

the system self-adapts to stay in cooperative state. The 

cooperation of all parts of the system makes the 

adequate function the system was designed for 

“emerges” (Figure 1).  

Figure 1 Emergent Function 

Local interactions allow the system to self-adapt to 

perturbations and so to handle dynamics without 

challenging the already reached solution. Perturbations 

produce “Non Cooperative Situations”. To repair 

those situations, agents possess mechanisms to 

autonomously adapt their behavior to the context [14]:  

 Tuning: the agent adjusts its internal state to

modify its behavior,

 Reorganization: the agent modifies the way it

interacts with its neighborhoods,

 Evolution: the agent can create other agents or

self-suppress when there is no other agent to

produce a functionality or when a functionality

is useless.

The algorithm of an adaptive agent can be described as 

follow: if a Non Cooperative Situation is detected, agent 

uses one or more self-adaptation mechanisms to come 

back to a cooperative state where it performs its 

nominal behavior.  

To ease the design of agents’ behavior and interactions 

for solving optimization problems under constraints 

based on the AMAS Theory, the AMAS4Opt agent 

model has been proposed [15]. This model provides 

design patterns for two cooperative agent roles: 

“constrained role” and “service role”. One agent can 

have one or both roles and switches at runtime between 

them depending on the situation it faces. The agents 

having the “constrained role” manage the constraints 

and must be satisfied, while the agents having the 

“service role” are skilled to help the agents under the 

“constrained role”. This model uses the notion of so-

called criticality of agents with the “constrained role” as 

an engine for the cooperation between agents. We have 

used and extended this model to design the agents and 

the general architecture of the ATLAS system. 

III.II ATLAS Architecture and Functioning

Given the problem description, we identified nine kinds 

of entities:  

 three types of cooperative agents: the request

agent, the mesh agent and the satellite agent

(their behaviors are detailed later in this paper),

 three types of active entities: the cloud

coverage, the solar ephemeris and the

downloading station. These entities do not

have a goal to satisfy, but they still interact and

influence agent activities and decisions.

 three types of passive entities: the memory of

the satellites, their battery and the module in

charge of attitude and orbit computation. These

entities are considered passive as their state is

modified by other entities. For example, the

satellite modifies the remaining available space

of its memory when it performs an acquisition.

The AMAS4Opt model provides patterns to define the 

agents’ behavior and interactions. Mesh and request 

agents possess constraints to satisfy: they must be 

planned under certain constraint, they have the 

“constrained role”. On the contrary, the satellite agents 

can help them to be satisfied, they have solution(s), and 

thus the “service role”. From these roles interactions 

between agents and entities are defined: 

Request agents interact with their mesh agents, 

Mesh agents interact with their request agent and with 

satellite agents that can acquire them, 

Satellite agents interact with mesh agents requesting 

their help, 

All of the agents use passive and active entities to 

improve their knowledge. The satellite agents interact 

with the trajectory module, cloud coverage, the 

ephemeris and both energetic and memory modules, 

while mesh agents interact with cloud coverage and the 

ephemerids. 

In ATLAS system, and based on the agent behavior 

definitions given by the AMAS4Opt model, the 

planning of the constellation is provided by the local 

cooperative interactions among the  agents of the 

system. This cooperation is ensured through the 

exchange of messages between agents and is guided by 

two indicators: the criticality and the cost.  

The dissatisfaction of mesh agents is represented by 

their criticality degree. More the agent is closed to the 

state where its objective is reached, more its criticality is 

low. In the current version of ATLAS, two criteria are 

used to represent criticality: the priority given by the 

customer and the number of accesses existing to plan 

the mesh. Requests also influence the criticality of their 

mesh agents. When the validity range is going to expire 

or when only a mesh agent from its set of meshes is not 

planned, the request increases the criticality of the 

unplanned meshes. 



The cost is an indicator of the difficulty for the satellite 

agent to take into account and plan a mesh agent. 

Indeed, the criticality does not allow full cooperation 

between agents: it only allows agents with the “service 

role” (i.e. satellites) to know which agents with the 

“constrained role” (i.e. meshes and requests) have the 

priority and by that to be cooperative. An agent with the 

“constrained role” cannot favor an agent with the 

“service role” among another and so cannot make a 

cooperative choice. The cost is here introduced to solve 

this problem.  

To favor cooperation, a mesh agent chooses the satellite 

agent answering with the lowest cost. Different 

elements increase the cost: 

 the need to adapt the plan by moving scheduled

mesh, in this case the cost contains the

criticality of the mesh agent to cancel,

 an important memory load (many meshes are

already planned by the satellite),

 a large number of demands received.

A satellite agent answers with a low cost if, for 

example, it has no mesh scheduled or if it has received a 

few messages. 

Cooperation is the engine of self-organization. It is 

ensured thanks to cost and criticality. Thus, ATLAS 

functioning can be described as follows: 

In a first step, mesh agent asks for coverage to 

all satellite agents they have an access to it. 

Satellite estimates the difficulty to plan each 

mesh and answers with the cost. 

Mesh agent chooses the lowest cost and asks 

confirmation to the satellite that confirms or not. 

Of course, as ATLAS handles dynamic, if a new mesh 

asks for a place that is already attributed to another 

mesh, the satellite also favors the most critical. At any 

moment, the request agent can increase the criticality of 

its mesh agent. 

III.III Near Real Consistent Solution Proof

Mission plan is obtained through local interactions 

between agents. In the ATLAS system, those 

interactions are messages that agents exchange among 

themselves. Agents can be considered as distributed 

entities without global knowledge on the system: no 

agent knows the state of the whole planning. Thus, if a 

stop is asked by an operator (for example to establish a 

plan), we must be certain that each agent is in a 

consistent state. To be certain of this global consistency, 

some messages and actions must be realized before the 

real stop of the system. 

A mesh agent m can be in two states: planned (PL(m)) 

or not (¬PL(m)). If a mesh agent is planned, that must 

be by one and only one satellite agent and both the mesh 

agent and the satellite agent knows each other. If it is 

not planned, no satellite agent has it in its plan. We note 

Ps the mission plan of the satellite s, Book(m, si) the fact 

that the mesh m knows that it is planned by the satellite 

si and M the set of all meshes to plan. Formally we can 

write: 

(1) PL(mi )⇔ ∃!s ∈ Book(mi,s) ∧ mi ∈ Ps

(2) ¬PL(mi)⇔ ∄s ∈ Book(mi,s) ∧ mi ∉ Ps

Thus, we deduce that ATLAS is in a consistent state if 

and only if: 

(3)  ∀ mi ∈M,PL(mi)"⊕"¬PL(mi)

Figure 2: Inconsistent Situations 

In the ATLAS system, three situations of inconsistency 

have been identified (Figure 2) 

Figure 2.a) a mesh agent is planned by more than one 

satellite: 

(4) Book(mi,s1) ∧ mi ∈ Ps1 

∧ Book(mi,s2) ∧ mi ∈ Ps2

Figure 2.b) a mesh agent ignores that it is planned: 

(6) ¬ Book(mi,s) ∧ mi ∈ Ps

Figure 2.c) a mesh agent believes is it planned: 

(5) Book(mi,s) ∧ mi ∉ Ps

We introduce a new active entity called “Manager”. 

The Manager is the interface between ATLAS and the 

human operator. This entity knows all the mesh agents 

and their state, the mesh agents also know this entity. 

When the operator asks for a stop, the Manager 

broadcasts the message to all the Satellite agents, and 

waits for the answers, to indicate the real stop. The 

following sequence diagram (Figure 3) describes the 

behavior of the Manager: At the reception of the “ask 

for stop” (action 2), mesh agents must finish their cycle 

(action 3). Then, three behaviors are possible, 

depending of the last agent’s action.  

1. If a message “ask for confirmation” has been

sent before the stop order was received, the

mesh agent must wait and treat the satellite

answer, to avoid the situation b (action 6).

2. Else if a message for cancel has been received

before the stop order was received, it must be

treated to avoid situation c (action 7).

3. Else, the mesh agent sends a message OK to

the manager (action 8).

When all the OK messages have been received by the 

Manager (action 9), ATLAS may not be in a consistent 

state yet. Indeed, messages from the satellite agents may 

have a latency. The transmission duration of message 

between two agents is t, 2t are necessary to ensure that 



the message sent by the satellite agent, is received by 

the mesh agent and the answer is sent back to satellite 

agent. Thus, the Manager must wait for 2t after the 

reception of all of the messages to indicate the real stop 

(action 11). If a message is received during the wait 

(action 10), the 2t must be waited again. In the ATLAS 

system, agents are located on the same computer, so the 

t duration is very short, that is why the delay between 

the order to stop and the real stop is short. 

Figure 3: Stop Sequence Diagram 

IV EXPERIMENTS 

In this section, we present experiments we carried 

out to test and validate our system. Firstly, use case 

scenarios and the way we produce them are presented. 

Then, two experiments are detailed. These experiments 

validate our approach. 

IV.I Experimental Setup

In order to test our system, we implement and use a 

generic generator of scenarios. This generator 

provides, for certain number of satellites, a list of 

meshes to acquire. For each mesh, several accesses are 

defined. ATLAS must select an access and schedule the 

acquisition inside. 

The generator starts by constructing a complete 

mission plan, where each satellite is fully occupied by 

the acquisition of several meshes. The meshes and their 

characteristics are randomly generated in order to fill all 

the available time of each satellite. Once this complete 

mission plan is generated, the generator adds to each 

mesh a validity range and a random number of accesses, 

each being randomly associated to a satellite chosen into 

the constellation. The random number of accesses is 

linked to an accessibility factor defined by the user in 

order to increase (or not) the accessibility. This factor 

allows to generate the maximum number of satellites 

that can acquire the mesh. Thus, each mesh possesses 

several accesses and can be acquired from different 

satellites of the constellation. Finally, a priority is 

assigned to each mesh corresponding to the priority 

given by the customer. The generator randomly 

associates a priority to each mesh respecting the 

following distribution: 

 50% of “routine” priority, the lowest

priority;

 35% of “normal” priority;

 15% of “urgent” priority.

As previously presented, customer's requests do not 

arrive at the same time. To introduce this dynamics, all 

meshes are not available at the start of the system 

execution, but arrive during solving. Thus, we can show 

how the system self-adapts at runtime. This generator 

allows to produce a significant number of scenarios 

representative of the combinatorial of the problem. This 

generation process has been validated by experts of the 

space field. Those different scenarios enable to test the 

validity, the robustness and the scalability of ATLAS. 

IV.II Adaptation at Runtime

First experimentation illustrates the ATLAS’s ability 

to dynamically handle arrival of new meshes to plan. 

For this experiment, we use a scenario with 5 satellites, 

717 meshes to plan, the ratio accesses per mesh is 3.65. 

Each mesh has a priority, respecting the distribution 

given in Section IV.I. In order to underline self-adaptive 

mechanisms, the arrival of meshes into the ATLAS 

system is controlled. Indeed, all “routine” priorities are 

available at the start of the execution, the “normal” ones 

are inserted at cycle 10, when ATLAS is converging to 

a solution. Finally, when ATLAS has handled both 

“normal” and “routine” at cycle 17, “urgent” meshes are 

inserted.  

Figure 4 exposes the results. The 3 curves illustrate 

the percentage of all kinds of priorities during the 

execution. At each insertion, the number of planned 

meshes of lower priority decreases. This is explained by 

the fact that thanks to their self-adaptation mechanisms, 

Satellite agents can re-organize their plan to 

accommodate meshes with a higher priority. This 

experiment shows the importance and the contribution 

of the self-adaptation mechanisms: more meshes can be 

planned at runtime: “urgent” priorities are dynamically 

taken into account and planned. Moreover, the number 

of cycles needed to reach a stability is small, so ATLAS 

quickly adapts itself. 



Figure 4 Dynamic Handling (% for each priority) 

Another interesting point shown by this experiment 

is that even if a mesh is cancelled in order to free some 

place to a more urgent one, the cancelled one could find 

another space in the planning. Here again ATLAS self-

adapts, and a mesh previously canceled can be planned. 

IV.III Comparison to a Greedy Algorithm

To analyze the quality of solutions provided by 

ATLAS, we compare it to the commonly used algorithm 

in the spatial domain: a chronological greedy algorithm, 

named here ChronoG. ChronoG treats the constellation 

satellite by satellite. At each time step t of the planning 

of each satellite, ChronoG checks if the slot is free or if 

a mesh is already scheduled. 

 If a mesh is scheduled, ChronoG goes to

the next step, else ChronoG checks if a

mesh can be set at this step, by determining

whether the mesh possesses an access

encompassing the current time.

 If several meshes can be set, ChronoG uses

a heuristic to select the best one.

 The heuristic used by ChronoG is close to the 

criteria used to define the criticality in ATLAS. To 

select the mesh to plan, the function first considers the 

client priority and then (only if several meshes have the 

same priority) the number of remaining accesses (the 

less a mesh has accesses, the more it is critical). Note 

that ChronoG is not able to manage information at 

runtime. All information about dynamic events are 

available at the beginning. 

The objective of this second experiment is to 

demonstrate that an adaptive system is better than a 

classical approach to provide near real-time planning. 

For that, we use the same scenario as in Section 4.2. 

This scenario is executed on ChronoG too. Because 

ChronoG cannot handle dynamics, we stop it when it 

converges to a solution, add to the list of meshes the 

new ones to plan and relaunch it. The duration times are 

not significant to be considered: with the whole set of 

meshes, ATLAS converge to a solution in 34 

milliseconds and ChronoG in 32 milliseconds. Thus, we 

compare percentage of planned set after a convergence 

for each algorithm. Table 1 shows the results we obtain. 

With the first set, both the algorithms planned 96% of 

the “routine” meshes. This is explained because there 

are only 50% of the whole meshes, thus it is easy for 

both the systems to obtain a good solution. But a gap 

can be observed with the insertion of “normal” meshes: 

ATLAS still planned 96% but ChronoG only 82%. 

Remember that ChronoG, as a classical algorithm 

cannot handle the dynamics and need to be relaunched 

whereas agents of ATLAS use local rules to cooperate 

so while running, new meshes can be added. 

ChronoG ATLAS 

%Routine 96 96 

%Routine and 

Normal 

82 96 

% Routine, 

Normal and 

Urgent 

75 95 

Table 1 Percentage after insertions 

Table 2 shows the percentage of planned meshes for 

each kind of category at the end of the execution. The 

98% of “urgent” planned by ChronoG is explained by 

the fact that the heuristic of this algorithm favors high 

priority meshes and has not a cooperative behavior. 

Thus, high priority meshes are always booked over 

others. On the contrary, ATLAS is cooperative and used 

a continuous approach. Thus, mesh agents choose less 

costly answers from satellite agents that begin by 

booking more critical meshes. Cost and criticality allow 

the system to be cooperative and to plan a maximum of 

meshes. 

ATLAS ChronoG 

% Total Final 96 75 

%Routine Final 94 55 

% Normal Final 94 89 

% Normal Final 98 95 

Table 2 Percentage of Final Planned Requests 

This second experiment illustrates that our system, 

ATLAS, can take into account requests without 

reconsidered its whole planning. Thus, near real-time 

planning can be performed. ChronoG, because it cannot 

handle the dynamic have to rebuild the whole plan in 

case of changes, so new good plans cannot be generated 

faster than ATLAS. 



IV.III Integration of Guidance and Maneuvers API

As presented in Section IV.I, the first version of our 

generator provided to us generic data. Indeed, in those 

first scenarios, no real information about satellites 

where provided: in the complete plans, accesses 

duration include a fixed maneuver duration. Of course, 

in real planning this duration depends on the maneuver 

the satellite has to perform to acquire two meshes 

successively, and so some maneuvers cannot be 

realized. The acquisition duration also varies, according 

to the satellite position. In order to compute both these 

durations (acquisition and maneuver), we rely on an 

industrial guidance and maneuvers library allowing to 

compute realistic durations even for most recent 

satellites. This library provides data for start and end of 

maneuvers and acquisition too. Thus, those information 

permit us to provide acquisitions plans that can be 

analyzed with mission visualizer tools.  

Moreover, we made the integration of these library 

as generic as possible, thus ATLAS can work with a lot 

of different satellite maneuvers computation systems. 

Figure 5 presents a part of a mission of a two satellites 

constellation. This mission plan was computed by 

ATLAS. 

Figure 5 Example of mission plan computed by 

ATLAS 

V CONCLUSION 

In this paper, we have presented the ATLAS 

system based on self-adaptive multi-agent approach 

to dynamically plan a constellation of Earth 

observation satellites and provide near real-time 

solutions. The autonomous cooperative behaviors of 

the designed agents increase the self-adaptation and 

self-organization of the system. Thus, a mission plan 

can be computed insuring more flexibility, robustness 

and real-time adaptation. ATLAS can dynamically 

take into account a large number of high priority 

requests.  

From the conducted experiments, we underline 

the fact that the considered self-adaptive approach 

delivers better results than commonly used methods. 

Mission plans generated by ATLAS are more 

optimized than mission plans delivered by ChronoG. 

In addition to this, ATLAS is not affected by 

dynamic and can produce near real-time plan: 

autonomous behaviors of the agents allow the system 

to adapt itself in order to plan a maximum of meshes, 

while respecting the constraints. 

Future works will focus on adding another level 

of adaptation to improve solutions. We plan on 

testing ATLAS on real scenarios given by CNES 

(French spatial agency) and Airbus Defence & Space 

- GEO-Information who are in charge of the Spot and

Pléiades constellations. These scenarios will allow us

to compare our results with actual mission plans.
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