
HAL Id: hal-02162300
https://hal.science/hal-02162300

Submitted on 21 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

On Recovering Affine Encodings in White-Box
Implementations

Patrick Derbez, Pierre-Alain Fouque, Baptiste Lambin, Brice Minaud

To cite this version:
Patrick Derbez, Pierre-Alain Fouque, Baptiste Lambin, Brice Minaud. On Recovering Affine Encod-
ings in White-Box Implementations. IACR Transactions on Cryptographic Hardware and Embedded
Systems, 2018, Amsterdam, Netherlands. �hal-02162300�

https://hal.science/hal-02162300
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

On Recovering Affine Encodings in White-Box
Implementations

Patrick Derbez1∗, Pierre-Alain Fouque1†, Baptiste Lambin1‡, Brice Minaud2§

1 Univ. Rennes, CNRS, IRISA, Rennes, France
baptiste.lambin,patrick.derbez@irisa.fr

pierre-alain.fouque@univ-rennes1.fr
2 Royal Holloway University of London, Egham, United Kingdom

brice.minaud@gmail.com

Abstract. Ever since the first candidate white-box implementations by Chow et al. in
2002, producing a secure white-box implementation of AES has remained an enduring
challenge. Following the footsteps of the original proposal by Chow et al., other
constructions were later built around the same framework. In this framework, the
round function of the cipher is “encoded” by composing it with non-linear and affine
layers known as encodings. However, all such attempts were broken by a series of
increasingly efficient attacks that are able to peel off these encodings, eventually
uncovering the underlying round function, and with it the secret key.
These attacks, however, were generally ad-hoc and did not enjoy a wide applicability.
As our main contribution, we propose a generic and efficient algorithm to recover affine
encodings, for any Substitution-Permutation-Network (SPN) cipher, such as AES,
and any form of affine encoding. For AES parameters, namely 128-bit blocks split
into 16 parallel 8-bit S-boxes, affine encodings are recovered with a time complexity
estimated at 232 basic operations, independently of how the encodings are built.
This algorithm is directly applicable to a large class of schemes. We illustrate this on
a recent proposal due to Baek, Cheon and Hong, which was not previously analyzed.
While Baek et al. evaluate the security of their scheme to 110 bits, a direct application
of our generic algorithm is able to break the scheme with an estimated time complexity
of only 235 basic operations.
As a second contribution, we show a different approach to cryptanalyzing the Baek
et al. scheme, which reduces the analysis to a standalone combinatorial problem,
ultimately achieving key recovery in time complexity 231. We also provide an
implementation of the attack, which is able to recover the secret key in about 12
seconds on a standard desktop computer.
Keywords: White-Box Cryptography · Cryptanalysis · AES

1 Introduction
Historically, cryptanalysis is performed within the black-box model: the cryptographic
algorithm under attack is executed in a trusted environment, and the view of the attacker
is limited to the input-output behavior of the algorithm. Depending on the type of
∗Patrick Derbez was supported by the French Agence Nationale de la Recherche through the CryptAudit

project under Contract ANR-17-CE39-0003.
†Pierre-Alain was supported by the French Agence Nationale de la Recherche through the BRUTUS

project under Contract ANR-14-CE28-0015.
‡Baptiste Lambin was supported by the Direction Générale de l’Armement (Pôle de Recherche CYBER).
§Brice Minaud was supported by EPSRC Grant EP/M013472/1.

Licensed under Creative Commons License CC-BY 4.0.
IACR Transactions on Cryptographic Hardware and Embedded Systems Vol. 0, No.0, pp.1—??,
DOI:XXXXXXXX

baptiste.lambin,patrick.derbez@irisa.fr
pierre-alain.fouque@univ-rennes1.fr
brice.minaud@gmail.com
http://creativecommons.org/licenses/by/4.0/
https://doi.org/XXXXXXXX

2 On Recovering Affine Encodings in White-Box Implementations

attack under consideration, the attacker may be able to observe the inputs and outputs
of encryption or decryption queries, and perhaps choose the corresponding inputs, but
nothing more. Such attack models are particularly relevant in scenarios where the attacker
does not have direct access to an implementation of the scheme, whether because it is
executed remotely, or within a protected hardware environment such as a secure enclave.

Since the advent of side-channel attacks however, new attack models have come into
the light, wherein the attacker has access to some auxiliary information leaked by the
implementation. These models are sometimes called gray-box models, in contrast with the
black-box model outlined in the previous paragraph. Attacks in the gray-box model may
exploit physical leakage such as computation time, power consumption, or electromagnetic
leakage, among many others. Such attacks can result in practical breaks against schemes
that would otherwise appear secure in the standard black-box model.

White-box cryptography. Going one step further, in 2002, Chow et al. introduced the
white-box model [?, ?]. In this model, the attacker has full access to an implementation
of the target cryptographic algorithm, including the ability to control its execution en-
vironment. Therefore he can observe memory content, set breakpoints in the execution
flow, change arbitrary values in the code or the memory, etc. In this setting, the security
assumptions of the black-box model clearly no longer hold. However, it may still be
desirable that the adversary should be unable to extract the secret key of the cryptographic
algorithm under attack.

This model is relevant in the context of software distribution, whenever a piece of
software containing sensitive cryptographic information (such as an encryption algorithm)
is to be widely distributed, and hence can be downloaded and analyzed by adverse parties.
The most prominent application occurs in Digital Rights Management, where attackers
may wish to recover a decryption key used to protect copyrighted content (digital music,
TV broadcasts, video games, etc). A successful attacker is then able to distribute the
secret key to unauthorized users, providing them with illegitimate access to the protected
content. In effect, the goal is to protect sensitive functions within the deployed software,
such as cryptographic algorithms, in much the same way that a trusted environment would
protect security-critical functions in a hardware context. Ideally, white-box cryptography
would thus achieve the software equivalent of trusted enclaves, specialized to particular
cryptographic algorithms.

In order to achieve this goal, white-box cryptography techniques attempt to obfuscate
the implementation of the target cryptographic algorithm. Ideally, an attacker in possession
of the obfuscated cipher should be unable to interact with it in any meaningful way, beside
simply executing it on chosen inputs. While Barak et al. have shown that general
program obfuscation is impossible [?], the context of white-box cryptography presents two
key differences. The first is that white-box cryptography merely attempts to obfuscate
particular function families (such as block ciphers), which Barak et al.’s result has no
bearing on. Another key difference is that white-box models do not generally require
guarantees as strong as those offered by black-box obfuscation: in the case of a white-box
implementation of AES for instance, it may be enough that the adversary is unable to
recover the secret key (for a detailed discussion of white-box models, see e.g. [?, ?]).

The CEJO framework. In their original 2002 articles, Chow et al. proposed such a
white-box scheme for DES and AES [?, ?]. While their proposals were quickly broken
[?, ?], their work opened the path to white-box encryption. Follow-up works often reused
the same general framework, which we will call the “CEJO framework”.

In the CEJO framework, each round function is obfuscated by being composed with
carefully crafted input and output encodings. That is, the round function E(r) at round r

is replaced in the white-box implementation by f (r+1)−1 ◦E(r) ◦ f (r), where f (r), f (r+1)−1

Patrick Derbez , Pierre-Alain Fouque, Baptiste Lambin, Brice Minaud 3

are bijections called respectively to the input and output encoding. By design, the output
encoding of each round is canceled out by the input encoding of the next round.

· · · ◦ f (r+1)−1
◦ E(r) ◦ f (r)︸ ︷︷ ︸
F r

◦ f (r)−1
◦ E(r−1) ◦ f (r−1)︸ ︷︷ ︸

F r−1

◦ . . .

Figure 1: The CEJO framework.

For each round, the white-box implementation gives access to the encoded version of
the round function F r = f (r+1)−1 ◦ E(r) ◦ f (r), but not directly to the underlying round
function E(r).

Chow et al. proposed to define the encodings f (r) as the composition of a non-linear
mapping and an affine mapping. The idea is to follow a classic concept in symmetric
cryptography : the non-linear mapping will add some confusion on the intermediate values
of the state, while the affine mapping will add some diffusion (see Sec. 3.3 and 3.4 in [?]).
In addition, in a typical SPN block cipher, round keys are XORed into the inner state of
the cipher. In that case, whenever the constant of the affine encoding is uniformly random,
a single obfuscated round completely hides the value of the round key, which implies that
a successful key-recovery attack must target multiple rounds simultaneously. Thus the
CEJO framework is a natural approach to attempt to obfuscate a block cipher, especially
in the case of SPN ciphers such as AES.

In addition to the above, some external input/output encodings Mout/Min can be
added before and after the cipher. In that case, the implementation provides a map from
encoded plaintexts to encoded ciphertexts. These encodings are merged into the tables used
for the initial and final encoded round function. The implementation is then equivalent to
an encoded version of the cipher, which can be expressed as Mout ◦E(R) ◦ · · · ◦E(1) ◦Min.

External encodings can be used to increase security, as the attacker is denied direct
access to raw plaintexts/ciphertexts. On the other hand, external encodings assume that
the implementation surrounding the white-box cipher takes these encodings into account.
As such, a white-box implementation with external encodings is not properly speaking an
implementation of the cipher it contains. For this reason, in this work, we shall explicitly
signal the presence of external encodings, and use the term white-box implementation with
external encodings when appropriate.

It is crucial that, given the encoded round function F r, the adversary should be unable
to compute and peel off the encodings f (r+1)−1 and f (r). Indeed, for typical ciphers such
as AES, granting direct access to a single round E would allow the adversary to easily
recover the corresponding round key, and from there the secret key of the cipher. However
attacks on white-box implementations typically achieve precisely this, by taking advantage
of the specific structure of the encodings A and B. In white-box implementations following
the CEJO framework, encodings are composed of a very simple non-linear layer, together
with a more complex affine layer. Attacks generally peel off the non-linear component,
then proceed to recover the affine layer. This is typically achieved in an ad-hoc way, by
exploiting specific properties of the scheme under attack.

Our Contribution.

As our main contribution, we propose a generic algorithm to recover affine encodings for
any white-box implementation of a cipher following the CEJO framework, independent of
the way the encodings are built. More generally, our algorithm solves the affine equivalence
problem (given two maps F and S with the promise that they are affine equivalent, compute
affine maps A, B, such that F = B ◦ S ◦ A) whenever one of the two maps is composed of
the parallel application of distinct S-boxes.

4 On Recovering Affine Encodings in White-Box Implementations

Our main algorithm is very similar to one of the steps of the structural cryptanalysis of
SASAS by Biryukov and Shamir [?], combined with a generic affine equivalence algorithm;
for this purpose, we use the recent algorithm by Dinur [?], but the same attack would
also work with the classic affine equivalence algorithm by Biryukov, De Cannière, Braeken
and Preneel [?]. Thus the components we use are not essentially new. However, to the
best of our knowledge, the fact that they enable breaking all white-box schemes following
the design of Chow et al. in a generic way has not yet been explicitly pointed out in the
literature, or analyzed in detail, despite the fact that the SASAS algorithm predates both
these schemes and their attacks. As a result, in our experience, this fact is also largely
ignored by practitioners in the industry.

By design, our attack applies to a large class of white-box schemes following the CEJO
framework, including [?, ?, ?, ?]. Beyond the previously cited schemes, which were already
broken by ad-hoc attacks, we illustrate our attack on a new white-box design by Baek,
Cheon and Hong [?]. One distinctive feature of this design that makes it particularly
attractive to illustrate our attack (beside not being previously cryptanalyzed) is that it
increases the state size by obfuscating two parallel rounds of AES, precisely to prevent
generic attacks from being able to recover the affine encodings of the scheme. Indeed
Baek et al. estimate the security level of their proposal to 110 bits based on their own
specialized version of an affine equivalence algorithm. However our generic attack on this
scheme requires only about 235 basic operations.

As a second contribution, we analyze the scheme by Baek et al. more closely, and
introduce another technique able to break this scheme. This new technique extracts and
solves a standalone problem from the scheme by Baek et al.. Ultimately, it is able to
recover the secret key of the scheme in time complexity 231. This is verified with an
implementation. This dedicated attack on Baek et al.’s scheme is also more powerful as
it allows us to fully recover the key, while the generic attack only creates a decryption
function without recovering the key.

In more detail, our two contributions are as follows.
(1) In an SPN cipher, a round function is composed of an affine layer (in which we

include key addition), and a non-linear S-box layer. The S-box layer S consists of the
application of k parallel m-bit S-boxes, where n = km is the block size. As a result, when
encoding a round function using affine encodings, the encoded round function may be
written as F = B ◦ S ◦ A, folding the affine layer into one of the encodings. A natural
problem in this setting is the affine equivalence problem: namely, to recover affine encodings
A and B, given F = B ◦ S ◦ A, and knowing S. More precisely, since A and B may not be
uniquely defined, the problem can be stated as: given S and F as before, find affine maps
A′, B′ such that F = B′ ◦ S ◦ A′.

The general affine equivalence algorithm by Dinur solves precisely this problem, without
assuming any special structure on S [?] (this is also the case of the classic algorithm by
Biryukov et al. [?]). However its complexity is O

(
n32n

)
, which makes it unsuitable for

recovering encodings on a typical block size of 128 bits. In contrast, we focus on the case
where S is made up of k parallel m-bit S-boxes. In this setting, we propose an algorithm
that solves the affine equivalence problem with a (typically much lower) time complexity
of O

(
2mn3 + n4

m + 2mm2n
)
. For the AES parameters n = 128, m = 8, k = 16, this yields

a time complexity of 232 basic operations1 (to be compared with 2149 basic operations if
the generic algorithm by Dinur were applied naively).

As noted earlier, due to its genericity, our attack applies to essentially all white-box
schemes following the CEJO framework: this includes the original designs by Chow et
al. [?, ?], and later proposals [?, ?]. In the case of Karroumi’s scheme [?], while it does
not seems to follow the CEJO framework at first glance, it has been later shown that

1In practice the constants hidden in the O () notation for our algorithm are quite small, and we disregard
them when giving complexity estimates.

Patrick Derbez , Pierre-Alain Fouque, Baptiste Lambin, Brice Minaud 5

this scheme is equivalent to the CEJO framework [?, ?], and hence our technique applies
directly.

The main limitation of our attack is that it only targets affine encodings, whereas
most white-box schemes following the CEJO framework also use non-linear encodings in
addition to affine encodings ([?, ?, ?, ?] do, while [?] only uses linear encodings). When
non-linear encodings are used, our attack does not break the scheme by itself. However,
even in the presence of non-linear encodings, the first step of attacks typically consists of
peeling off the non-linear encoding layer first [?, ?], which do not apply to the state as a
whole, and leaves the attacker with an instance of the previous problem. In this context,
our algorithm provides a powerful tool, which is able to recover affine encodings in a very
general setting.

(2) As a second contribution, we take a closer look at the scheme by Baek et al.. We
identify another angle from which the scheme can be attacked. At the core of this second
approach lies the following problem. Let F , h1, h2 be three non-linear mappings from
m bits to m bits, and let A1, A2 be two linear mappings on m bits. Given oracle access
to G(x, y) = F (A1(x) ⊕ A2(y)) ⊕ h1(x) ⊕ h2(y), recover A1 and A2 (up to equivalence).
We solve this problem and deduce an attack against the white-box scheme by Baek et al.
with time complexity ∼ 231 operations. We implemented the full attack, and were able to
recover the secret key (and external encodings) in about 12 seconds on a standard desktop
computer. Our implementation is available at http://yaawai.tk/.

Related Work.

Literature on white-box cryptography, especially designs and attacks following the frame-
work of Chow et al., is quite extensive. The first white-box candidate constructions by
Chow et al. [?, ?] were quickly broken in practical time [?, ?].

In 2009, Xiao and Lai proposed to rely on larger affine encodings covering two S-boxes
at once [?]. However, their proposal was broken in about 232 operations by De Mulder et
al. [?]. To thwart this attack, Karroumi proposed to use a dual representation of the AES
round function in order to change the structure of each AES round [?]. But this was also
broken in about 222 operations by Lepoint et al. [?].

The previous attack also applies to the original scheme by Chow et al.; and another
work by De Mulder et al. also provides improvement on the original BGE attack [?]. Note
that all aforementioned attacks exploit the specific structure of the encodings used in the
scheme under attack. As a result, they are more efficient than our generic algorithm, which
works regardless of the structure of the encodings. Our algorithm also applies to these
schemes and succeeds in practical time; but the point is that it is much more general: it
does not require any structure in the affine encodings, and applies to all previous schemes at
once, and more generally to all schemes in the CEJO framework. This includes Karroumi’s
scheme as it has been shown to be equivalent to the CEJO framework [?, ?].

A useful tool in the context of white-box cryptanalysis is the linear and affine equivalence
algorithm by Biryukov et al. [?]. Their algorithm solves the following problem: given two
bijections S1, S2 on n bits, find affine (or linear, depending on the variant of the problem)
mappings A, B such that S2 = B ◦ S1 ◦ A, if they exist. Biryukov et al.’s algorithm is
both able to ascertain whether such mappings exist, and enumerate all solutions. The
time complexity of their solution is O

(
n32n

)
when A,B are linear, and O

(
n322n

)
when

they are affine. In both cases, these complexities are practical when considering standard
S-box sizes, such as n = 8.

This algorithm has been further improved in the affine case by Dinur [?], bringing the
complexity down to O

(
n32n

)
. Note however that this improved algorithm was designed

for random permutations. Indeed, the AES S-box being self-affine equivalent, which is
fairly rare in the random case, will lead to a failure of the algorithm. This was mentioned

http://yaawai.tk/

6 On Recovering Affine Encodings in White-Box Implementations

by the author, who also proposed a workaround. However our own implementation of
the algorithm shows that it still fails on the AES S-box even when using the workaround.
Hence, in that case of the AES S-box, we use the algorithm from [?] which has a higher
complexity, but works on the AES S-box.

The main algorithm we propose in this article is essentially the same as the algorithm
appearing in Section 2.3 of the structural cryptanalaysis of SASAS by Biryukov and Shamir
[?]. However it is worth noting that this algorithm, from 2001, predates the first white-box
constructions, due to Chow et al. in 2002; and a fortiori later constructions in the CEJO
framework. Yet, to the best of our knowledge, it has not yet been clearly pointed out in the
literature that this older algorithm actually solves the critical step in attacks on white-box
schemes in the CEJO framework, as we show in this article. And indeed this algorithm is
not referred to in any of the attacks mentioned above. Thus, we regard as a worthwhile
contribution for practitioners in the field to point out that all known constructions in the
CEJO framework can be uniformly broken (as far as recovering affine layers, which is the
critical step in most cases) by combining this algorithm with a generic affine equivalence
algorithm.

Our attack is also related to the attack by Minaud et al. [?] on the ASASA construction
[?], as well as the followup work by Biryukov and Khovratovich [?]. However, the ASASA
attack would only recover the output spaces of S-boxes, not their input spaces, which
we also need. In the setting where the ASASA (and SASAS) attack was developed, this
was inconsequential, because the attacker had access to both the ASASA function and
its inverse, so the problem was symmetric between input and output. However for us
this is not the case: a key feature of our setting is that we only have access to an ASA
mapping, but not its inverse. This difference is significant, as recovering the input spaces
of the S-boxes from their output spaces seems as hard as breaking the scheme in the first
place. And indeed, in the designs by Chow et al. to realize white-box AES and DES [?, ?],
we are not aware of any way to invert the encoded round function without also breaking
the scheme. In addition to qualitative differences in the setting considered, the algorithm
by Minaud et al. is also more expensive for typical parameters (e.g. n = 128 or 256),
as it costs about 2mn2 + n6 operations, where the last term is due to having to solve a
quadratic system in n variables. Running the ASASA algorithm on the scheme by Baek et
al., recovering only the output spaces of S-boxes, would require 248 operations instead of
235 with our attack. Thus the SASAS algorithm [?], which we use, is the better approach
in our setting.

At SAC 2008, Michiels, Gorissen and Hollmann also proposed a generic algorithm
to break white-box implementations following the framework by Chow et al. [?]. Their
work considers non-linear encodings, but requires two extra hypotheses: (1) the input
space of each individual S-box through the input encoding should be known; and (2) the
diffusion matrix of the scheme should satisfy a property called disjoint spanning block
sets. In particular, that work does not solve the general problem of recovering arbitrary
affine encodings surrounding a known S-box layer. Moreover, no overall complexity bound
is provided2, as some steps of the algorithm are not accompanied by a time complexity
bound. There is also no implementation, which further prevents assessing performance.

The idea of considering a specialized variant of Biryukov et al.’s generic affine equivalence
algorithm in the context we have described thus far (i.e. where the inner non-linear layer
is composed of distinct S-boxes) was also proposed by Baek, Cheon and Hong in [?], who
proposed the specialized affine equivalence algorithm (SAEA) for solving this problem.
However, SAEA is very inefficient for larger n in our setting, with a time complexity of
O
(
min(nm+422m/m, n log(n)2n/2)

)
. Baek et al. used SAEA to assess the security of their

own white-box implementation with external encodings of AES, predicting a security level
2In Section 7, there is a claim that in the particular case of AES and Serpent, the time complexity of

their algorithm would be dominated by the generic affine equivalence algorithm for each S-box. However
that claim is not backed by any analytical bound, nor is it backed by an implementation.

Patrick Derbez , Pierre-Alain Fouque, Baptiste Lambin, Brice Minaud 7

of 2110 operations. Our own generic algorithm, however, merely requires an estimated 235

basic operations, breaking the scheme with practical complexity.
Incidentally, both the previously cited works by Michiels et al. and by Baek et al.,

while introducing interesting new techniques, also illustrate the lack of awareness around
the fact that the SASAS technique by Biryukov and Shamir [?], combined with a generic
affine equivalence algorithm, solves the ASA problem generically. In this respect our work
may be regarded as filling a gap in the literature.

Finally, an interesting and recent line of work has exhibited side-channel attacks on
white-box implementations [?, ?]. These approaches are quite powerful in that they require
only “gray-box” access to the implementation, but are not generic attacks in the sense of
our work. For example they are not applicable to the scheme by Baek et al. (not only
because the scheme obfuscates two parallel executions of AES simultaneously, but also
because it uses external encodings on both ends of the cipher). By nature this approach
also relies on experimentation, rather than providing analytical bounds as we do.

Recent work in this direction has shed more light on the success of the gray-box
approach outlined above, and studied more closely the effect of affine and non-linear
encodings on the resistance of a white-box implementation against side-channel attacks
[?, ?]. These works show that 4-bit non-linear encodings, which were recommended in the
original scheme by Chow et al. for size reasons, are insecure in that context. Both works
focus their analysis mainly on non-linear encodings, and on the (practically highly relevant)
case of a white-box implementation of AES following [?]. By contrast our work considers
only affine encodings and requires full white-box access, but does so within a more general
CEJO framework with an arbitrary SPN cipher and arbitrary (affine) encodings.

Structure of the Article.

In Section ??, we describe our generic algorithm to recover affine encodings in SPN
ciphers in detail, together with its complexity analysis. In Section ??, we describe the
white-box scheme by Baek et al.. In Section ??, we first point out that our algorithm from
Section ?? breaks this scheme in a generic manner, then develop a second dedicated attack
underpinned by a different technique, and discuss its implementation.

2 A Generic Algorithm to Recover Affine Encodings in
SPN Ciphers

In this section, we present our algorithm for solving the affine equivalence problem in the
case where the inner non-linear layer is composed of parallel S-boxes. As discussed in the
introduction, solving this problem amounts to recovering affine encodings from a white-box
implementation of any SPN cipher based on Chow et al.’s approach, regardless of the way
the encodings are built. More precisely, our algorithm solves the following problem.

Problem 1. Let F be an n-bit to n-bit permutation such that F = B ◦ S ◦ A, where:

1. A and B are n-bit affine layers;

2. S = (S1, . . . , Sk) consists of the parallel application of k permutations Si on m bits
each (called S-boxes). Note that n = km.

Knowing S, and given oracle access to F (but not F−1), find affine A′, B′ such that
F = B′ ◦ S ◦ A′.

Before we move on to the algorithm itself, a few remarks are in order.
Remark 1. First, our statement of the problem allows the algorithm to query F , but

not F−1. This is tailored to match the real situation of recovering an affine white-box

8 On Recovering Affine Encodings in White-Box Implementations

encoding. Indeed, white box schemes following the CEJO framework allow access to
F , but not to F−1, as the output of F is computed as a sum of some hard-coded table
outputs, and inverting F would require knowing how to split a given output of F into the
appropriate sum. To the best of our knowledge, the most straightforward way to achieve
this is actually to break the scheme.

Of course, in other contexts, a variant of Problem ?? where the algorithm is granted
access to both F and F−1 may also be worth considering. If n is small, it should be noted
that F−1 can be computed exhaustively in 2n operations, so if we are willing to pay 2n

calls to F , both variants of the problem become equivalent. In fact, our own algorithm
will first isolate the input and output space of each S-box, then exhaust that space in 2m

operations for each S-box, which will allow us to access the inverse mapping of each S-box.
Thus, essentially, our own algorithm will allow us to revert back to the case where the
direct and inverse mappings are both available. In particular, it is not obvious how our
algorithm could be improved even if F−1 were accessible. In this regard, we note that
Baek et al. explicitly provide an algorithm to solve Problem ?? when F and F−1 are both
available, in O

(
n423m/m

)
operations [?]. However this is slower than our algorithm for

all reasonable parameter ranges, even though our algorithm does not require access to
F−1 (as noted in the introduction, Baek et al. also propose an algorithm when only F is
accessible, but it is much slower).

Remark 2. As stated, Problem ?? asks to recover some affine encodings A′, B′ such
that F = B′ ◦ S ◦ A′, but not necessarily A and B. This is because A and B may not be
uniquely defined. In fact, if all S-boxes are identical (as is common in SPN ciphers), and
as soon as there is more than one S-box, A and B cannot be uniquely defined: indeed, any
solution (A,B) can be replaced by (P ◦A,B ◦P−1), where P is any permutation swapping
S-box inputs. Problem ?? merely asks to recover a solution. However, because our
algorithm eventually reduces the problem to the affine equivalence problem for each S-box,
which is solved using the algorithm by Dinur, and that algorithm is able to enumerate all
solutions if desired, it is straightforward to adapt our algorithm so that it outputs every
solution.

Remark 3. The special case of Problem ?? where encodings are linear instead of
affine may also be worth considering. As mentioned in the previous remark however, our
algorithm eventually reduces Problem ?? to the affine equivalence problem for each S-box
separately. As such, our algorithm can be trivially adapted to the linear variant of the
problem by using a linear equivalence algorithm on each S-box, instead of an affine one.

Remark 4. In the special case where k = 1, i.e. S is composed of a single S-box,
Problem ?? is precisely the affine equivalence problem tackled by Biryukov et al. [?]
and Dinur [?], with the caveat that F−1 is not accessible. However, as mentioned in the
introduction, the O

(
n32n

)
time complexity of the faster algorithm by Dinur precludes its

use on full 128-bit blocks. From this perspective, the point of our algorithm is to achieve
better time complexity, and in particular, practical complexity for n upwards of 128 bits,
by using the fact that S is split into relatively small m-bit S-boxes.

2.1 Overview of the Algorithm
In a nutshell, the idea of the algorithm is to first isolate the input and output subspaces of
each S-box, then apply the generic affine equivalence algorithm by Dinur to each S-box
separately.

Thus, the first step of the algorithm is to find the input subspace of each S-box. More
precisely, we want to build a subspace of dimension m of the input space, such that this
subspace spans all 2m possible values at the input of a single fixed S-box, and yields a
constant value at the input of all other S-boxes. To achieve this, we use a differential
cryptanalysis approach. Namely, we pick uniformly at random an input difference ∆. With
probability 2−m, ∆ yields a zero difference at the input of a particular S-box. We can

Patrick Derbez , Pierre-Alain Fouque, Baptiste Lambin, Brice Minaud 9

easily ascertain whether this is the case by checking that the set of output differences
generated by input difference ∆ spans a subspace of dimension n−m. If that is the case,
then ∆ yields a zero difference at the input of one S-box, and non-zero differences at the
output of all other k − 1 S-boxes3.

By repeating this process a few times, we can eventually find n−m linearly independent
input differences that yield a zero difference at the input of the same S-box. By going
through this process for each S-box, we recover k spaces of dimension n−m, each yielding
a zero difference at the input of a distinct S-box. Now if we pick any k − 1 of these
spaces and compute their intersection, we obtain a space of dimension m that yields a zero
difference at the input of k − 1 S-boxes, and spans all values at the input of the remaining
S-box. This is precisely the space we wanted to build.

Indeed, if we query the overall permutation F on all 2m values forming such a subspace,
we obtain a mapping that is affine equivalent to the corresponding S-box. It remains to
apply the affine equivalence algorithm by Dinur to recover affine mappings witnessing the
affine equivalence for that S-box. We repeat this process for all S-boxes. Finally we merge
together the affine mappings thus recovered for each S-box to obtain the overall solution.

2.2 Description of the Algorithm
We will first detail our algorithm in the case that all S-boxes are the same, and then explain
how to adapt it to the case of different S-boxes. The main idea to solve this problem is to
find all input difference spaces Ii which activate only one of the S-boxes. That is, for a
difference ∆ ∈ Ii and any message x ∈ Fn

2 , the difference after the application of A, i.e.
∆′ = A(x)⊕A(x⊕∆), is zero except on m consecutive bits corresponding to the input of
the i-th S-box. Indeed for such an input difference space Ii ⊂ Fn

2 , since the S-boxes are
bijective, the output difference space Oi = F (x)⊕ F (x⊕ Ii) ⊂ Fn

2 is of dimension m, for
any x ∈ Fn

2 . Note that this output space Oi does not depend on the choice of x. Therefore
we can compute affine mappings Pi (from Fm

2 to Ii) and Qi (from Oi to Fm
2) such that

S′ = Qj ◦ F ◦ Pj is a bijection over Fm
2 which is affine equivalent to the S-box S. We can

then use the affine equivalence algorithm by Dinur to recover two affine mappings Ai,Bi

such that S′ = Bi ◦ S ◦ Ai. By doing this for each S-box, we will be able to build two
affine layers A′ and B′ such that F = B′ ◦ (S, . . . , S) ◦ A′.

Computing the Ii’s. To compute the input spaces that we are looking for, we will begin
by computing all input spaces Vi which activate at most k − 1 S-boxes. More precisely,
for i from 1 to k the space Vi is such that, for any ∆ ∈ Vi and x ∈ Fn

2 , we have that
A(x)⊕A(x⊕∆) is zero on m bits corresponding to the input of the i-th S-box. There is
k such spaces and once we have them, we can recover all the input spaces Ij by computing
the intersection of k − 1 spaces Vi.

Computing the Vi’s. We first remark that if we have a difference ∆ ∈ Vi, then the
output vector space of differences Oi will be of dimension n−m instead of n since one
S-box will be inactive. This is the test we will use to construct the Vi’s. The idea is to
pick a difference ∆ at random as well as n−m + l messages and then check whether the
dimension of the output is lower or equal to n−m. For a large enough value l, a difference
∆ will satisfy the condition if and only if it belongs to one of the Vi’s. Repeating this
procedure enough time would allow us to fully recover the spaces Vi. However this would
lead to a lot of rank computations. Instead we observe that, once we found an element
of Vi, we can build the full output difference space Oi. Hence we compute a parity-check

3It should be noted that our algorithm makes a (very mild) assumption about the non-linearity of
S-boxes: namely, we assume that, for most differences at the input of one S-box, the corresponding set of
reachable output differences spans the whole output space of that S-box. In particular, this requires that
the S-box does not have a linear approximation of probability one (in the sense of linear cryptanalysis).
By construction, cryptographic S-boxes are expected to fulfill this requirement.

10 On Recovering Affine Encodings in White-Box Implementations

matrix of Oi, i.e. a matrix Hi such that for any x ∈ Fn
2 , Hi · x = 0 if and only if x ∈ Oi.

This parity-check matrix can be used to quickly verify whether a vector belongs to Oi,
and, as a result, whether a difference ∆ belongs to Vi.

Recovering affine layers. The two previous steps allow us to build the spaces Ii and
Oi that we were looking for. As described above, we thus get some affine mappings
Ai,Bi,Pi,Qi for i = 1 . . . k. Note that we do not know which S-box is activated by
the space Ii, and thus one could think that we need to try all possible arrangement of
those affine mappings. However this is not necessary, since we could always write F as
F = B ◦ P−1 ◦ (S, . . . , S) ◦ P ◦ A where P is a permutation over the consecutive blocks
of m bits. Therefore, we build a block diagonal affine mapping DA (resp. DB) where the
blocks are the mappings A1, . . . ,Ak (resp. B1, . . . ,Bk), as well as the two affine mappings
P and Q built as

P = (P1| . . . |Pk), Q =

 Q1...
Qk

That way, we have that DA = A ◦ P and DB = Q ◦ B and thus by taking A′ = DA ◦ P−1

and B′ = Q−1 ◦ DB, we have our equivalent function F = B′ ◦ (S, . . . , S) ◦ A′.
The whole algorithm is summarized as pseudo code in Algorithm ??

Complexity of the algorithm. The first step is to compute all vector spaces Vi. We
can split this step into two parts. First, the computation of the output space Oi. Note that
our test only checks whether ∆ ∈ ∪k

j=1Vj , and this happens with probability k2−m. Hence
we need to try 2m values for ∆ on average to determine all the k output spaces. Taking
n−m + l elements in X leads to a probability of a false positive, i.e. rank(Oi) = n−m
while ∆ activates all S-boxes, of 2−ml for one value of ∆. The effective value of l will depend
on the overall probability of failure that we wish to achieve for the whole algorithm and will
be detailed below. Then computing the rank of Oi can be done in (n−m + l)2n = O(n3)
operations. All in all, the computation of the output spaces O1, O2, . . . , Ok has complexity

O
(
2mn3) .

The second part is to compute a basis of the input space Vi which is of dimension
n−m. To get each of those n−m vectors (minus ∆0 which we already know), we first
remark that as above, the probability that a difference ∆ is valid is 2−m, hence 2m tries
for ∆. Each value of ∆ will be tested using l values of x, leading to a probability of false
positive of 2−ml for one specific ∆. The parity-check matrix of Oi can be computed at
the same time as the rank computation, and thus adds no cost here. This matrix is of
size m× n, therefore checking if one output difference belongs to Oi costs about O(mn)
operations. Therefore, using that n = km, the complexity of computing the basis of size
n−m for each of the k spaces Vi is

O(k(n−m)2mlmn) = O(2mklmn2) = O(2mln3).

Computing all intersections of (k−1) vector spaces Vi can be done in O(kn3) operations
using the algorithm in Appendix ??. Then, we need to make k calls to the affine equivalence
algorithm, which leads to a complexity of O(km32m). All in all, the total complexity of
our algorithm is

O
(

2mn3 + 2mln3 + n4

m
+ 2mm2n

)
.

As mentioned previously, the algorithm from [?] was designed for random permutations.
This algorithm has a certain probability to fail, which is higher when the size of the S-box
is low, or when the affine equivalence problem has multiple solutions, which is the case for

Patrick Derbez , Pierre-Alain Fouque, Baptiste Lambin, Brice Minaud 11

Algorithm 1 Computing Ã and B̃.
1: for i = 1 . . . k do
2: ∆← random element in Fn

2
3: X ← {n−m + l random elements in Fn

2}
4: Oi ← F (X)⊕ F (X ⊕∆)
5: if (rank(Oi) > n−m) OR (Oi = Oj for any j < i) then
6: Go back to line 2
7: else With probability 2−m

8: Vi = {∆} Vi will contain a basis of n−m elements
9: while #Vi < n−m do
10: ∆← random element in Fn

2 s.t. ∆ 6∈ span(Vi) ∼ 2m values for ∆
11: x← random element in Fn

2 l values for x

12: if F (x)⊕ F (x⊕∆) ∈ Span(Oi) then Using a parity-check matrix of Oi

13: Vi = Vi ∪ {∆}
14: end if
15: end while
16: end if
17: end for

18: for each intersection Ij of k − 1 spaces Vi do j = 1 . . . k

19: Compute a m -bit to n -bit projection Pj from Fm
2 to Ij

20: Compute a n -bit to m -bit projection Qj from Oj to Fm
2

21: S′ ← Qj ◦ F ◦ Pj

22: S′ is a bijection over Fm
2 which is affine equivalent to S

23: Use the affine equivalence algorithm from Dinur to recover two affine mappings
Aj ,Bj of size m such that S′ = Bj ◦ S ◦ Aj

24: end for

25: DA ← diag(A1, . . . ,Ak) Block diagonal affine mapping with block size m

26: DB ← diag(B1, . . . ,Bk) Block diagonal affine mapping with block size m

27: P ← (P1| . . . |Pk) B′ = Q ◦ B

28: Q ←

 Q1
...
Qk

 A′ = A ◦ P

29: A′ ← DA ◦ P−1 and B′ ← Q−1 ◦ DB That way, we have F = B′ ◦ (S, . . . , S) ◦ A′

the AES S-box since it is self-affine equivalent. This was mentioned by the author, along
with a trick which could make the algorithm work on the AES S-box. However, we did
implement this trick, along with further tweaking, and the algorithm would still fail for
this specific choice of S-box. Hence, if the algorithm from Dinur fails, one would need to
use the algorithm from Biryukov et al. [?], which raises the complexity to

O
(

2mn3 + 2mln3 + n4

m
+ 22mm2n

)
.

Distinct S-boxes. In the analysis so far, we have assumed that all k S-boxes are identical.
In Appendix ??, we discuss how the previous algorithm can be adapted to handle the case
of different S-boxes. In the end, this yields a very similar complexity of

O
(

2mln3 + n4

m
+ 22mmn2

)

12 On Recovering Affine Encodings in White-Box Implementations

A(r)

AES(r) AES(r)

(
A(r+1))−1

⇒
A(r)

K(r) K(r)

S . . . S S . . . S

(
A(r+1)

)−1
MC ◦ SR MC ◦ SR

M (r)

table

Figure 2: The Baek et al. proposal

when using the algorithm from Biryukov et al., and O
(

2mln3 + n4

m + 2mmn2
)
when using

the improved affine equivalence algorithm from Dinur (cf. Appendix ??).

Probability of failure

In Appendix ??, we provide an analysis of the failure probability of Algorithm ??. Recall
that the number of messages we use within the algorithm is parametrized by the value l.
Intuitively, the probability of failure decreases with l.

In fact, as shown in Appendix ??, the probability of failure can be approximated by:

(k(n−m) + 1)2m(1−l).

As an example, for the Baek et al. proposal, the parameters are n = 256, m = 8 and k = 32.
Hence, using only l = 5 messages, the failure probability is 2−16. In practice, failures are
not a concern: in our experiments we set l = 5, and never encountered a failure.

3 Description of the White-Box Scheme by Baek et al.
Baek et al. provide a toolbox to break any white-box scheme in the CEJO framework [?].
Their results suggest that the main weakness in the previous proposals for white-box AES
is the size of the internal state. Thus, they proposed to concatenate two AES instances,
and encode them together in order to increase the size of the internal state (Fig. ??). We
note that their proposal is a white-box scheme with external encodings.

Baek et al. also showed that the cost of removing the non-linear encodings is lower
than recovering the affine encodings, so they focused only on designing affine encodings.
Let us recall the round function of AES, denoted as AES(r), built from the four sub-steps
AddRoundKey(ARK), SubBytes(SB), ShiftRows(SR) and MixColumns(MC):

AES(r) =
{

MC ◦ SR ◦ SB ◦ ARK, if r = 1, . . . , 9,

ARK ◦ SR ◦ SB ◦ ARK, if r = 10.

Thus, the encoded round function is the 256 -bit to 256 -bit mapping

F (r) =
(
A(r+1)

)−1
◦
(
AES(r),AES(r)

)
◦ A(r),

where A(r) are affine mappings on 256 bits. However, using a random affine mapping
would result in some impractical tables since these mappings are of input size 256.

Patrick Derbez , Pierre-Alain Fouque, Baptiste Lambin, Brice Minaud 13

Therefore, they proposed to build 32 tables from 16 bits to 256 bits for each round,
using some structured affine mappings as follows: Let Ar be an invertible linear map of
dimension 256 over F2, and denote the (i, j)-th 8× 8 block of Ar by Ar

i,j , i, j = 0, . . . , 31.
Then Ar is built such that Ar

i,j is the zero matrix for all (i, j) 6= (i, i), (i, i + 1) and (31, 0).
Finally, let ar = (ar

0, . . . , ar
31) be a random 256 -bit vector, where each ar

i is an 8 -bit block.
Then we define the input encoding of the r-th round A(r) with:

A(r)(x) = Ar · x⊕ ar =

Ar

0,0 Ar
0,1 0 0 . . . 0

0 Ar
1,1 Ar

1,2 0 . . . 0
...

...
...

...
. . .

...
Ar

31,0 0 0 0 . . . Ar
31,31

x0
x1
...

x31

⊕

ar
0

ar
1
...

ar
31

 . (1)

To generate the tables, we will merge
(
A(r+1))−1 with the linear part of AES, that

is, we define M(r) =
(
A(r+1))−1 ◦ (MC ◦ SR, MC ◦ SR) which is an affine mapping of

size 256. Then, as depicted on Fig. ?? our encoded round function becomes F (r) =
M(r) ◦ (S, . . . , S) ◦ ARK ◦ A(r) for r = 1, . . . , 9, where Kr is the r-th round key. The last
round (r = 10) is slightly different and will be treated in a later part.

Table construction. We split the linear part of M (r) into 32 linear blocks of size
256 × 8 Mr

i such that M(r)(x) = (Mr
0 , . . . , Mr

31) · x ⊕mr where mr is a 256 -bit vector
representing the affine part ofM(r). Also take 31 random 256 -bit vectors mr

i , i = 0, . . . , 30
and mr

31 = mr ⊕mr
0 ⊕ · · · ⊕mr

30. Then for i = 0, . . . , 31, we have the 16 -bit to 256 -bit
tables F

(r)
i defined as:

F
(r)
i = ACmr

i
◦Mr

i ◦ S ◦ ACKr
i
⊕ar

i
◦
(
Ar

i,i Ar
i,i+1

)
where ACa is defined as ACa(x) = x⊕a and the index are taken modulo 32 when necessary.
Thus, one can evaluate the encoded round function F (r) as the sum of F

(r)
i :

F (r) (x0, x1, . . . , x31) =
31⊕

i=0
F

(r)
i (xi, xi+1) .

Therefore to implement our encoded round function F (r), instead of having an unreasonable
256 -bit to 256 -bit table, we juste need to store 32 tables from 16 bits to 256 bits.

However, the partial application F
(r)
i (x, 0) = ACmr

i
◦Mr

i ◦ S ◦ ACKr
i
⊕ar

i
◦ Ar

i,i(x) is
an 8 -bit to 256 -bit mapping which can be reduced to an 8 -bit bijection by applying a
projection. Then it is affine equivalent to S, and one can efficiently recover the affine
mappings with the affine equivalence algorithm described in [?] in about 225 operations.
To prevent this weakness, Baek et al. proposed to replace F

(r)
i by T

(r)
i such that

T
(r)
i (x, y) = F

(r)
i (x, y)⊕ h

(r)
i (x)⊕ h

(r)
i+1(y),

where h
(r)
i is a random 8 -bit to 256 -bit function, and we get

31⊕
i=0

T
(r)
i (xi, xi+1) =

31⊕
i=0

F
(r)
i (xi, xi+1) = F (r) (x0, x1, . . . , x31)

using the fact that the index are taken modulo 32. We will later see that this choice was
not enough to hide the structure of F

(r)
i .

External encodings. Consider two random 256 -bit affine functionsMin andMout.
The external input encoding function is then defined by F (0) =

(
A(1))−1 ◦Min, which is

14 On Recovering Affine Encodings in White-Box Implementations

implemented with a 256× 256 matrix and a 256 -bit vector. The external output encoding
Mout allows us to define the last encoded round function as

F (10) =Mout ◦
(
AES(10),AES(10)

)
◦ A(10),

where AES(10) = ACK11 ◦ SR ◦ (S, . . . , S) ◦ ACK10 .
This function is then split into 32 tables T

(10)
i using the same technique as above. That

way, we have
F (10) ◦ · · · ◦ F (1) ◦ F (0) =Mout ◦ (AES,AES) ◦Min.

Since one encoded round function is implemented with 32 tables from 16 bits to 256
bits, the memory required for each encoded round function is

32× 216 × 256 bits = 64 MB,

leading to 640MB for the full scheme with external encodings. In their paper, Baek et al.
evaluate the security of this construction to 2110 using their toolbox. However, as we will
show in the next section, we are able to decrypt any message in ∼ 10× 230 operations,
and fully break this construction by recovering the key in ∼ 231 operations.

4 Cryptanalysis of the Scheme by Baek et al.
Baek et al. assessed the security level of their proposition to 110 bits. Recall that each
encoded round function is of the form F =M◦ (S, . . . , S) ◦ A whereM and A are affine
mappings. Therefore, our generic algorithm from Section ?? can be used to compute an
equivalent round function F =M′ ◦ (S, . . . , S) ◦ A′ where A′ andM′ are known affine
mappings, in about ∼ 234.6 operations. However, one can exploit the specific structure of
the encodings to mount a more efficient dedicated attack on their scheme. We will first
begin by giving a method of complexity ∼ 230 to recover a computationally easy to invert
equivalent representation of one encoded round function. Next, we will show that instead
of using this method 10 times (for each round function), we are able to fully break this
scheme in ∼ 231 operations, that is, recovering the secret key used in the underlying AES
as well as the external encodingsMin andMout.

4.1 Building an Equivalent Representation of the Scheme
Let us consider one encoded round function and drop the exponent notation for the round
as it is not relevant here, and also merge the key addition with the input affine encoding.
Given an encoded round function F of the formM◦ (S, . . . , S) ◦ A whereM and A are
secret affine mappings, and A has the structure depicted in (??), our goal is to provide a
computationally easy to invert representation of F , that is, finding two equivalent affine
mappingsM′ and A′ such that F =M′ ◦ (S, . . . , S)◦A′. In that case, inverting one round
would only cost two inversions of 256 -bit affine mappings. Remember that the encoded
round function is hidden in the tables Ti(x, y) = Fi(x, y)⊕ hi(x)⊕ hi+1(y) where hi are
random functions.

4.1.1 Reducing the Problem to Block Diagonal Input Encodings

Finding the input encoding can easily be done if this encoding is a block diagonal affine
mapping where each block is of size 8. By applying an appropriate projection, one can
obtain some 8 -bit bijections that are affine equivalent to the AES S-box. In that case,
recovering the affine mappings used can be done in about 225 operations with the affine
equivalence algorithm from [?]. Because of the random mappings hi, one cannot use this

Patrick Derbez , Pierre-Alain Fouque, Baptiste Lambin, Brice Minaud 15

algorithm directly on the tables in the Baek et al. proposal. However, we will show that
we can decompose the secret input encoding A in A = B ◦ Ã where:

• B is a secret block diagonal affine mapping, built from blocks Bi of size 8× 8,

• Ã is a known linear mapping which has the same structure as A (??).

Let us denote the 16 -bit to 8 -bit linear mapping Li = (Ai,i Ai,i+1), which is unknown
by the attacker. By construction, since we want the affine encodings to be invertible, we
know that Li is of rank 8. If one is able to recover Ker Li, which is then a linear space
over F16

2 of dimension 16 − 8 = 8, then there exists an 8 × 8 invertible matrix Bi such
that Li = Bi ◦ (08 Id8) ◦ V −1

i , where the linear mapping Vi is built as (v1 . . . v16) with
{v1, . . . , v8} a basis of Ker Li and {v9, . . . , v16} a completion of this basis. In that case,
while the matrices Bi are still unknown for the attacker and will form the block diagonal
matrix B, one can build the matrix Ã from the 8× 16 blocks (08 Id8) ◦ V −1

i .
So now, we only need a way to compute Ker Li from the tables Ti, which can be done

using the following lemma.

Lemma 1. For any (a, b) ∈ F8
2 × F8

2:
1. x ∈ Ker Ai,i ⇒ y 7→ Ti(a⊕ x, b⊕ y)⊕ Ti(a, b⊕ y) is constant,

2. y ∈ Ker Ai,i+1 ⇒ x 7→ Ti(a⊕ x, b⊕ y)⊕ Ti(a⊕ x, y) is constant,

3. (x, y) ∈ Ker Li ⇒ Ti(a, b)⊕ Ti(a⊕ x, b)⊕ Ti(a, b⊕ y)⊕ Ti(a⊕ x, b⊕ y) = 0.

A proof of Lemma ?? is provided in Appendix ??. Note that the third point is a strict
implication. Indeed, if one takes x ∈ Ker Ai,i, one can easily see that for any y ∈ F8

2, the
third equation holds while (x, y) is not necessarily in Ker Li. So to compute Ker Li, we
first need to recover Ker Ai,i and Ker Ai,i+1.

We can safely assume that if x /∈ Ker Ai,i, the function fx : y 7→ Ti(a ⊕ x, b ⊕ y) ⊕
Ti(a, b⊕ y) behaves like a random function and then is constant with overwhelmingly low
probability. Therefore, by choosing any (a, b) ∈ F8

2 × F8
2, one can check if x ∈ Ker Ai,i by

computing fx and checking whether or not fx is constant. Obviously, the same method
can be applied to recover Ker Ai,i+1.

Once Ker Ai,i and Ker Ai,i+1 are recovered, one can recover the remaining elements
(x, y) ∈ Ker Li with x /∈ Ker Ai,i and y /∈ Ker Ai,i+1 by using the third implication: if
(x, y) /∈ Ker Li, we can assume that the resulting value of the equation behaves like a
random variable over F8

2 and is then equal to 0 with probability 2−8. Therefore, one can
check if (x, y) ∈ Ker Li by choosing a few4 values for (a, b) and checking if the equation
stands for all these (a, b). Pseudo-code for this step is provided in Appendix ??.

In that way, we can recover Ker Li in roughly ∼ 218 table lookups using the method
described above and which is summarized in Algorithm 1. Since we need to repeat this
operation 32 times, we end up with a complexity of ∼ 223 table lookups to decompose A
into A = B ◦ Ã.

4.1.2 Building an Equivalent Representation of the Round Function

At this point, our encoded round function is F = M ◦ (S, . . . , S) ◦ B ◦ Ã where Ã is
known and B is block diagonal, built with 8 × 8 affine mappings B0, . . . ,B31, but is
still secret. Our goal is to find an equivalent representation of the round function, that
is, finding affine mappings M′ and B′ which behave like M and B in the sense that
F =M′ ◦ (S, . . . , S) ◦ B′ ◦ Ã.

The idea is to find 32 affine mappings B′i of size 8 to build B′. Note that here, these B′i
will not necessarily be equal to Bi, but we will see that we can then buildM′ in a way
that solves this problem.

4In practice, 4 values are sufficient.

16 On Recovering Affine Encodings in White-Box Implementations

 · · · M̃i · · ·

 ◦

S
...
S

 ◦

. . .

B̃i

. . .

 ◦ Ã

...
0
xi

0...

...
0

∆yi

0...

S ◦ B̃i
∆z

∆z = M̃i · ∆yi

⊕
T

Figure 3: Building M̃i

Recall that we can evaluate the encoded round function F by summing over the tables
Tj . For xi ∈ F8

2, let consider the function

31⊕
j=0

Tj ◦ Ã−1(0, . . . , xi, . . . , 0).

Since B is block diagonal with blocks of size 8, only one S-box will be active, and so this
function is a 8 -bit to 256 -bit mapping of the form H ◦ S ◦ Bi where H is some affine
function of size 8× 256. Note that H, S and Bi are all injective (at least) by construction.
So we can compute this function and deduce an affine projection P such that P ◦H◦S ◦Bi

is a bijection over F8
2. This bijection is then affine equivalent to the AES S-box, and we

can use the affine equivalence algorithm from [?] to recover Bi in ∼ 225.
However, there are some self-equivalence relations on the AES S-box, which means

there exist some5 affine mappings A1,A2 of size 8×8 such that A2 ◦S ◦A1 = S. Therefore,
the affine equivalence algorithm will not exactly recover Bi, but one B′i = A1 ◦ Bi without
knowing which A1 is used. In our present case where we only want to provide an equivalent
representation of the round function, this does not really matter. We can choose any
candidate for each B′i, and we will show how to build an affine mappingM′ to compensate
the action of A1.

So we are looking at our equivalent round-functionM′ ◦ (S, . . . , S) ◦ B′ ◦ Ã, where B′
and Ã are known, but we still need to findM′. The overall strategy for that is depicted in
Fig. ?? and detailed below. As in the description of the scheme, let us split the linear part
ofM′ into (M ′

0 . . . M ′
31) where M ′

i is of size 256× 8. Algorithm 2 gives the procedure to
compute M ′

i . The idea is just to compute the image each vector of the canonical basis
through M ′, which can be done using the fact that we fixed one candidate for each B′i.

We can apply this method for all 32 blocks B′i to recover the linear part ofM′. After
that, to recover the affine translation m′ ofM′, we only need to compute

z′ = M ′.(S, . . . , S) ◦ B ◦ Ã(x)

and z =
⊕

Ti(x) for one x ∈ F256
2 , then we can easily recover m′ since in that case

z = z′ ⊕m′.
So we are able to provide a computationally easy to invert equivalent representation of

the encoded round function asM′ ◦ (S, . . . , S) ◦ B′ ◦ Ã. The complexity of buildingM′

5There are 2040 such pairs (A1,A2), see [?].

Patrick Derbez , Pierre-Alain Fouque, Baptiste Lambin, Brice Minaud 17

Algorithm 2 Computing M ′
i

1: x0
i ← random element in F8

2
2: x0 ← (0 . . . x0

i . . . 0) ∈ F256
2

3: z0 ←
⊕

T ◦ Ã−1(x0)
4: y0

i ← S(B′i(x0
i)) since we know B′i

5: for each ej = (0 . . . 1 . . . 0) ∈ F8
2 do with a 1 at the j-th position

6: yj
i ← y0

i ⊕ ej

7: xj
i ← B

′−1
i (S−1(yj

i))
8: xj ← (0 . . . xj

i . . . 0)
9: zj ←

⊕
T ◦ Ã−1(xj)

10: ∆zj ← z0 ⊕ zj

11: j-th column of M ′
i ← ∆zj since ∆yj = (0 . . . ej . . . 0)

12: end for

and B′ is dominated by the 32 calls to the affine equivalence algorithm to get each B′i,
which lead to a complexity of about 32× 225 = 230, which is therefore the complexity of
this whole 1-round attack.

4.1.3 Building an Equivalent Representation of the Scheme

Therefore, we can already provide an attack on the full 10-round scheme: indeed, we
just need to apply the above method on each encoded round function F (r). Note that
the external encodings do not pose any problem here. For the external input encoding
Min, recall that we know the affine mapping F (0) =

(
A(0))−1 ◦Min. Using the previous

technique, we are able to recover an equivalent representation F̃ (1) of F (1), such that
F̃ (1) = F (1) while F̃ (1) is easy to invert. So since we then have F̃ (1) ◦ F (0) = F (1) ◦ F (0),
we do not need to do anything aboutMin to provide an equivalent representation of the
scheme.

For the external output encodingMout, recall that the last encoded round function
F (10) is defined by

F (10) =Mout ◦
(
AES(10),AES(10)

)
◦ A(10) =M(10) ◦ (S, . . . , S) ◦ A(10)

whereM(10) =Mout ◦ ⊕K11 ◦ SR. Then our technique applied on F (10) gives us 3 affine
mappingsM′(10),B′(10) and A′(10) such that

F (10) = F̃ (10) =M′(10) ◦ (S, . . . , S) ◦ B′(10) ◦ A′(10)

while F̃ (10) is easy to invert, so again,Mout does not pose any problem here.
All in all, we have built 10 easy to invert equivalent round-functions F̃ (r) such that

F̃ (10) ◦ · · · ◦ F̃ (1) ◦ F (0) = F (10) ◦ · · · ◦ F (1) ◦ F (0) =Mout ◦ (AES,AES) ◦Min,

which is the original scheme. The cost for doing this is to repeat 10 times the 1-round
attack, which gives us a complexity of 10× 230. While this is already practical, we only
have an equivalent representation of the scheme, but we did not recover the key nor the
encodings.

4.2 Recovering the Key
While we could just use the previous method 10 times on each encoded round function to
provide an easy to invert representation of the full scheme, we can do better and fully break

18 On Recovering Affine Encodings in White-Box Implementations

Ã−1 ◦

∆y0
∆y1
∆y2
∆y3

B−1
0

B−1
1

B−1
2

B−1
3

 ◦

∆z0
∆z1
∆z2
∆z3

MC ◦

∆w0

0
0
0

S
...
S

 ◦
C0

C5
C10

C15

 ◦

x0

0
0
0

Â

⊕
Tj

211 cand.

MITM
B0 ·∆y0 = ∆z0

211 cand.

Figure 4: Identifying correct blocks.

the scheme by recovering the key in a more efficient way by exploiting two consecutive
rounds.

So let us start at the point where we decomposed one round into F =M◦ (S, . . . , S) ◦
B ◦ Ã, with Ã known and B an affine diagonal mapping. Recall that using the affine
equivalence algorithm from [?] for each block does not give us exactly Bi, but roughly
211 candidates B′i. If we want to recover exactly the key and the encodings, we need to
identify which candidate is exactly Bi. Note that since we have 211 candidates for each of
the 32 Bi, we cannot exhaust them all.

To be able to quickly identify the correct candidate, one can first apply the previous
method on two consecutive rounds. By doing so, we decompose these two rounds into

F (r+1) =M(r+1) ◦ (S, . . . , S) ◦ B ◦ Ã

F (r) =M(r) ◦ (S, . . . , S) ◦ C ◦ Â

where Ã, Â are known and B, C are affine block diagonal mappings, which are still secret,
but for which we know 211 candidates for each block Bi and Ci.

In that case, we can write F (r) as

Ã−1 ◦ B−1 ◦ (MC ◦ SR, MC ◦ SR) ◦ (S, . . . , S) ◦ C ◦ Â.

Since B is block diagonal, so is its inverse, and we know Ã and Â. Our problem in then
reduced to block diagonal input and output encodings for one encoded round function,
with 211 candidates for each block Bi and Ci. We now need to recover which are the correct
Bi and Ci. To do so, we will use a Meet-in-the-Middle approach depicted in Fig.?? and
detailed below.

The MixColumns operation of AES works on words of four bytes, so we restrict our work
on four Bi and the corresponding four Ci that will be used as input of the same MixColumns
operation. For example, as depicted in Fig.??, we can first consider B0, B1, B2, B3 and
C0, C5, C10, C15 which will be on the same MixColumns operation after the application of
ShiftRows. For an easier understanding, we will describe our MITM method using these
blocks, as it will be exactly the same for the other Bi and Ci. The detailed procedure is
given in Algorithm ??.

We want to use the MITM to identify the correct (B0, C0), for which we have 222

candidates in total. As we will search a match with ∆z1
0 , . . . , ∆zm

0 where each ∆zj
i is an

8 -bit value, taking m = 4 leads to a 32 -bit filter, which is enough to leave only the right
candidates. Building the hash table costs ∼ 211, and so does the matching step. Once B0

Patrick Derbez , Pierre-Alain Fouque, Baptiste Lambin, Brice Minaud 19

Algorithm 3 Identifying correct blocks
1: x0, . . . , xm ← messages with byte xj

0 taking different values and xj
i = 0 if i 6= 0

2: for each candidate for C0 do
3: ∆wj

0 ← S(C0(x0
0))⊕ S(C0(xj

0)) xj
i is constant if i 6= 0, so ∆wj

i = 0 if i 6= 0
4: (∆zj

0, ∆zj
1, ∆zj

2, ∆zj
3)← MC.(∆wj

0, 0, 0, 0)
5: Store C0 in a hash table Tz indexed by ∆z1

0 , . . . , ∆zm
0

6: end for
7: yj ← Ã ◦ F (r) ◦ Â−1(xj) F (r) can be evaluated using the tables Tj

8: ∆yj
0 ← y0

0 ⊕ yj
0

9: for each candidate for B0 do
10: ∆z̃j

0 ← B0.∆yj
0

11: if ∆z̃1
0 , . . . , ∆z̃m

0 ∈ Tz then
12: We have the correct B0 and C0 = Tz[∆z̃1

0 , . . . , ∆z̃m
0]

13: break
14: end if
15: end for
16: Once we have the correct C0, we know the correct values of ∆zj

i , so we do not need
any hash table

17: for each candidate for Bi, i = 1, 2, 3 do
18: if Bi.∆yj

i = ∆zj
i then

19: We have the correct Bi

20: end if
21: end for
22: Once we have all the correct B0,B1,B2,B3, we can use the same kind of computation

to identify the correct remaining Ci using messages with xj
i taking different values and

xj
l constant for l 6= i

and C0 are recovered, we only need to go through all the candidates for the remaining Bi

and Ci, which is done separately. Since we have 211 candidates for each of them, the total
cost of this step is roughly 8× 211 = 214. Finally, we need to do this method on each of
the 8 groups of 4 Bi and 4 Ci, leading to a complexity of ∼ 217 to recover B and C.

Extracting the Key

Note that the reason why we used the differences ∆zi instead of the values are because
when we decomposed F (r+1) into M(r+1) ◦ (S, . . . , S) ◦ B ◦ Ã, B contains the key in its
affine translation: that is, we have B(x) = B.x⊕(b⊕K(r+1)) such that B.Ã.x⊕b = A(r+1).
The same phenomenon happens with C, which we recover as C(x) = C.x⊕ (c⊕K(r)). So
when we need to use Bi for the MITM, the affine translation will not be the good one,
while the linear part is. However, once we recovered the correct B and C, we can use this
fact to recover the key K(r+1), and thus also recovering exactly the affine translation of B
and C. Indeed, denote z = (MC ◦ SR, MC ◦ SR) ◦ (S, . . . , S) ◦ C ◦ Â(x) and y = Ã ◦ F (r)(x)
where again, F (r) is computed using the tables. Then we know that B.z ⊕ b = y, and
since we know B, y and z, we can easily compute b. Finally, since we previously recovered
B(x) = B.x⊕ (b⊕K(r+1)), we get K(r+1).

Since the key schedule of AES is invertible, one can do this procedure on the first two
rounds, given through the tables T (1) and T (2). That way we can compute K(1), which
is the master key used in AES, from K(2). This only leaves the external encodings to be
recovered, which is an easy task now. We can recover exactly which affine translation was

20 On Recovering Affine Encodings in White-Box Implementations

Mout ◦ (AES, AES) ◦ Min

z y x

tables lookup

Figure 5: Recovering Mout

used for C for which we knew C(x) = C.x⊕ (c⊕K(1)). Then we can recover the first input
encoding A(1) as A(1)(x) = C.Â.x ⊕ c. Now recall that the external input encoding we
knew was F (0) =

(
A(1))−1 ◦Min. We recovered A(1) so it is easy to computeMin.

RecoveringMout is not hard either, see Fig. ??. We know the key, meaning we can
easily compute the two parallel AES, and we also knowMin. So for any y ∈ F256

2 , one
can compute x such that y = (AES,AES) ◦Min(x), then z =Mout(y) from x by using
the tables. Therefore, we only need to do this for 257 values of y: the zero vector to get
the affine translation ofMout and then each of the 256 canonical basis vectors.

All in all, we recovered the key of the AES as well as both external encodings. The cost
of doing this is dominated by the cost of the 64 calls to the affine equivalence algorithm to
get some candidates for Bi and Ci, which leads to complexity of ∼ 231.

In Appendix ??, we consider a natural extension of the scheme by Baek et al., where
more than two AES instances are encoded together. We show that our attack remains
efficient even in that case.

Implementation. We implemented the attack in C++, relying on NTL [?] for linear
algebra. The total time to recover both the key and the external encodings is about 12
seconds, with roughly 10 seconds spent on the 64 affine equivalences, and using a negligible
amount of memory. This was run on a Intel Core i7-6600U CPU @ 2.60GHz on a single
core. Our implementation is available at http://yaawai.tk/.

5 Conclusion

In this article, we propose a generic algorithm to recover affine encodings for SPN ciphers,
in the context of white-box schemes following the framework of Chow et al. More generally,
our algorithm solves the affine equivalence problem in the special case where one of the
two maps is composed of the parallel application of distinct S-boxes. We illustrate the
efficiency of our attack on a white-box implementation of AES with external encodings
proposed by Baek, Cheon and Hong, which was precisely designed to make a generic ASA
approach out of computational reach. Nevertheless our generic attack breaks the scheme
in 235 basic operations, compared to the assessment by its authors that 2110 would be
required. We then took a closer look at the Baek et al. scheme, and identified another
attack vector, which reduces the attack to a simple standalone problem. This second
approach results recovers the secret key in time complexity 231. A full implementation of
the attack confirms the complexity estimate.

It may be fair to suggest that a secure white-box implementation in anything resembling
the CEJO framework is implausible, considering every attempt to date has been closely
followed by a devastating attack. In a nutshell, in this work we showed that obfuscating
the round function of an SPN cipher (such as AES) using affine encodings is essentially
impossible. In this light, our result suggests that non-linear encodings should play a central
role in any future endeavor in this direction.

http://yaawai.tk/

Patrick Derbez , Pierre-Alain Fouque, Baptiste Lambin, Brice Minaud 21

A Computing all Intersections of k − 1 Subspaces among
k Subspaces

In our algorithm from Section ??, we have k vector spaces Vi ⊂ Fn
2 of dimension n−m,

and we need to compute each intersection of (k − 1) spaces Vi. Let Bi be the n× (n−m)
matrix such that its columns are the vector of a basis of Vi. In order to save computations,
we begin by echelonizing each matrix (Bi | In) where In denote the identity matrix of size
n. This leads to matrices with the following structure: In−m Ci

0 Di

 ,

where Ci is a matrix of size (n−m)× n and Di is of size m× n. We note that a vector x
belongs to Vi if and only if it belongs to Ker Di. Therefore, with D the matrix built as

D =

D1...
Dk

 ,

if x ∈ Ker D, then for all i, x ∈ Ker Di, which leads to x ∈ Vi and thus x ∈ V1 ∩ · · · ∩ Vk.
In our case, we do not need the intersection of all V1, . . . , Vk, but all the intersection of

k − 1 spaces Vi. To do so, instead of building D from all the matrices Di, one can build
D from only k − 1 matrices Di, leading to the intersection

⋂
i 6=j

Vi for each j = 1 . . . k.

The complexity of this whole computation is as follows. We first need to echelonize
each (Bi|In) on their first n −m columns. Note that this computation can be done at
the same time as the line 10 in the previous algorithm: since we need to draw ∆ linearly
independent from the previous computed vectors of Vi, we can echelonize the basis of Vi

as we build it. Since Bi is of size n × (n −m), the cost of doing this for each i is thus
kn2(2n−m) = O(kn3). Then we need to compute the kernel of the matrices D built from
k − 1 matrices Di. Note that, those matrices being of size (k − 1)m× n, computing the k
kernels needs about ((k − 1)m)2n = O(n3) operations. However, by doing this in a clever
way, one can avoid repeating the same computations and thus improve the constant hidden
in the O() notation.

First, denote by Ki the kernel computed from the matrices Dj with j 6= i, and

D =

D1...
Dk

 .

Remark that computing Ki with i 6= 1 (i.e. all kernels containing D1) is the same as
removing one block Dj , j 6= 1 from D and echelonizing the resulting matrix. Thus by
doing this naively, one would echelonize several times from the m rows of D1. So we want
to avoid those redundant computation. Therefore, we first echelonize D on the m rows of
D1, leading to the matrix D′ with the following structure

De
1

D′2...
D′k

D′ =

22 On Recovering Affine Encodings in White-Box Implementations

D1
...

Dk

De
1

D′2...
D′k

De
1

De
2

D′′3...
D′′k

.

De
1

D′3
D′4...
D′k

D2

D3...
Dk

Compute K1

(k − 1)2m2n

Ech. D1

km2n

Compute K2

(k − 2)2m2n

Ech. D′2
(k − 1)m2n

Figure 6: Efficient computation of the kernels

This matrix D′ can be used to compute all kernels containing D1 by removing one of the
block D′j . Again, doing this naively would result in a lot of redundant echelonization on
the rows of D′2, therefore we repeat the previous procedure by echelonizing D′ on the rows
of D′2 once for all, leading to a matrix D′′ which we will use to compute all the kernels
containing D1 and D2. A summary of this procedure is depicted in the Figure ??, along
with the complexity of each step in the tree. To be more precise about this complexity,
let give a look at the operations we need to do on the i-th level of the tree. We need to
compute the kernel Ki from a (k − 1)m× n matrix which has already be echelonized on
im rows, thus leading to a complexity of (k − 1 − i)2m2n operations. We also need to
echelonize on m rows of a matrix of total size km× n, which is also already echelonized
on im rows, which needs (k − i)m2n operations. Therefore, the total complexity of this
way to compute the kernels is

k−2∑
i=0

(k − i− 1)2m2n + (k − i)m2n =
m2n

(
k3 + 2k − 1

)
3

To compare, the naive way to do, i.e. computing each kernel independently, would lead to
a complexity of

k(k − 1)2m2n = m2n(k3 − 2k2 + k)

leading to a speed up of about 3 for this step.

B Handling Distinct S-Boxes
In Section ??, we have presented our generic algorithm for the case where all S-boxes in the
scheme are the same. In this section, we describe how our algorithm would change if each

Patrick Derbez , Pierre-Alain Fouque, Baptiste Lambin, Brice Minaud 23

S-box is different, that is, having the function F built as F = B◦ (S1, . . . , Sk)◦A. The only
step where the concrete definition of the S-boxes is used is when we want to use the affine
equivalence algorithm by Dinur. Recall that given two permutations S and S′ = Bi ◦S ◦Ai

where Ai and Bi are unknown, this algorithm finds A′i,B′i such that S′ = B′i ◦S ◦A′i. Note
that when we compute the input spaces Ij , we do not know which S-box remains active.
Thus for each Ij , we need to call the affine equivalence algorithm for each possible S-box
Si which may seems costly. However, the affine equivalence algorithm scales very well
in the case we want to search for an equivalence from a set of S-boxes. That is, given
S′ = Bi ◦ Si ◦ Ai where i is also unknown, find which S-box is affine equivalent to S′.

To compute the affine equivalence between two S-boxes S and S′, we use the algorithm
from [?]. However, our problem is actually to find affine equivalences between two sets
of k S-boxes: namely the k S-boxes S1, . . . , Sk known in advance, and the k S-boxes
S′1, . . . , S′k which we recover from F using our algorithm. Each one of the Si’s is affine
equivalent to one of the S′j ’s, but we do not know a priori which one. We could simply try
all
(

k
2
)
possible matches, however there is a better algorithm. Indeed, as observed in [?,

Section 3.1], in this setting their algorithm can be made to only grow linearly in k, rather
than quadratically. A brief summary of how this is achieved is provided in Algorithm ??;
we refer to [?] for more details about how a canonical representative is computed. For
simplicity, Algorithm ?? only outputs the set of affine equivalent pairs, but it can be easily
modified to also output the corresponding affine mappings. In the end, we have an overall
complexity O(km322m) to match all pairs of S-boxes. Note that the same idea can be
applied to the improved affine equivalence algorithm from Dinur [?], which thus lead to a
complexity of O(km32m).

Algorithm 4 Given S1, . . . , Sk, and S′1, . . . , S′k find all affine equivalent pairs (Si, S′j).
1: T ← empty map
2: for i = 1 . . . k do
3: for all a ∈ Fm

2 do
4: R← canonical representative of the linear equivalence class of Si ⊕ a

5: Append i to T [R] (viewed as a set)
6: end for
7: end for
8: for j = 1 . . . k do
9: for all b ∈ Fm

2 do
10: R← canonical representative of the linear equivalence class of S′j ⊕ b

11: for i in T [R] do
12: Output (i, j)
13: end for
14: end for
15: end for

All in all, this adds a factor k in the overall complexity, which becomes

O
(

2mn3 + 2mln3 + n4

m
+ k22mm2n

)
= O

(
2mln3 + n4

m
+ 22mmn2

)

when using the algorithm from Biryukov et al., and O
(

2mln3 + n4

m + 2mmn2
)
when using

the improved affine equivalence algorithm from Dinur.

24 On Recovering Affine Encodings in White-Box Implementations

C Probability of Failure for Algorithm ??
In this section, we study the probability of failure of our main algorithm, Algorithm ??.

In Algorithm ??, the number of messages we use is parametrized by the value l, and the
probability of failure decreases with l. Failures in our algorithm stem e.g. from generating
n−m + l output differences activating all S-boxes, and these output differences spanning
a subspace of dimension n−m despite all S-boxes being active. Intuitively, it seems clear
that the probability of such an event decreases exponentially with l. However the exact
probability of a failure depends on the S-boxes under consideration, and more specifically,
it depends on their differential distribution table. As a result, an exact analysis of the
failure probability is quite complex.

In what follows, to keep the analysis in check, when a random input difference activates
all S-boxes, we approximate output differences by uniformly random vectors. We submit
that for cryptographic S-boxes, this is a reasonable approximation of reality as far as
the dimension of the output space is concerned, which is what matters for our algorithm.
Moreover, we have successfully run experiments (using the AES S-box, as well as random
ones) to validate that failure probability behaves as expected.
During the computation of the Oi’s. When we search the output space Oi, we draw
n−m + l random elements to test whether the output space is of dimension lower or equal
to n −m. Here, a false positive would be a difference ∆ such that rank(Oi) = n −m
while ∆ activates all S-boxes. Therefore the probability of a false positive at this step is
upper-bounded by 2−ml for one value of ∆. Since we do this step for about 2m values of
∆, the probability that a false positive occurs in this step over all the algorithm is upper
bounded by 2m2−ml = 2m(1−l).
During the computation of the Vi’s. For each value of ∆, we want to test whether
F (x)⊕ F (x⊕∆) ∈ span(Oi) for l values of x. In that case, a false positive is a value of ∆
such that this test is verified while ∆ activates all S-boxes. Again, since dim(Oi) = n−m,
the probability of a false positive of a specific value of ∆ is 2−ml. We try about 2m

values of ∆ on average, and need to do this to find all the n−m basis vectors for each of
the k spaces Vi. So the probability of a false positive at this step is upper bounded by
k(n−m)2m(1−l).
Overall failure probability. The probability of failure of our algorithm is upper-bounded
by the sum of the two previous probabilities, which is to say:

(k(n−m) + 1)2m(1−l).

As noted in Section ??, for the Baek et al. proposal, the parameters are n = 256, m = 8
and k = 32. Thus, using only l = 5 messages, the failure probability is 2−16.

D Proof of Lemma ??
We recall the statement of Lemma ??, reusing notation from Section ??.

Lemma 1. For any (a, b) ∈ F8
2 × F8

2:
1. x ∈ Ker Ai,i ⇒ y 7→ Ti(a⊕ x, b⊕ y)⊕ Ti(a, b⊕ y) is constant,

2. y ∈ Ker Ai,i+1 ⇒ x 7→ Ti(a⊕ x, b⊕ y)⊕ Ti(a⊕ x, y) is constant,

3. (x, y) ∈ Ker Li ⇒ Ti(a, b)⊕ Ti(a⊕ x, b)⊕ Ti(a, b⊕ y)⊕ Ti(a⊕ x, b⊕ y) = 0.

Proof. We will only prove the first and the last points, since the second one is very similar
to the first. From the construction of Ti, we can write it as

Ti(x, y) = S̃i [Ai,i(x)⊕Ai,i+1(y)⊕ ci]⊕ hi(x)⊕ hi+1(y)

Patrick Derbez , Pierre-Alain Fouque, Baptiste Lambin, Brice Minaud 25

where S̃i = Mi ◦ S.
1. Let us take (a, b) a fixed element in F8

2 × F8
2 and x ∈ Ker Ai,i. Then for any y ∈ F8

2
we have

Ti(a⊕ x, b⊕ y)⊕ Ti(a, b⊕ y)

= S̃i [Ai,i(a⊕ x)⊕Ai,i+1(b⊕ y)⊕ ci]⊕ hi(a⊕ x)⊕ hi+1(b⊕ y)

⊕ S̃i [Ai,i(a)⊕Ai,i+1(b⊕ y)⊕ ci]⊕ hi(a)⊕ hi+1(b⊕ y)

= S̃i [Ai,i(a)⊕Ai,i+1(b⊕ y)⊕ ci]⊕ hi(a⊕ x)

⊕ S̃i [Ai,i(a)⊕Ai,i+1(b⊕ y)⊕ ci]⊕ hi(a)
= hi(a⊕ x)⊕ hi(a),

which does not depend on y, therefore y 7→ Ti(a⊕ x, b⊕ y)⊕ Ti(a, b⊕ y) is constant.
3. First note that (x, y) ∈ Ker Li ⇔ Li(x, y) = 0⇔ Ai,i(x) = Ai,i,+1(y).
So let take (a, b) a fixed element in F8

2 × F8
2 and (x, y) ∈ Ker Li, then

Ti(a, b)⊕ Ti(a⊕ x, b)⊕ Ti(a, b⊕ y)⊕ Ti(a⊕ x, b⊕ y)

= S̃i [Ai,i(a)⊕Ai,i+1(b)⊕ ci]⊕ hi(a)⊕ hi+1(b)

⊕ S̃i [Ai,i(a⊕ x)⊕Ai,i+1(b)⊕ ci]⊕ hi(a⊕ x)⊕ hi+1(b)

⊕ S̃i [Ai,i(a)⊕Ai,i+1(b⊕ y)⊕ ci]⊕ hi(a)⊕ hi+1(b⊕ y)

⊕ S̃i [Ai,i(a⊕ x)⊕Ai,i+1(b⊕ y)⊕ ci]⊕ hi(a⊕ x)⊕ hi+1(b⊕ y)

= S̃i [Ai,i(a)⊕Ai,i+1(b)⊕ ci]

⊕ S̃i [Ai,i(a)⊕Ai,i(x)⊕Ai,i+1(b)⊕ ci]

⊕ S̃i [Ai,i(a)⊕Ai,i+1(b)⊕Ai,i+1(y)⊕ ci]

⊕ S̃i [Ai,i(a)⊕Ai,i(x)⊕Ai,i+1(b)⊕Ai,i+1(y)⊕ ci]

= S̃i [Ai,i(a)⊕Ai,i+1(b)⊕ ci]

⊕ S̃i [Ai,i(a)⊕Ai,i(x)⊕Ai,i+1(b)⊕ ci]

⊕ S̃i [Ai,i(a)⊕Ai,i+1(b)⊕Ai,i(x)⊕ ci]

⊕ S̃i [Ai,i(a)⊕Ai,i(x)⊕Ai,i+1(b)⊕Ai,i(x)⊕ ci] = 0.

E Using More AES Instances in Parallel
A natural question is whether the white-box scheme by Baek et al. could be made secure
by increasing the number n of AES instances encoded in parallel. However in this section,
we show that this is not the case, as the storage requirement of storing the actual white-box
implementation quickly becomes limiting.

More precisely, Table ?? shows the complexity of each step of our dedicated attack as
n increases, together with the size of the corresponding white-box implementation. Recall
that in this section, n denotes the number of parallel AES instances (rather than the total
block size).

So the dominating cost comes from either the computation of the inverse of one encoding
or the calls to the affine equivalence algorithm. For n ≤ 22, the affine equivalence is
dominating and lead to a complexity of ∼ 235 for an implementation of size ∼ 64 GB when
n = 22. Otherwise the inversion is dominating, and obtaining even a 60-bit security would
need n = 213 parallel AES, which lead to an implementation of size ∼ 213 TB, which is
definitely not realistic.

26 On Recovering Affine Encodings in White-Box Implementations

Diagonal decomposition ∼ n · 222

Inverting one encoding ∼ n3 · 221

Affine equivalence ∼ n · 230

MITM ∼ n · 216

Implementation size n2 · 160 MB

Figure 7: Complexity of our attack and implementation size for n parallel AES instances.

F Pseudo-Code for Computing Ker Li

The pseudo-code is given in Algorithm ??. We refer the reader to Section ?? for a textual
explanation of the algorithm and its use.

Algorithm 5 Computing Ker Li

1: Compute Ker Ai,i using implication 1
2: (a, b)← random element in F8

2 × F8
2

3: for x ∈ F8
2 do

4: if fx is constant then
5: Ker Ai,i ← Ker Ai,i ∪ {x}
6: end if
7: end for

8: Compute Ker Ai,i+1 using implication 2
9: (a, b)← random element in F8

2 × F8
2

10: for y ∈ F8
2 do

11: if fy is constant then
12: Ker Ai,i+1 ← Ker Ai,i+1 ∪ {y}
13: end if
14: end for

15: Compute the remaining elements of Ker Li using implication 3
16: Ker Li ← (F8

2 × F8
2)\(Ker Ai,i ×Ker Ai,i+1)

17: for i = 1...4 do
18: (a, b)← random element in F8

2 × F8
2

19: for (x, y) ∈ Ker Li do
20: if the equation does not holds then
21: Ker Li ← Ker Li\{(x, y)}
22: end if
23: end for
24: end for
25: return Ker Li ∪ (Ker Ai,i ×Ker Ai,i+1)

