
HAL Id: hal-02162354
https://hal.science/hal-02162354

Submitted on 21 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Rapid and adaptative mission planner for multi-satellite
missions using a self-adaptative multi-agent system

Jonathan Bonnet, Marie-Pierre Gleizes, Elsy Kaddoum, Serge Rainjonneau

To cite this version:
Jonathan Bonnet, Marie-Pierre Gleizes, Elsy Kaddoum, Serge Rainjonneau. Rapid and adaptative
mission planner for multi-satellite missions using a self-adaptative multi-agent system. 67th Inter-
national Astronautical Congress (IAC 2016), International Astronautical Federation; Mexican Space
Agency (AEM), Sep 2016, Guadalajara, Mexico. pp.4739-4747. �hal-02162354�

https://hal.science/hal-02162354
https://hal.archives-ouvertes.fr

Any correspondence concerning this service should be sent to the repository administrator:
staff-oatao@listes-diff.inp-toulouse.fr

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/
Eprints ID: 18234

To cite this version: Bonnet, Jonathan and Gleizes, Marie-Pierre and
Kaddoum, Elsy and Rainjonneau, Serge Rapid and adaptative mission
planner for multi-satellite missions using a self-adaptative multi-agent
system. (2016) In: IAC 2016 (67th International Astronautical Congress),
26 September 2016 - 30 September 2016 (Guadalajara, Mexico)

Open Archive Toulouse Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible.

mailto:tech-oatao@listes-diff.inp-toulouse.fr

RAPID AND ADAPTIVE MISSION PLANNER FOR MULTI-SATELLITE MISSIONS USING A SELF-

ADAPTIVE MULTI-AGENT SYSTEM

Jonathan Bonnet

IRT Saint Exupéry, Toulouse, France, jonathan.bonnet@irt-saintexupery.com

Marie-Pierre Gleizes

IRIT, Université de Toulouse, France, gleizes@irit.fr

Elsy Kaddoum

IRIT, Université de Toulouse, France, kaddoum@irit.fr

Serge Rainjonneau

IRT Saint Exupéry, Toulouse, France, serge.rainjonneau@irt-saintexupery.com

A constellation of observation satellites allows to cover a large Earth surface, with a good revisit frequency,

ensuring different kinds of pictures and the robustness of the system. Planning a mission for a constellation is a

complex task: a lot of parameters and constraints, often contradictory, must be taken into account. This huge number

of entities make this problem highly combinatorial. Nowadays, the number of constellations of satellites drastically

increases, as the number of satellites that compose them (i.e. Google Skybox project). Such a system must

dynamically take into account new requests, but this dynamism cannot be taken into account in current approaches.

This paper contributes to this challenge with a new way to plan on-ground the mission of satellites: the ATLAS

planning system (Adaptive saTellites pLanning for dynAmic earth obServation). ATLAS is an Adaptive Multi-Agent

System, designed to plan missions of constellations of Earth observation satellites. The proposed system brings a

major contribution: it is an open and continuous planning system. It has the capability to handle in real-time changes

of constraints and/or new request arrivals. ATLAS possesses self-adaptation mechanism in order to locally self-adapt

itself according to the dynamic arrival of requests to plan. Thus, ATLAS can dynamically reorganize the mission

plan in order to propose a better one (integrating the changes). Because changes are made locally, the whole plan is

not challenged and the new plan is provided in a reasonable time. ATLAS can also be stopped at any time and

provides a good mission plan. Indeed, the system globally makes the mission plan by local interactions. To enable

this capability for real-time adaptation, we use the Adaptive Multi-Agent Systems theory (AMAS). Such systems

naturally provide self-adaptation capabilities required to solve this kind of problem. To design our system, we rely on

the Adaptive Multi-Agent System For Optimization agent model, providing some design patterns to solve

optimization problems using AMAS. In this model, agents are designed as close as possible to the natural description

of the problem entities.

Finally, a comparison with a classical greedy algorithm, commonly used in the Europe spatial domain,

highlights the advantages of the presented system.

I. INTRODUCTION

A constellation of agile observation satellites allows

to cover a large Earth surface, with a good revisit time,

ensuring pictures with different characteristics and the

robustness of the system. Planning an observation

mission for a constellation of agile satellites is a

complex task: a lot of parameters and constraints, often

contradictory, must be taken into account. This huge

number of entities makes this problem highly

combinatorial. Currently, in Europe, a satellite system

works on a chronological basis relying on regular

“appointments” between satellites and control ground

stations. During this “appointments”, the already

computed and validated work plan is uploaded on-

board. The clients' requests arriving in the system are

stored and before each “appointment”, they are taken as

input of a planning algorithm. If a request arrives after

the start of the planning, it is stored for the next

programming period. Thus, currently used planning

algorithms, such as greedy algorithms [1], fail to take

into account dynamic changes in a short time and to

properly manage linked requests (for example requests

that require several acquisitions like stereoscopic ones).

Moreover, Earth observation is subject to an

important evolution. Nowadays, the number of

constellations of satellites drastically increases, as the

number of satellites that compose them. For example,

the new Google Skybox constellation project plans to

amount to more than 24 satellites in 2017, encouraging

near real-time client requests to grow drastically. Thus,

there is a need for a near real-time planning system.

Such a system must dynamically take into account new

requests during runtime, which is not the case of

currently used approaches ([2], [3] and [1]).

This paper is organized as follows. Section 2

describes the problem and presents its context. Section 3

mailto:jonathan.bonnet@irt-saintexupery.com
mailto:gleizes@irit.fr
mailto:kaddoum@irit.fr
mailto:serge.rainjonneau@irt-saintexupery.com

develops the functioning of the ATLAS system

(Adaptive saTellites pLanning for dynAmic earth

obServation). Finally, Section 4 presents an evaluation

of the ATLAS system for near real-time planning and

its comparison to ChronoG, a greedy algorithm.

II. MULTI-SATELLITE SCHEDULING

PROBLEM

In this section, a description of the problem and a

summary of solving methods currently used are

presented.

II.I Problem Description

As the planning problem is a complex and difficult

problem, we propose a description that helps us to

design our system. Based on the work presented in [4],

the considered problem can be described as follows:

A set of Earth observation satellites called

constellation Sat = {S1,S2,..,Sn} where each satellite Si

has its own characteristics:

 a quasi-circular orbit around the Earth,

 an energy management module,

 a storage capacity,

 a payload, in this case observation

instruments (optical or radar), and their

characteristics,

 an orbital and attitude control system,

allowing the satellite to control its position

and pointing (towards the area to be

observed).

A set of clients’ requests. Each defined by:

 the type of the request (optical or radar for

example),

 a submission date,

 a temporal validity range (from hours to

several days or weeks),

 a geographic area,

 a priority given by the customer,

 the tolerated cloud coverage, w,

(0<= w <=1),

 a set of meshes, associated to the request.

The geographic area defines the earth zone requested

by the client. This area can be large: a country or a

continent, for example. Satellites cannot necessarily

acquire the whole request in a single shot. Thus,

requests are divided into a set of meshes.

A mesh is the elementary entity that a satellite can

acquire in a single shot. Each mesh possesses the

constraints of its request, but it is defined by a smaller

geographic area. Thus, a request is satisfied if all its

meshes are acquired. The decomposition of a request on

a set of meshes is outside the scope of the work

presented in this paper, we suppose that this

decomposition is already made.

To each mesh, one or several access(es) matching to

a period where the mesh is visible by the satellite are

defined in among, using satellite ephemerids. It is

during one of these accesses that the acquisition must be

performed. The duration of the acquisition slot is

usually drastically smaller than the duration of the

access. Those accesses are computed by an external

module.

To those entities, a set of hard and soft constraints

must be taken into account. The set of hard constraints

(validity range of the request for example) must be

satisfied. The set of soft constraints (constraints whose

operator can tolerate degradation like the cloud

coverage), can be released.

The objective of the problem is to provide a

mission plan where the maximum number of meshes are

affected to satellites. The satellites must ensure the

coverage while:

1. satisfying all the hard constraints,

2. maximizing the satisfied soft constraints,

3. maximizing the number of planned meshes.

4. taking dynamically into account new

requests or constraints.

The problem is dynamic. Thus, the whole set of

requests to plan is not known at the beginning: requests

(and so meshes) arrive during runtime. In addition to

this, constraints can be dynamically changed (or added

or removed). For example, new weather forecasts are

taken into account during planning.

In this work, the problem is solved using a

decentralized and distributed multi-agent system where

agents cooperate locally to reach their own goals. The

global objective of the problem is not known by the

agents, it emerges from their local interactions.

II.II Mission Planning: a Survey

Its important dynamic, its large number of entities

and constraints interacting together make so that we

consider here a complex optimization problem, with a

high combinatorial level. In [1], the problem is

categorized as NP-Hard. In literature, several studies

investigate classical optimization approaches to solve it.

Most commonly used or studied approaches are exposed

here and compared with their capacity to provide a

mission plan while handling dynamic perturbations, for

example insertion of new requests to plan.

As described in Section II.I, the planning problem

can be formalized as a constraint satisfaction problem

(CSP). Nevertheless, and because of its complexity, it is

hard to propose a correct mathematical modeling for the

entire problem. Thus, it is necessary to simplify it [1].

To perform this simplification some constraints can be

relaxed: the duration of the planning horizon can be

shortened or the modeling of the satellite’s agility can

be lightened. Even if the simplified problem is correct,

the obtained solutions remain sub-optimal. Once

modeled as a CSP, it is possible to solve the problem

using exact resolution methods. In several papers [4],

[5] and [6], efficient tools like ILOG Solver have been

used. [7] studied Dynamic Programming to

decompose the problem in simpler sub-problems. Given

the difficulty to decompose recursively the problem, the

usage of those algorithms is limited. Moreover, in case

of requests requiring an history, the algorithm cannot be

applied. This problem occurs for example for

stereoscopic acquisitions: several acquisitions of a

single target are linked, preventing to decompose the

problem. In [8], the same critics are established to

Branch and Bound algorithms. Indeed, even if all

solutions are not explored, algorithms based on Branch

and Bound technique use problem properties to guide

the search, consume a lot of memory, and require

potentially high execution time to reach a solution.

The large number of constraints and parameters

make these approaches extremely slow. In addition to

this, any modification like the introduction of new

requests, imposes to re-establish the search tree. These

methods are not suitable to handle the high dynamic

level of the studied problem.

To overcome these drawbacks, approximate

methods can be applied. A good solution can be

produced in a reasonable time thanks to the use of a

heuristic function.

The most used algorithm, in Europe, is the Greedy

Algorithm. This last allows a fast execution and its

implementation is quite easy depending on the

implemented variant. Several versions exist but the

principle is the same: the algorithm crosses the requests

and when it makes a choice, this one is never

challenged. Thus, variations concern the way to look

over the requests pool. The most used families are:

Chronological Greedy Search [2]: the plan is

chronologically constructed. At each step, the algorithm

searches for the more pertinent mesh (acquisition) to

schedule (generally the one with the highest priority) at

the end of the last scheduled one respecting precedence

constraints.

Hierarchical Greedy Search [9]: the first step

consists to sort the pool of meshes using several criteria:

priority, image quality, weather information, etc. Then,

the list is unstacked: each mesh is inserted at the best

place, respecting its constraints.

Genetic algorithms as presented in [10] or [8] can

also be used. The main underlined limits of these

approaches are the modeling and the slowness of their

execution (several hours), that is prejudicial in order to

quickly produce a good solution.

All these algorithms, even if they produce quite

good results, have limitations. When adding new

requests during runtime, the process must be resumed to

the first possible visibility access of the meshes of the

added request. Indeed, operational systems work step by

step: during the building of the plan, no request can be

added. In addition to this, those algorithms are generally

designed to plan the mission of a single satellite. Thus,

they don’t profit very well of the advantages of a

constellation in order to increase the planning

capacities.

Recently, self-organizing systems such as adaptive

multi-agent systems have proven valuable for solving

highly dynamic problems, thanks to their ability to

adapt themselves to their environment. For example,

[11] proposes an adaptive multi-agent approach to

provide self-regulated manufacturing control. Today,

such systems are applied in a multitude of domains, like

smart grids and management of electric vehicles [12] or

self-control of heat engines [13]. As it is close to the

natural description of the problem, this approach allows

to define solving algorithms which are then more robust

to dynamics, flexible, open and provide a relevant level

of adaptation in real-time.

In this work, we focus on the usage of self-adaptive

multi-agent systems as defined by the AMAS Theory

(Section III.I), in order to plan on-ground the mission of

a constellation of satellites.

III ATLAS PLANNING SYSTEM

In the presented work, we propose to use adaptive

multi-agent systems to plan missions for a constellation

of Earth observation satellites in near real-time. This

approach allows to naturally consider a large number of

entities and constraints while providing self-

organization mechanisms to handle the problem

dynamics. In this section, we present the AMAS

approach and the contribution of this article, the

ATLAS system.

III.I AMAS Approach

In the AMAS theory (Adaptive Multi-Agent Systems)

[14], agents are considered as autonomous and

cooperative entities, having a partial knowledge on their

environment and searching to reach a local objective.

Agents of these systems interact locally in a

cooperative manner producing partial functions.

Cooperation is defined as the capacity of the agents to

work together in order to reach a common objective.

Thus, any activity between agents is complementary and

solidarity links exist between them. Using cooperation,

the system self-adapts to stay in cooperative state. The

cooperation of all parts of the system makes the

adequate function the system was designed for

“emerges” (Figure 1).

Figure 1 Emergent Function

Local interactions allow the system to self-adapt to

perturbations and so to handle dynamics without

challenging the already reached solution. Perturbations

produce “Non Cooperative Situations”. To repair

those situations, agents possess mechanisms to

autonomously adapt their behavior to the context [14]:

 Tuning: the agent adjusts its internal state to

modify its behavior,

 Reorganization: the agent modifies the way it

interacts with its neighborhoods,

 Evolution: the agent can create other agents or

self-suppress when there is no other agent to

produce a functionality or when a functionality

is useless.

The algorithm of an adaptive agent can be described as

follow: if a Non Cooperative Situation is detected, agent

uses one or more self-adaptation mechanisms to come

back to a cooperative state where it performs its

nominal behavior.

To ease the design of agents’ behavior and interactions

for solving optimization problems under constraints

based on the AMAS Theory, the AMAS4Opt agent

model has been proposed [15]. This model provides

design patterns for two cooperative agent roles:

“constrained role” and “service role”. One agent can

have one or both roles and switches at runtime between

them depending on the situation it faces. The agents

having the “constrained role” manage the constraints

and must be satisfied, while the agents having the

“service role” are skilled to help the agents under the

“constrained role”. This model uses the notion of so-

called criticality of agents with the “constrained role” as

an engine for the cooperation between agents. We have

used and extended this model to design the agents and

the general architecture of the ATLAS system.

III.II ATLAS Architecture and Functioning

Given the problem description, we identified nine kinds

of entities:

 three types of cooperative agents: the request

agent, the mesh agent and the satellite agent

(their behaviors are detailed later in this paper),

 three types of active entities: the cloud

coverage, the solar ephemeris and the

downloading station. These entities do not

have a goal to satisfy, but they still interact and

influence agent activities and decisions.

 three types of passive entities: the memory of

the satellites, their battery and the module in

charge of attitude and orbit computation. These

entities are considered passive as their state is

modified by other entities. For example, the

satellite modifies the remaining available space

of its memory when it performs an acquisition.

The AMAS4Opt model provides patterns to define the

agents’ behavior and interactions. Mesh and request

agents possess constraints to satisfy: they must be

planned under certain constraint, they have the

“constrained role”. On the contrary, the satellite agents

can help them to be satisfied, they have solution(s), and

thus the “service role”. From these roles interactions

between agents and entities are defined:

Request agents interact with their mesh agents,

Mesh agents interact with their request agent and with

satellite agents that can acquire them,

Satellite agents interact with mesh agents requesting

their help,

All of the agents use passive and active entities to

improve their knowledge. The satellite agents interact

with the trajectory module, cloud coverage, the

ephemeris and both energetic and memory modules,

while mesh agents interact with cloud coverage and the

ephemerids.

In ATLAS system, and based on the agent behavior

definitions given by the AMAS4Opt model, the

planning of the constellation is provided by the local

cooperative interactions among the agents of the

system. This cooperation is ensured through the

exchange of messages between agents and is guided by

two indicators: the criticality and the cost.

The dissatisfaction of mesh agents is represented by

their criticality degree. More the agent is closed to the

state where its objective is reached, more its criticality is

low. In the current version of ATLAS, two criteria are

used to represent criticality: the priority given by the

customer and the number of accesses existing to plan

the mesh. Requests also influence the criticality of their

mesh agents. When the validity range is going to expire

or when only a mesh agent from its set of meshes is not

planned, the request increases the criticality of the

unplanned meshes.

The cost is an indicator of the difficulty for the satellite

agent to take into account and plan a mesh agent.

Indeed, the criticality does not allow full cooperation

between agents: it only allows agents with the “service

role” (i.e. satellites) to know which agents with the

“constrained role” (i.e. meshes and requests) have the

priority and by that to be cooperative. An agent with the

“constrained role” cannot favor an agent with the

“service role” among another and so cannot make a

cooperative choice. The cost is here introduced to solve

this problem.

To favor cooperation, a mesh agent chooses the satellite

agent answering with the lowest cost. Different

elements increase the cost:

 the need to adapt the plan by moving scheduled

mesh, in this case the cost contains the

criticality of the mesh agent to cancel,

 an important memory load (many meshes are

already planned by the satellite),

 a large number of demands received.

A satellite agent answers with a low cost if, for

example, it has no mesh scheduled or if it has received a

few messages.

Cooperation is the engine of self-organization. It is

ensured thanks to cost and criticality. Thus, ATLAS

functioning can be described as follows:

In a first step, mesh agent asks for coverage to

all satellite agents they have an access to it.

Satellite estimates the difficulty to plan each

mesh and answers with the cost.

Mesh agent chooses the lowest cost and asks

confirmation to the satellite that confirms or not.

Of course, as ATLAS handles dynamic, if a new mesh

asks for a place that is already attributed to another

mesh, the satellite also favors the most critical. At any

moment, the request agent can increase the criticality of

its mesh agent.

III.III Near Real Consistent Solution Proof

Mission plan is obtained through local interactions

between agents. In the ATLAS system, those

interactions are messages that agents exchange among

themselves. Agents can be considered as distributed

entities without global knowledge on the system: no

agent knows the state of the whole planning. Thus, if a

stop is asked by an operator (for example to establish a

plan), we must be certain that each agent is in a

consistent state. To be certain of this global consistency,

some messages and actions must be realized before the

real stop of the system.

A mesh agent m can be in two states: planned (PL(m))

or not (¬PL(m)). If a mesh agent is planned, that must

be by one and only one satellite agent and both the mesh

agent and the satellite agent knows each other. If it is

not planned, no satellite agent has it in its plan. We note

Ps the mission plan of the satellite s, Book(m, si) the fact

that the mesh m knows that it is planned by the satellite

si and M the set of all meshes to plan. Formally we can

write:

(1) PL(mi)⇔ ∃!s ∈ Book(mi,s) ∧ mi ∈ Ps

(2) ¬PL(mi)⇔ ∄s ∈ Book(mi,s) ∧ mi ∉ Ps

Thus, we deduce that ATLAS is in a consistent state if

and only if:

(3) ∀ mi ∈M,PL(mi)"⊕"¬PL(mi)

Figure 2: Inconsistent Situations

In the ATLAS system, three situations of inconsistency

have been identified (Figure 2)

Figure 2.a) a mesh agent is planned by more than one

satellite:

(4) Book(mi,s1) ∧ mi ∈ Ps1

∧ Book(mi,s2) ∧ mi ∈ Ps2

Figure 2.b) a mesh agent ignores that it is planned:

(6) ¬ Book(mi,s) ∧ mi ∈ Ps

Figure 2.c) a mesh agent believes is it planned:

(5) Book(mi,s) ∧ mi ∉ Ps

We introduce a new active entity called “Manager”.

The Manager is the interface between ATLAS and the

human operator. This entity knows all the mesh agents

and their state, the mesh agents also know this entity.

When the operator asks for a stop, the Manager

broadcasts the message to all the Satellite agents, and

waits for the answers, to indicate the real stop. The

following sequence diagram (Figure 3) describes the

behavior of the Manager: At the reception of the “ask

for stop” (action 2), mesh agents must finish their cycle

(action 3). Then, three behaviors are possible,

depending of the last agent’s action.

1. If a message “ask for confirmation” has been

sent before the stop order was received, the

mesh agent must wait and treat the satellite

answer, to avoid the situation b (action 6).

2. Else if a message for cancel has been received

before the stop order was received, it must be

treated to avoid situation c (action 7).

3. Else, the mesh agent sends a message OK to

the manager (action 8).

When all the OK messages have been received by the

Manager (action 9), ATLAS may not be in a consistent

state yet. Indeed, messages from the satellite agents may

have a latency. The transmission duration of message

between two agents is t, 2t are necessary to ensure that

the message sent by the satellite agent, is received by

the mesh agent and the answer is sent back to satellite

agent. Thus, the Manager must wait for 2t after the

reception of all of the messages to indicate the real stop

(action 11). If a message is received during the wait

(action 10), the 2t must be waited again. In the ATLAS

system, agents are located on the same computer, so the

t duration is very short, that is why the delay between

the order to stop and the real stop is short.

Figure 3: Stop Sequence Diagram

IV EXPERIMENTS

In this section, we present experiments we carried

out to test and validate our system. Firstly, use case

scenarios and the way we produce them are presented.

Then, two experiments are detailed. These experiments

validate our approach.

IV.I Experimental Setup

In order to test our system, we implement and use a

generic generator of scenarios. This generator

provides, for certain number of satellites, a list of

meshes to acquire. For each mesh, several accesses are

defined. ATLAS must select an access and schedule the

acquisition inside.

The generator starts by constructing a complete

mission plan, where each satellite is fully occupied by

the acquisition of several meshes. The meshes and their

characteristics are randomly generated in order to fill all

the available time of each satellite. Once this complete

mission plan is generated, the generator adds to each

mesh a validity range and a random number of accesses,

each being randomly associated to a satellite chosen into

the constellation. The random number of accesses is

linked to an accessibility factor defined by the user in

order to increase (or not) the accessibility. This factor

allows to generate the maximum number of satellites

that can acquire the mesh. Thus, each mesh possesses

several accesses and can be acquired from different

satellites of the constellation. Finally, a priority is

assigned to each mesh corresponding to the priority

given by the customer. The generator randomly

associates a priority to each mesh respecting the

following distribution:

 50% of “routine” priority, the lowest

priority;

 35% of “normal” priority;

 15% of “urgent” priority.

As previously presented, customer's requests do not

arrive at the same time. To introduce this dynamics, all

meshes are not available at the start of the system

execution, but arrive during solving. Thus, we can show

how the system self-adapts at runtime. This generator

allows to produce a significant number of scenarios

representative of the combinatorial of the problem. This

generation process has been validated by experts of the

space field. Those different scenarios enable to test the

validity, the robustness and the scalability of ATLAS.

IV.II Adaptation at Runtime

First experimentation illustrates the ATLAS’s ability

to dynamically handle arrival of new meshes to plan.

For this experiment, we use a scenario with 5 satellites,

717 meshes to plan, the ratio accesses per mesh is 3.65.

Each mesh has a priority, respecting the distribution

given in Section IV.I. In order to underline self-adaptive

mechanisms, the arrival of meshes into the ATLAS

system is controlled. Indeed, all “routine” priorities are

available at the start of the execution, the “normal” ones

are inserted at cycle 10, when ATLAS is converging to

a solution. Finally, when ATLAS has handled both

“normal” and “routine” at cycle 17, “urgent” meshes are

inserted.

Figure 4 exposes the results. The 3 curves illustrate

the percentage of all kinds of priorities during the

execution. At each insertion, the number of planned

meshes of lower priority decreases. This is explained by

the fact that thanks to their self-adaptation mechanisms,

Satellite agents can re-organize their plan to

accommodate meshes with a higher priority. This

experiment shows the importance and the contribution

of the self-adaptation mechanisms: more meshes can be

planned at runtime: “urgent” priorities are dynamically

taken into account and planned. Moreover, the number

of cycles needed to reach a stability is small, so ATLAS

quickly adapts itself.

Figure 4 Dynamic Handling (% for each priority)

Another interesting point shown by this experiment

is that even if a mesh is cancelled in order to free some

place to a more urgent one, the cancelled one could find

another space in the planning. Here again ATLAS self-

adapts, and a mesh previously canceled can be planned.

IV.III Comparison to a Greedy Algorithm

To analyze the quality of solutions provided by

ATLAS, we compare it to the commonly used algorithm

in the spatial domain: a chronological greedy algorithm,

named here ChronoG. ChronoG treats the constellation

satellite by satellite. At each time step t of the planning

of each satellite, ChronoG checks if the slot is free or if

a mesh is already scheduled.

 If a mesh is scheduled, ChronoG goes to

the next step, else ChronoG checks if a

mesh can be set at this step, by determining

whether the mesh possesses an access

encompassing the current time.

 If several meshes can be set, ChronoG uses

a heuristic to select the best one.

 The heuristic used by ChronoG is close to the

criteria used to define the criticality in ATLAS. To

select the mesh to plan, the function first considers the

client priority and then (only if several meshes have the

same priority) the number of remaining accesses (the

less a mesh has accesses, the more it is critical). Note

that ChronoG is not able to manage information at

runtime. All information about dynamic events are

available at the beginning.

The objective of this second experiment is to

demonstrate that an adaptive system is better than a

classical approach to provide near real-time planning.

For that, we use the same scenario as in Section 4.2.

This scenario is executed on ChronoG too. Because

ChronoG cannot handle dynamics, we stop it when it

converges to a solution, add to the list of meshes the

new ones to plan and relaunch it. The duration times are

not significant to be considered: with the whole set of

meshes, ATLAS converge to a solution in 34

milliseconds and ChronoG in 32 milliseconds. Thus, we

compare percentage of planned set after a convergence

for each algorithm. Table 1 shows the results we obtain.

With the first set, both the algorithms planned 96% of

the “routine” meshes. This is explained because there

are only 50% of the whole meshes, thus it is easy for

both the systems to obtain a good solution. But a gap

can be observed with the insertion of “normal” meshes:

ATLAS still planned 96% but ChronoG only 82%.

Remember that ChronoG, as a classical algorithm

cannot handle the dynamics and need to be relaunched

whereas agents of ATLAS use local rules to cooperate

so while running, new meshes can be added.

ChronoG ATLAS

%Routine 96 96

%Routine and

Normal

82 96

% Routine,

Normal and

Urgent

75 95

Table 1 Percentage after insertions

Table 2 shows the percentage of planned meshes for

each kind of category at the end of the execution. The

98% of “urgent” planned by ChronoG is explained by

the fact that the heuristic of this algorithm favors high

priority meshes and has not a cooperative behavior.

Thus, high priority meshes are always booked over

others. On the contrary, ATLAS is cooperative and used

a continuous approach. Thus, mesh agents choose less

costly answers from satellite agents that begin by

booking more critical meshes. Cost and criticality allow

the system to be cooperative and to plan a maximum of

meshes.

ATLAS ChronoG

% Total Final 96 75

%Routine Final 94 55

% Normal Final 94 89

% Normal Final 98 95

Table 2 Percentage of Final Planned Requests

This second experiment illustrates that our system,

ATLAS, can take into account requests without

reconsidered its whole planning. Thus, near real-time

planning can be performed. ChronoG, because it cannot

handle the dynamic have to rebuild the whole plan in

case of changes, so new good plans cannot be generated

faster than ATLAS.

IV.III Integration of Guidance and Maneuvers API

As presented in Section IV.I, the first version of our

generator provided to us generic data. Indeed, in those

first scenarios, no real information about satellites

where provided: in the complete plans, accesses

duration include a fixed maneuver duration. Of course,

in real planning this duration depends on the maneuver

the satellite has to perform to acquire two meshes

successively, and so some maneuvers cannot be

realized. The acquisition duration also varies, according

to the satellite position. In order to compute both these

durations (acquisition and maneuver), we rely on an

industrial guidance and maneuvers library allowing to

compute realistic durations even for most recent

satellites. This library provides data for start and end of

maneuvers and acquisition too. Thus, those information

permit us to provide acquisitions plans that can be

analyzed with mission visualizer tools.

Moreover, we made the integration of these library

as generic as possible, thus ATLAS can work with a lot

of different satellite maneuvers computation systems.

Figure 5 presents a part of a mission of a two satellites

constellation. This mission plan was computed by

ATLAS.

Figure 5 Example of mission plan computed by

ATLAS

V CONCLUSION

In this paper, we have presented the ATLAS

system based on self-adaptive multi-agent approach

to dynamically plan a constellation of Earth

observation satellites and provide near real-time

solutions. The autonomous cooperative behaviors of

the designed agents increase the self-adaptation and

self-organization of the system. Thus, a mission plan

can be computed insuring more flexibility, robustness

and real-time adaptation. ATLAS can dynamically

take into account a large number of high priority

requests.

From the conducted experiments, we underline

the fact that the considered self-adaptive approach

delivers better results than commonly used methods.

Mission plans generated by ATLAS are more

optimized than mission plans delivered by ChronoG.

In addition to this, ATLAS is not affected by

dynamic and can produce near real-time plan:

autonomous behaviors of the agents allow the system

to adapt itself in order to plan a maximum of meshes,

while respecting the constraints.

Future works will focus on adding another level

of adaptation to improve solutions. We plan on

testing ATLAS on real scenarios given by CNES

(French spatial agency) and Airbus Defence & Space

- GEO-Information who are in charge of the Spot and

Pléiades constellations. These scenarios will allow us

to compare our results with actual mission plans.

ACKNOWLEDGEMENT

These results have been reached in the frame of

the OCE research project held in the Saint-Exupéry

Technology Institute (IRT). We would like to thank

industrial and academic members of the IRT which

support the presented activity through their bringing,

both in terms of proper knowledge and financials as

well: Airbus Defence and Space, IRIT, Thales Alenia

Space, Telespazio.

This project also took benefit of the Future

Investment Plan (PIA) set up by the French state,

steered by the Commissariat Général aux

Investissements, and managed by the Research

National Agency (ANR). Authors associate theirs

thanks to those institutions.

REFERENCES

[1] Lemaître, M and al. (2002). Selecting and

scheduling observations of agile satellites.

In: Aerospace Science and Technology.

[2] Bianchessi, N. and al. (2007). A heuristic for the

multi-satellite, multi-orbit and multiuser management of

Earth observation satellites. In: European Journal of

Operational Research, 177(2):750–762.

[3] Junzi S and Marcel Quintana C. (2010).

Optimising Ground Stations Scheduling with a Genetic

Algorithm. In I-SAIRAS 2010, Sapporo, Japan.

[4] Bensana, E. and Verfaillie, G. (1999). Earth

Observation Satellite Management. In: Constraints,

volume 299, pages 293–299.

[5] Dago P. (1997). Extension d’algorithmes dans le

cadre des problèmes de satisfaction de contraintes

valués. PhD Thesis, Université de Toulouse, France.

[6] Bouveret S., Lemaître M. (2014). Un algorithme

de programmation par contraintes pour la recherche

d’allocations leximin-optimales. In: JFPC, 2014.

[7] Grasset-Bourdel R., Flipo A., Verfaillie G.
(2011). Planning and replanning for a constellation of
agile Earth observation satellites.

[8] Mansour, M. A. and Dessouky, M. M. (2010). A
Genetic algorithm approach for solving the daily
Photograph selection problem of the spot5 satellite. In:
Computers & Industrial Engineering.

[9] Wang P., Reinelt G., Gao P., Tan Y. (2011). A
model, a heuristic and a decision support system to
solve the scheduling problem of an earth observing
satellite constellation. In: Computers & Industrial
Engineering, vol. 61, no 2, p. 322–335.

[10] Yuan Z., Chen Y., He R. (2014). Agile earth
observing satellites mission planning using genetic
algorithm based on high quality initial solutions. In:
2014 IEEE congress on Evolutionary computation.

[11] Clair, G and al. (2008). Self-Regulation in
Self-Organising Multi-Agent Systems for Adaptive and
Intelligent Manufacturing Control. In: IEEE
International Conference on Self-Adaptive and Self-
Organizing Systems 2008, pages 107–116.

[12] de O Ramos, G., Rial, J.C.B., and Bazzan, A. L.
(2013). Self-adapting coalition formation among
electric vehicles in smart grids. In: Self-Adaptive and Self-
Organizing Systems 2013.

[13] Boes, J. and al. (2013). Self-Organizing Agents
for an Adaptive Control of Heat Engines (short paper).
In: ICINCO, 2013, pages 243–250.

[14] Gleizes, M.-P. (2012). Self-adaptive Complex
Systems. In: European Workshop on Multi-Agent
Systems, Maastricht, The Netherlands, p114–128.

[15] Kaddoum, E. (2011). Optimization under
Constraints of Distributed Complex Problems using
Cooperative Self-Organization. PhD Thesis, Université
de Toulouse, France.

