
HAL Id: hal-02162329
https://hal.science/hal-02162329

Submitted on 21 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatic fish school classification for acoustic sensing
of marine ecosystems

Riwal Lefort, Ronan Fablet, Jean-Marc Boucher, Laurent Berger, Sébastien
Bourguignon

To cite this version:
Riwal Lefort, Ronan Fablet, Jean-Marc Boucher, Laurent Berger, Sébastien Bourguignon. Automatic
fish school classification for acoustic sensing of marine ecosystems. Oceans’08, Sep 2008, Québec,
Canada. �hal-02162329�

https://hal.science/hal-02162329
https://hal.archives-ouvertes.fr


Automatic fish school classification for acoustic sensing of marine ecosystem

R. Lefort1,2,R. Fablet2, J.-M. Boucher2, L. Berger1, S. Bourguignon1

1 Ifremer/STH, Technopôle Brest Iroise, 29280 PLOUZANE, France
2 Institut Telecom/Telecom Bretagne, UMR CNRS lab-STicc, UEB

Abstract

With the human demand for fish and the global warm-
ing effects, we know that marine populations are chang-
ing. Developing methods for observing and analyzing the
spatio-temporal variations of marine ecosystems is then of
primary importance. In this context, underwater acoustics
remote sensing has a great potential. Operational systems
mainly rely on expert interpretation of echograms acquired
by sonar echosounders. In this works, we propose new al-
gorithms for the analysis of acoustic survey regarding the
inference of species mixing proportion. They rely on the
definition and training of probabilistic school classification
models from survey data.

1 Introduction

Figure 1. Weakly supervised learning: sonar
echosounder provides a 3D image (echogram) com-
posed of fish schools. Trawl catches the proportion of
species mixture.

Sonar echosounders are commonly used to observe and
analyse the spatio-temporal evolutions of marine ecosys-
tems [1]. For instance, echosounders mounted on fishing
vessels allow Scientifics to assess fish stock for pelagic
species such as anchovy or herring [2]. It typically relies on

the interpretation of sonar echograms by experts to assign
the backscattered acoustic energy to fish species biomass.
All the aggregations in the water column are viewed by
echosounders. The backscattering strength allows to build
either a 3D picture (figure 1) when a multi beam sensor is
considered or a 2D picture (figure 2) considering a single
beam sensor. These echograms are analysed by experts to
discriminate species when it is possible. Several studies
have examined the responses of different fish species and
the capability to be discriminated in terms of morphologi-
cal and spatial features (figure 2) [2] [3] [4].

Figure 2. Geometric descriptors like the depth, the length
and the height of the school are used. In the bidimensional
echogram, six horse mackerel schools are observed.

The development of methods and algorithms automating
or aiding this interpretation task would greatly contribute
to improve the quality of expert estimation [5], as it should
reduce the dependence on experts’ subjectivity and provide
better characterization of estimate uncertainties. Previous
studies have been applied to automate the school classifi-
cation [5] [6]. However, these methods are based on a su-
pervised learning scheme that remains uncommon as rep-
resentative labelled training sets are usually not available.
The labelling is achieved by the correspondence between
trawl catches data and associated echograms (figure 1). The
trawl catches most frequently provide a mixture of species.
So, one school can not be associated with a given species.
The originality of our methods proceeds from the associa-
tion between a mixture proportion coming from the trawl
catches and the schools extracted from the echograms. It is
a weakly supervised learning strategy (figure 1).
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Figure 3. Example of an oceanographic vessel route in the bay of Biscay. The learning set is composed of echograms obtained
at trawled sites. It provides labelled data necessary to evaluate the classification model. The oceanographic vessel route provides
echograms continuously. All schools in these unlabelled echograms are classed.

The paper is organized as follows. Section 2 presents the
methods and introduces the notations for the probabilistic
model. In section 3 we present the two probabilistic models
based on the conditional model and the Bayesian model.
Performances of these models tested with real and synthetic
data are presented in section 4. Finally, concluding remarks
are given in section 5.

2 Global methods and notation

In this section the weakly supervised learning strategy
and the notation of the probabilistic model are presented.
An oceanographic survey provides two kinds of data set:
NTr echograms associated with NTr trawls catches given
the proportion πn, 1 ≤ n ≤ NTr for each echogram and
NTt echograms without trawl catch (figure 3). The first one
is the training data set that allows us to build our probabilis-
tic classification model (equation 1). All the non labelled
schools of the second data set are classified independently
using this model.

Considering a probabilistic school-based setting, we aim
at evaluating the likelihood of observed school to be as-
signed to a given class. The term class refers to fish species
or group of species. Let us denote by Xnj ∈ RD the ob-
servation vector for the jth school in the nth echogram,
where D is the number of descriptors per schools. For any

fish school, we used geometrics and energy descriptors (fig-
ure 2) [3] [4], but temporal or geographical descriptors [2]
could be used too. Let us denote by ynjk the value indi-
cating that the jth school in image n belongs to the class
k. ynjk = 1 if the class is k. ynjk = 0 if the class is dif-
ferent from k. Introducing in addition the global random
variable πn corresponding to class mixing proportion at the
echogram level provided by the trawl catch, this leads to the
definition of likelihood:

p (ynjk|Xnj , πn) (1)

Note that for the training data set (i.e. for echograms as-
sociated to trawl catches) variable πn is known. The first
step of the method consists in estimating model parameters
Θ (see the section 3 for details) from echograms for which
πn is known (i.e. echograms at trawled sites). In the second
step, the trained model can be applied to any echograms.

To evaluate the performance of the proposed algorithms,
datasets with known ground truth is built. Then, we com-
pare the class found for each school with the real class.
As there is a lack of mono specific trawl catch, it is hard
to build the ground truth dataset. In practical terms, the
method involves selection of haul having more than 90% of
a determined species. Afterwards the mono specific set of
fish schools is mixed according to the type of echograms
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wanted. Then the composition and the species proportion
of each echogram are known that allows us to test classi-
fication algorithms and compare classification results with
real composition. Echograms comprising mixture with one,
two, three, or four classes are simulated. Note that if there is
one specie per echogram, it leads to the supervised case. As
statistical variables must be evaluated from a mixing pro-
portion, it is easy to understand that the higher is the number
of species in echograms, the less the classification model is
suitable.

In this paper, only 2D data are processed. Simulated
echograms are built with four classes of data either com-
ing out from the campaign (Sardina: 179 schools, Anchovy:
478 schools, Horse Mackerel: 1859 schools, Blue Whiting:
95 schools) or simulated with the acoustic fish school soft-
ware OASIS [7] developed by the IFREMER institute (An-
chovy: 1360 schools, Sardina: 1187 schools, Horse Mack-
erel: 1859 schools). While the fish school simulator pro-
vides big data base for any specie acoustic campaign does
not. For instance, the statistical variables will not be cor-
rectly evaluated with the 95 Blue Whiting schools of the
campaign. Once echograms are built, descriptors are ex-
tracted with a software [8]. 20 descriptors are used: the
depth, the minimum depth, the relative altitude, the min-
imum altitude, the backscattering strength, the mean of
acoustic echo, the maximum of acoustic echo, the stan-
dard deviation of acoustic echo, a coefficient describing the
variation of echo, the maximum school height, the mean
school height, the length, the area, the elongation, the frac-
tal dimension, the circularity, the total energy, the mean en-
ergy, and the index of the amplitude dispersion. Note that
these descriptors are not necessarily discriminative between
them.

3 Models of classification

The two models of classification are presented in this
section. The conditional model and the Bayesian model for
weakly supervised learning have been considered and ex-
tended to our problem. Stated in [9] for binary labelling, an
extension to mixing proportion data is considered.

• The conditional models can be viewed as a proba-
bilistic setting of discriminative models. In the linear
case, it consists in parametrizing a probabilistic deci-
sion from the signed distance to the decision hyper-
plane: p (Ynjk|Xnj , πn) ∝ f(< Wk, Xnj > +bk),
where < Wk, Xnj > +bk = 0 is the equation of the
hyperplane separating the class k from the others and
f is the exponential function. Exponential function
weights the observation as a function of the distance
to the hyperplan. Model parameters Θ = {W, b} are
estimated from a gradient-based minimization of the

total proportion estimation error. An minimum error
criterion is considered:

Θ̂ = arg min
Θ

∑
n

D(π̃n(Θ), πn) (2)

where π̃n(Θ) is the vector of the estimated priors of
the acoustic energies relative to the different species
classes: π̃n(Θ) =

∑
j Enjp (ynj |xnj ,Θ), Enj equals

one if these proportions are computed as relative ob-
ject occurrences, and D a distance between the ob-
served and estimated priors. Among the different dis-
tances between likelihood functions, the Battacharrya
distance is chosen. An extension to non-linear mod-
els is proposed here using the kernel trick [10]. The
non linear model consists in a projection of the original
feature space in a new kernel space. Then a Principal
Component Analysis is carried out.

• For the Bayesian model, we develop p (ynjk|Xnj , πn)
according to Bayes relation:

p (ynjk|Xnj , πn) =
p(Ynjk|πn)p (Xnj |Ynjk, πn)∑
l

p(Ynjl|πn)p (Xnj |Ynjl, πn)

where p(Ynjk|πn) is depending on the proportion πn

into the nth echogram (the expression is given into [9])
and p (Xnj |Ynjk, πn) is a Normal M-mixture distribu-
tion of the form:

p (Xnjk|Ynjk, πn) =
M∑

m=1

ρk,mN(µk,m,Σk,m) (3)

Where ρk,m is the mixing prior for class k, µk,m and
Σk,m are the Gaussian parameters. Models parameters
Θ = {ρk,m, µk,m,Σk,m} are estimated by an Expec-
tation Maximization procedure [9]. A diagonal pooled
variance-covariance matrix is chosen to avoid prob-
lems when the inverse matrix is calculated. This im-
plicates that we suppose that there is no dependence
between descriptors.

4 Results

Figure 4 shows the improvement brought by consider-
ing mixing proportion data for training compared to pres-
ence/absence data [9]. The presence/absence case considers
that the proportion is unknown and replaces it by a binary
value indicating 1 if the class is present in the echogram
and 0 if the class is absent. The correct classification rate is
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shown as a function of the complexity of the proportion in
the echogram. A complexity value of zero means that one
class is dominating in the echogram and a complexity of one
means that the proportion is the same for all the classes.
With a simulated database and for the three classification
models, the classification rate of the proportion method is
better compared with the presence/absence method.

Figure 5 shows algorithms performance for real and sim-
ulated data. The rate of correct classification is shown as
a function of the complexity of the training dataset from
mono specific echograms (i.e. in the supervised case) to
three or four class mixture. This allows the behaviour
changes of the methods to be evaluated. The implemen-
tation of the different proportion complexity is done with
a random number computer selection on the mono specific
database. A part of the data base is randomly selected for
the training and the remaining part is used to evaluate the
classification of the trained model. This procedure is car-
ried out one hundred times and the mean of the correct
classification rates gives the global rate of correct classifi-
cation. The higher is the number of species, the less the re-
sults are suitable. Reported results show that the proposed
conditional model outperforms the Bayesian model. The
Bayesian model performance decreases faster when propor-
tions are more complex. The difference between the linear
and the non linear conditional model is difficult to evaluate
and depends on the dataset but the non linear conditional
model dominates.

Figure 4. Correct classification rate for Simulated
database as a function of the complexity of the class
proportion in the training echogram. Comparison be-
tween the proportion case (dashed line) and the pres-
ence/absence case (solid line) for the three classification
model (Bayesian, Linear conditional and non-linear condi-
tional).

Figure 5. Classification performance for real fish school
data (top) and simulated acoustic fish school data (bottom).
The rate of correct classification is reported for the M=5
mixture Bayesian model (solid), the non-linear conditional
model (dashed) with and the linear conditional Model (dot-
ted).

Additional results also point out that correct classifica-
tion rate depends on the number of descriptors used for the
classification. Figure 6 presents the correct classification
rate as a function of the complexity when four descriptors
are considered. We picked out from the twenty descrip-
tors those that are more discriminant. Results show that
the Bayesian model is not robust. Indeed, performance de-
creases faster when proportions are more complex but the
rate of correct classification dominates now (more than 10%
for real data) compared with conditional model when the
number of species per echogram is limited. We conclude
that the Expectation Maximization algorithm doesn’t con-
verge with higher system dimension.

5 Conclusion

This paper considers an original algorithmic method for
studying marine ecosystem. Previous works tried to clas-
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Figure 6. Classification performance for real (top) and
simulated (bottom) fish school database using the four de-
scriptors the most discriminant. The rate of correct clas-
sification is reported for the M=5 mixture Bayesian model
(solid), the non-linear conditional model (dashed) and the
linear conditional Model (dotted) as a function of the pro-
portion complexity.

sify species using a supervised learning scheme that is not
adapted to oceanographic survey. Our algorithm takes into
account the observation labels coming from trawl catches
give proportion information.

With regards to lack of ground truth, a procedure has
been developed to test and evaluate the classification results.
Before analyze the methods comportments we notice the re-
sult improvement when proportion label is considered com-
pare to presence/absence label. Performance of the method
depends on the classification model, the origin of database,
and the number of parameters the methods haves to esti-
mate. Concerning the classification results and considering
all the descriptors, non linear conditional model seems to
be the more adapted to the weakly supervised method. Ro-
bustness and superiority of the model are deduced from the
high level of correct classification and the regularity against
the number of species complexity per echogram. Finaly, we

observed that the Bayesian model is sensitive to the number
of descriptors.
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