
HAL Id: hal-02162293
https://hal.science/hal-02162293

Submitted on 21 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Variants of the AES Key Schedule for Better Truncated
Differential Bounds

Patrick Derbez, Pierre-Alain Fouque, Jérémy Jean, Baptiste Lambin

To cite this version:
Patrick Derbez, Pierre-Alain Fouque, Jérémy Jean, Baptiste Lambin. Variants of the AES Key Sched-
ule for Better Truncated Differential Bounds. 25th Conference on Selected Areas in Cryptography
(SAC 2018), Aug 2018, Calgary, Canada. pp.27-49, �10.1007/978-3-030-10970-7_2�. �hal-02162293�

https://hal.science/hal-02162293
https://hal.archives-ouvertes.fr


Variants of the AES Key Schedule for Better
Truncated Differential Bounds

Patrick Derbez1?, Pierre-Alain Fouque1??, Jérémy Jean2, Baptiste Lambin1? ? ?

1 Univ Rennes, CNRS, IRISA
baptiste.lambin,patrick.derbez@irisa.fr
pierre-alain.fouque@univ-rennes1.fr

2 ANSSI, France
Jeremy.Jean@ssi.gouv.fr

Abstract. Differential attacks are one of the main ways to attack block
ciphers. Hence, we need to evaluate the security of a given block cipher
against these attacks. One way to do so is to determine the minimal
number of active S-boxes, and use this number along with the maximal
differential probability of the S-box to determine the minimal probability
of any differential characteristic. Thus, if one wants to build a new block
cipher, one should try to maximize the minimal number of active S-
boxes. On the other hand, the related-key security model is now quite
important, hence, we also need to study the security of block ciphers in
this model.
In this work, we search how one could design a key schedule to maximize
the number of active S-boxes in the related-key model. However, we
also want this key schedule to be efficient, and therefore choose to only
consider permutations. Our target is AES, and along with a few generic
results about the best reachable bounds, we found a permutation to
replace the original key schedule that reaches a minimal number of active
S-boxes of 20 over 6 rounds, while no differential characteristic with a
probability larger than 2−128 exists. We also describe an algorithm which
helped us to show that there is no permutation that can reach 18 or
more active S-boxes in 5 rounds. Finally, we give several pairs (Ps, Pk),
replacing respectively the ShiftRows operation and the key schedule of
the AES, reaching a minimum of 21 active S-boxes over 6 rounds, while
again, there is no differential characteristic with a probability larger than
2−128.

Keywords: AES · Key schedule · Related-key · Truncated Differential
? Patrick Derbez was supported by the French Agence Nationale de la Recherche
through the CryptAudit project under Contract ANR-17-CE39-0003.

?? Pierre-Alain was supported by the French Agence Nationale de la Recherche through
the BRUTUS project under Contract ANR-14-CE28-0015.

? ? ? Baptiste Lambin was supported by the Direction Générale de l’Armement (Pôle de
Recherche CYBER).
This paper was accepted at SAC 2018
https://doi.org/10.1007/978-3-030-10970-7_2



1 Introduction

First introduced in 1991 by Biham and Shamir [2], differential cryptanalysis is
one of the main tool to analyze and attack symmetric primitives. The main idea
is to introduce some differences in the plaintext, and see how these differences
propagate through the different steps of the algorithm, independently from the
key. For example, given an encryption function E(p, k) encrypting the plaintext
p ∈ Fnb

2 using a key k ∈ Fnk
2 , if one is able to prove that there exists a pair

of differences ∆in, ∆out ∈ Fnb
2 such that E(p ⊕ ∆in, k) = E(p, k) ⊕ ∆out for all

keys, then it gives a strong distinguisher for the encryption function E . Moreover,
due to the non-linearity of E , such a differential relation could only hold with
a certain probability. Consequently, a lot of work has been put into designing
algorithms that search for the best possible differential characteristics of a given
cipher. For instance, Matsui’s algorithms [18] were the first designed. Most of
modern ciphers are now built as iterated ciphers, i.e., a round function f is built
and repeated several times, XOR-ing a round key between each application of
f , see Figure 1. Thus, to search for such a pair (∆in, ∆out), one often studies
the propagation of the input difference through each round of the cipher, thus
leading to a differential characteristic consisting of all differences in each state
si.

Key Schedule

key

plaintext = s0 f
s1

. . . f
sr

sr+1 = ciphertext

k0 k1 kr−1 kr

Fig. 1: Generic iterated cipher construction

One can also choose to consider only truncated differences, that is, only look
at whether or not the difference in one byte is zero. While this can also directly
lead to various attacks, e.g., impossible differential attacks [1, 16], it can also
be used to get some results in differential cryptanalysis. Indeed, in most cipher
designs, the non-linear component consists of an S-box, a small non-linear func-
tion applied several times over all iterations. This S-box is the reason that some
differential characteristic only holds with a certain probability. Given an S-box S
acting on a small number of s bits, and for each pair (∆in, ∆out) ∈ F2s

2 , one can
easily compute how many x ∈ Fs2 verifies the relation S(x⊕∆in) = S(x)⊕∆out.
This allow to compute the Difference Distribution Table (DDT) of the S-box,
which gives the probability that the above relation holds for each (∆in, ∆out).
Thus, given a differential characteristic, one can easily compute the probability
that it holds, simply by multiplying all differential probabilities of each S-box



together.3 Hence, given a truncated differential characteristic, while we cannot
determine the exact probability that this characteristic holds, we can deduce its
minimal probability. Indeed, if the S-box has a maximal differential probability
of p, and there are n S-boxes with a non-zero difference (called active S-boxes),
then the truncated differential characteristic holds with a probability at most
pn. Thus, given the maximal differential probability of the S-box used and the
bit-length nk of the key, one can easily deduce the minimal number of active
S-boxes nmin that leads to pnmin < 2−nk . So, if for a given number of round, we
can prove that there is at least nmin active S-boxes, we know that there would be
no differential characteristic with a probability better than 2−nk , which would
mean that finding a pair of plaintexts satisfying this characteristic would a priori
costs more than an exhaustive search for the key.

Such differentials and truncated differentials can also be considered in the
related-key model. First introduced in 2009 to attack AES-192 and AES-256 [3, 4],
this model allows the attacker to inject differences in the plaintext, but also in the
key. Another worth-mentionning model is the more recent related-tweak model
for tweakable block ciphers, where the attacker fully controls an additional input
for the block cipher called a tweak [17, 21]. While this model is closer to chosen-
plaintext attacks, the tweak is often (but not necessarily) used alongside the key
and thus involved in the key schedule, such as in the TWEAKEY framework
[13]. Since the attacker can now inject some differences in both the plaintext
and the key, this causes a large increase in the complexity to search differential
and truncated differential characteristics. Nonetheless, several tools have been
designed to tackle this problem [5, 9, 10]. Hence, a few proposals were made to
give another, more secure, key schedule for some primitives, such as [19, 7] for
AES and [20] for SKINNY and AES-based constructions from FSE 2016 [12].
However, their main concern was mostly to design a more secure key schedule,
without considering the possible loss in efficiency. To that regard, Khoo et al. [14]
proposed a new key schedule for AES which consists in only a permutation at
the byte level, based on their proof on the number of active S-boxes in the
related-key model for AES. Using a permutation thus leads to a very efficient
key schedule, both in software and hardware, and can also make the analysis
easier.

Our Contributions. In this paper, we go further and study how we can design
a good permutation to use as the key schedule in AES-128. More precisely, we
first start by giving some bounds on the reachable minimal number of active
S-boxes for up to 7 rounds of AES if we use a simple permutation as its key
schedule. Especially, we show that there is no permutation that can reach a
minimal number of active S-boxes of 18 or more over 5 rounds. These bounds
allow us to know the results that a "perfect" permutation could reach. Then,
we provide a method to search for such a permutation. To do so, we reused the
meta-heuristic approach given by Nikolić in [20], combined with a Constraint
3 Using the fair assumption that each round is independent, which while obviously
not true, is admitted as a reasonable assumption.



Programming model inspired from the work of Gerault et al. in [10]. Especially,
we give a way to model the underlying equations of a truncated differential
characteristic, leading to a more precise model than the original one from [10].
Namely, the truncated differential characteristics found are always valid unless
we consider the DDT of the S-box.

We also went further and modified both the key schedule and one step of
the AES round function (namely, ShiftRows) to see whether we can achieve
better bounds. As a result, we exhibit a permutation Pk which, when used as
the AES key schedule, lead to a minimal number of active S-boxes of 20 over
6 rounds, while no characteristic has a probability larger than 2−128. When
changing both the key schedule and the ShiftRows step, we give several pairs
of permutations (P ik, P

i
s) that have a minimal number of active S-boxes of 21

over 6 rounds, while again, no characteristic has a probability larger than 2−128.
While we applied this method to AES, it is quite generic and could also be used
on any block cipher, as long as one have an efficient enough way to compute the
minimal number of active S-boxes. Our implementation is available at https:
//github.com/TweakAESKS/TweakAESKS.

2 Background

Differential cryptanalysis was first introduced by Biham and Shamir in 1991 [2]
and mainly consists in studying the propagation of differences between two plain-
texts through the cipher. Here, we only consider truncated differences, that is,
we are only interested in whether a byte does have a non-zero difference (active
byte) or not (inactive byte). Our work is centered around AES, for which we
make a few remainders. AES is the NIST block cipher standard, derived from
Rinjdael [8]. It uses an internal state of 128 bits, and several key sizes are avail-
able, namely 128, 192 and 256. Here, when mentioning AES, we refer to the
128-bit version.

It is an SPN block cipher, iterating a round function R = MC◦SR◦SB◦ARK
10 times, where each component of the round function is quickly described in the
following. The state can be viewed as a 4× 4 byte array, and thus we will often
talk about columns of the state. The round function consists in four operations:
AddRoundKey (ARK), SubBytes (SB), ShiftRows (SR) and MixColumns
(MC). ARK XORs the round key into the internal state. This round key is derived
from the master key using a key schedule KS, for which we do not give details,
our ultimate goal being to change it. We refer the interested reader to [8] for
the original descriptions. SB applies a non-linear operation (called S-box) on
each byte of the state, then SR performs a cyclic shift of each row, where Row
j is shifted by j − 1 bytes to the left, j ∈ {1, 2, 3, 4}. Finally, MC is a linear
operation that multiplies each column of the internal state by an MDS matrix
with coefficients in F28 .

We first recall several well known properties of the MC operation, which will
be used is the rest of the article. Here, w(x) correspond to the number of active
bytes in x, which is either a state or a column of the state.



Proposition 1 (MixColumns MDS property). Let z and y be two state
columns such that MC(z) = y. Then, either w(z)+w(y) = 0 or w(z)+w(y) ≥ 5.
Moreover, for any five bytes in y and z, there exists one linear equation between
those five bytes.

Proof. This comes directly from the fact that the matrix used in the MC oper-
ation is MDS.

Proposition 2 (MixColumns linear property). Let z, z′, y, y′ be four state
columns such that MC(z) = y and MC(z′) = y′. Then, the MixColumns MDS
property also holds for (z⊕z′) and (y⊕y′), that is: either w(z⊕z′)+w(y⊕y′) = 0
or w(z ⊕ z′) + w(y ⊕ y′) >= 5

Proof. This comes directly from the previous proposition and the fact that MC
is linear.

Lemma 1. Let k, x, y, z be four state columns such that MC(z) = y, z contains
at least one active byte and x = y ⊕ k. Denote by iy,z the number of inactive
bytes in y and z (i.e., iy,z = 8 − w(y) − w(z)) and cz,k,x the number of bytes
from z that are cancelled by k in x. If iy,z + cy,z,k ≥ 5, then there is at least one
linear equation on some bytes of k. Moreover, this can only happens if cy,z,k ≥ 2.

Proof. If iy,z + cy,z,k ≥ 5, then from the MixColumns MDS property, it follows
that there is an equation between any five bytes chosen from the inactive ones
in y and z, and the bytes from z which are cancelled by k. If we denote such
a cancelled byte by zi, that is, zi ⊕ ki = 0, then we have ki = zi, hence the
equation involves some bytes of k and some inactive bytes from y and z, which
are zeros.

Since z contains at least one active byte, we have w(z) + w(y) ≥ 5, hence
iy,z ≤ 3. Therefore, if cy,z,k = 1 (i.e., only one byte if cancelled), we have
iy,z + cy,z,k ≤ 4, and thus no equation is implied.

When considering truncated differentials, we are often interested in the num-
ber of active S-boxes, that is, the number of active bytes going through an S-box
(i.e., active bytes at the beginning of the round). We will often refer to the (min-
imal) number of active S-boxes in a characteristic as the length of the character-
istic, and to a minimal characteristic to refer to a characteristic which reaches
the minimal number of active S-boxes. Given a truncated differential character-
istic of length n, one can deduce the maximal probability that this characteristic
can have once being instantiated. Indeed, if the S-box has a maximal non-zero
differential probability of p, then the maximal probability of this characteristic is
pn. If one studies a block cipher with a key of length nk bits, then the goal is to
prove that no characteristics can be instantiated with a probability larger than
2−nk . Hence, for AES, since the maximal differential probability of the S-box is
2−6, we know that if for a given number of rounds the minimal number of active
S-boxes is greater or equal than 22, then no differential characteristic with a
differential probability larger than 2−128 exists.



Searching whether a characteristic reaching a given length or maximal prob-
ability exists has been a major focus in academic research. One way to find the
best probability is to proceed in two steps. First, one try to find a truncated
differential characteristic with a minimal number of active S-boxes, and then try
to instantiate this characteristic. When searching for such a truncated differen-
tial characteristic, one can choose to consider additional information about the
cipher along with "basic" propagation rules coming from the round function, to
avoid trying to instantiate characteristics that would not be instantiable anyway.
Hence for AES, we give the following definitions.

Definition 1. A characteristic is said to be valid in the "truncated differen-
tial setting" if and only if the MixColumns linear property is always verified
and there is at least one non-trivial solution to the system of equations (if any)
induced by Lemma 1.

A characteristic that remains valid even when one does not consider the
MixColumns linear property nor the equations is said to be valid in the pure
truncated differential setting.

The point of these definitions is twofold. On the one hand, since the pure
truncated differential setting contains significantly less constraints, the minimal
characteristic could be a lot easier to find. However, it may result in an invalid
characteristic when one tries to instantiate it, which could have been detected in
the truncated differential setting. Conversely, finding the minimal characteristic
in the truncated differential setting could be harder, but the only thing that
could invalidate this characteristic is the S-box DDT.

We chose to use the same approach as Gerault et al. [10], who proposed to use
two Constraint Programming models. The first one was used to find the minimal
characteristics for AES, considering only the MixColumns linear property. The
second one takes a list of truncated characteristic and tries to find the best
instantiation (if any) of each characteristic with respect to its probability. As
we aim at changing the key schedule, we changed these models, detailed in the
following.

Model 1 This model takes as input a permutation Pk to use as the key schedule
and a number of rounds, and output the minimal number of active S-boxes with
these parameters in the truncated differential setting. Compared to the first model
of [10], we directly model the equations coming from the MixColumns operation
(see Lemma 1), resulting in a more reliable result, albeit being slower. We refer
the reader to Appendix A for the method used to model these equations.

Model 2 This model also takes as input a permutation Pk for the key schedule
and a number of rounds, along with a list of truncated differential characteristics.
It then goes through each of these truncated characteristics, and tries to find a
instantiation with a probability larger than 2−128. If such an instantiation is
found, it gives its probability and the differential characteristic, otherwise it just
stops without trying to find an instantiation with a probability smaller than 2−128.



3 Generic Bounds

Before trying to find a permutation that reaches a certain number of active S-
boxes, we need to study which number of S-boxes we can reach. From the fact
that using a permutation as the key schedule implies that the number of active
bytes in the key is constant, we can deduce several bounds on the number of
active S-boxes. To demonstrate these bounds, we show that there is always a dif-
ferential characteristic of a certain length, independently from the permutation
used in the key schedule.

Proposition 3. Using a permutation as the key schedule, there is always a dif-
ferential characteristic of length 1 (resp. 5). for 2 (resp. 3) rounds. For 4 rounds,
there is always a characteristic of length either 8, 9 or 10. Moreover, these dif-
ferential characteristics always remain valid in the truncated differential setting.

SB SR
MC

x0 y0

SB SR
MC

x1 y1

1

1(1) SB SR
MC

x2

4(1)
y2

1

3(1)
4(1)
5(2)

x3

2 rounds

3 rounds

Fig. 2: Characteristic always valid for 2,3 and 4 rounds. x(y) means that there are x
active Sboxes somewhere in the state, with y columns containing at least one active
bytes. Multiple x(y) in a state means that one of them must be true

Proof. Such a characteristic is depicted in Figure 2. For 2 rounds, there is only
one active byte in the second state, which is cancelled by the active byte in the
key. For 3 rounds, the previous characteristic is extended by adding one more
round before it, and comes directly from the MixColumns MDS property.

For 4 rounds, we add one more round after the 3-round differential charac-
teristic. Since y2 has four active bytes on the same column, and since the key
has one active byte anywhere in the key state, x3 can have either 3, 4 or 5 active
bytes, which results in a differential characteristic of length either 8, 9 or 10.

No equation is implied since there is always at most one active key byte that
is cancelled with the ARK operation for each round (Lemma 1). Finally, there are
only two MixColumn transitions with active bytes, one of the form MC(z) = y
where z and y are one column of the state with w(z) = 4 and w(y) = 1 and
another of the form MC(z′) = y′, where w(z′) = 1 and w(y′) = 4. Hence,
w(z ⊕ z′) ≥ 3 and w(y ⊕ y′) ≥ 3, and thus the MixColumns linear property is
always valid.



Corollary 1. Using a permutation as the key schedule, the optimal bounds on
the number of active S-boxes that can be proven for 2, 3 and 4 rounds is respec-
tively 1, 5 and 10 in the truncated differential setting.

The proof of this corollary comes directly from the previous proposition. If
we try to extend the previous characteristic with one more round, we obtain
that there is always a characteristic of length either 19, 20, 21, 24 or 25 in the
truncated differential setting. However, if we only consider the pure truncated
differential setting, then we have the following proposition.

Proposition 4. For 5, 6 and 7 rounds, there is always a characteristic of length
respectively 14, 18 and 21 in the pure truncated differential setting.

5 rounds

6 rounds

Fig. 3: Characteristic always valid for 5, 6 and 7 rounds.

Proof. Such a characteristic is depicted in Figure 3. Note that considering how
this kind of characteristic is built, there are a lot of underlying equations in
the truncated differential setting, which is very likely to make this characteristic
invalid. However, in the pure differential setting, these characteristics always
remains valid as they come directly from the propagation rules of the AES round
function.

Corollary 2. Using a permutation as the key schedule, the optimal bounds on
the number of active S-boxes that can be proven for 5, 6 and 7 rounds is respec-
tively 14, 18 and 21 in the pure truncated differential setting.

Now the first question that we may ask is whether or not there exists a
permutation which reaches all those bounds. Fortunately, such a permutation
was already found by Khoo et al. in [14], which is

PKLPS =
(
5 2 3 8 9 6 7 12 13 10 11 0 1 14 15 4

)
.

However, if we study this permutation in the truncated differential setting
for 7 rounds using Model 1, then we have that the minimum number of active
S-boxes becomes 22, proving that no differential characteristic with a probability
larger than 2−128 can be found, hence the following theorem.



Theorem 1. We can find a permutation for the key schedule which guarantees
that no differential characteristic with a probability larger than 2−128 exists for
7 or more rounds of AES. Moreover, this does not depend on the S-box DDT.

Obviously, now the main question is: How far can we go? Can we find a per-
mutation that reach 22 S-boxes for 6 rounds or lower, or at least a permutation
such that no differential characteristic with probability larger than 2−128 exists?
This would allow us to show that even with an extremely simple and efficient
key schedule, we can still have a rather good security against differential attacks
in the related-key model. We study this in the next section.

4 Searching for a Permutation

4.1 Bound on 5 Rounds

In this section, we show that there is no permutation that can reach a minimal
number of active S-boxes of 18 over 5 rounds. While this does not imply that we
cannot find a permutation such that there is no differential characteristic with
a probability better than 2−128, this still gives us a good idea of what we can
reach for 5 rounds.

To achieve this, we proceed in two steps. First, we search for a set of cycles
such that using a given cycle of this set, one cannot build a truncated differential
characteristic of length strictly lower than 18, which induces equations (according
to Lemma 1) on at most 1 round. Since all permutations can be decomposed
into a composition of cycles, this would not only speed up the search (since we
do not need to check every permutation one at a time), but also gives a way to
build all permutations that could reach 18 S-boxes on 5 rounds. To build such a
set of cycles, we used a quite straightforward algorithm.

First, we suppose that the cycle starts with 0. Then, we guess the image of 0,
and for each of those guesses, we have two cases: either the cycle is not complete,
and thus we need to make another guess on the next element of the cycle, or the
cycle is closed. Whenever we make a new guess or decide that the cycle is closed,
we can build several truncated key characteristics k0 → k1 → ...→ k4 according
to the current (partial) cycle examined: each active byte in this truncated key
characteristic must be a byte that belongs to the current (partial) cycle. Then,
for each of those truncated key characteristics, we search the minimal number
of active S-boxes that we can reach using this characteristic. To speed up the
search, we only consider truncated characteristics that induces equations on at
most 1 rounds, such that these characteristics are always valid in the truncated
differential model. If, for a given (partial) cycle, one can find a corresponding
truncated characteristic with strictly less than 18 S-boxes, then we know that
this (partial) cycle cannot be part of the permutation we are looking for. If we
were in the case where the cycle was not complete, then we know that we do
not need any more guesses, and if the cycle was closed, we can dismiss it. Thus
in the end, we will have a set of closed cycles which start with 0, and for which
all truncated characteristics that induces equations on at most 1 rounds have



at least 18 active S-boxes. We then need to apply the same algorithm, but this
time with cycles beginning by 1 and not containing 0 (to avoid repetitions) and
so on.

In the end, we have a set of permutations for which we know that, if a
permutation reaches a minimal number of active S-boxes of 18 (or higher), then
it must be built from this set of cycles. Thus, we just need to built all possible
permutations from these cycles, and plug them into Model 1 to see if the actual
minimal number of S-boxes is indeed 18 or higher. The number of cycles which
can be used to build a permutation reaching 18 S-boxes is given in Appendix B,
and by testing all possible combinations, we found out that there is no such
permutation, hence the following theorem.

Theorem 2. There is no permutation that, when used as key schedule, can reach
a minimal number of active S-boxes of 18 or higher over 5 rounds. Using the same
method, we were also able to find at least one permutation which have a minimal
number of active S-boxes of 16 over 5 rounds, namely:(

15 0 2 3 4 11 5 7 6 12 8 10 9 1 13 14
)
.

However, the possibility of reaching 17 S-boxes over 5 rounds is still unknown,
and the complexity of the algorithm for 6 rounds is too high. Hence, we focused
our search for a permutation reaching 22 active S-boxes over 6 rounds, using
another approach we detail in the next section.

4.2 Finding a Permutation over 6 Rounds

First of all, let us take a quick look at how we could naively search for such a
permutation. This is rather straightforward: for each possible permutation, we
check whether the minimal number of S-boxes is at least 22. Since we are looking
for a permutation over 16 bytes, we have 16! > 244 possible permutations. While
244 basic operations could be achievable in a reasonable amount of time, the com-
putation of the minimal number of S-boxes is actually quite costly. For example,
if one would use the algorithm from [9] which has an approximate complexity of
234 operations, this would raise the total cost to 278 operations, which is clearly
impractical. While we do not have a complexity estimation for our constraint
programming tool, the average time to solve Model 1 is about 40 minutes for
6 rounds, which would lead to way too much time to try each permutation, so
exhausting all permutations is clearly not a viable way to proceed.

On the other hand, one could try to pick a random permutation, evaluate its
minimal number of S-boxes, and try again if this number is lower than 22. While
the cost of computing the minimal number of S-boxes remains, this approach
could be successful if the density of the set of permutation reaching 22 S-boxes
overall permutations is high enough. Indeed, if we do this for 7 rounds, we are
able to find a permutation reaching the same number of S-boxes for 7 rounds and
lower as the permutation from [14] in about 200 tries. However, this approach
was not able to find a permutation reaching 22 S-boxes over 6 rounds.



Hence, we need something more efficient for 6 rounds. Inspired by the work
of Nikolić [20], we choose to use a meta-heuristic called simulated annealing.
Meta-heuristics are a class of search algorithms which aim to find an (almost)
optimal solution to an optimization problem, often inspired by some real-life phe-
nomenon. To be more precise, unlike Constraint Programming or Integer Linear
Programming which aims at recovering an optimal solution, meta-heuristics only
look for a good enough solution: it may not be optimal, but it should be rather
close to an optimal solution. In our case, we could define our optimization prob-
lem as: Which permutation maximize the minimal number of active S-boxes
over 6 rounds? However, we are not really interested in maximizing the mini-
mal number of S-boxes, we only need to find a permutation which reaches 22
S-boxes. Moreover, our problem is of the form "Maximize the minimum value of
a given function", which is not something easily handled by classical techniques
like Constraint or Linear Programming. Finally, meta-heuristics are designed to
be both relatively easy to implement and rather efficient, hence they seem quite
appropriate to tackle this problem.

We give a generic algorithm for simulated annealing in Appendix C, also
given in [20]. The main idea of this algorithm is to try to maximize a function
f(x) (called objective function) by progressively improving a solution, starting
from a random one, while allowing degradation. To be more precise, starting
from a random x0, the algorithm builds another solution xi from xi−1 using
the function ε. Then, if f(xi) > f(xi−1), then xi is accepted and the algorithm
continues. However, if f(xi) ≤ f(xi−1), which would mean that xi is worse than
the previous solution xi−1, xi is only accepted with some probability depending
on a value T , and if it is rejected, another xi is generated from xi−1. Then, the
value T is updated with a function α(T ). For more details about this algorithm
and the choice of its parameters, we refer the reader to [20, 6, 15].

Now, we need to see how we implement this algorithm in practice. As in [20],
we did not observe major differences between different parameters for the initial
temperature T0 and the cooling schedule α(T ). Hence, we only give one set
of parameters, from which all our following results come from. For the initial
temperature, we used T0 = 2. For the cooling schedule, we used the same one
as in [20], i.e., α(T ) = T

1+βT with β = 0.001 Finally, the neighbor function
ε generates a new permutation from the one that has been tested. This new
permutation should be "close" to the previous one, hence we use a random
transposition to generate a new permutation, namely, ε(x) = τ ◦ x where τ is a
random transposition.

The only thing missing to implement the algorithm is a way to evaluate f(x).
Recall that in our case, f(x) is the minimal number of active S-boxes for a given
permutation x. A naive way to compute f(x) would be to solve Model 1 with the
permutation x. However, as mentioned before, solving this model is quite costly,
which would results in a very slow meta-heuristic. Instead, we make the following
observation. Let n be the number of active S-boxes we want to prove, that is,
we want to find a permutation for which the minimal number of active S-boxes
is at least n. Then, given a certain permutation, we are only interested in one



fact: does this permutation have a characteristic with a length strictly less than
n? If so, then even if this characteristic is not a minimal one, we still know that
this permutation will not reach our goal of a minimum of n active S-boxes. This
allows to slightly modify the original algorithm for a much quicker execution,
which lead to more permutation being evaluated and thus better chances to
find a good one. The complete algorithm is given as Algorithm 1, with a more
detailed explanation below.

Algorithm 1 Tweaked Simulated Annealing
Input: Target length n

1: x← random permutation, T ← 2, l← 0

2: while l < n do
3: τ ← random transposition, x′ ← τ ◦ x
4: l′ ← quicksearch(x′, n)

5: if l′ ≥ n then
6: x← x′, l← fullsearch(x)

7: else if l′ > l then
8: x← x′, l← l′

9: else
10: r ← U [0, 1] Generate a uniformly random real number in [0,1]
11: if r < e

l′−l
T then

12: x← x′, l← l′

13: end if
14: end if
15: T ← T

1+0.001T

16: end while
Output: x

So instead of directly computing the minimal number of active S-boxes for a
given permutation, we do the following. We first use the algorithm quicksearch,
which is a classical dynamic programming algorithm which, given a permutation
x and a target number of S-boxes n, search for a relatively short characteris-
tic of length ≤ n. As mentioned before, the idea is to use the fact that we are
mostly interested in whether or not a characteristic of length strictly less than
n exists. This algorithm performs this relatively quickly, without having to find
the minimal number of S-boxes. Once we get such a characteristic of length l′,
three cases can happen.

– If l′ ≥ n, then the permutation might be a good one. However, since the
quicksearch algorithm does not return the length of the shortest charac-
teristic, we need to call the fullsearch algorithm, which basically solves
Model 1 using the provided permutation, and returns the real minimal num-



ber of S-boxes. If the output of fullsearch is greater or equal than n,
then we found a permutation and the algorithm terminates. If not, we still
choose to update x to x′, because the fact that quicksearch returned a
value greater or equal than n means that the permutation looked quite good
at first glance. We also update l to the real minimal number of active S-boxes
of x, since otherwise the algorithm would terminate while it did not found
a permutation reaching n S-boxes.

– Otherwise if l′ > l, that is, the permutation x′ seems to have a minimal
number of S-boxes greater than the previous one, then we update x to x′
too. This corresponds to the case f(x′) > f(x) in the original Simulated
Annealing algorithm.

– Finally, if l′ ≤ l, this is the same as the original algorithm. We accept the
solution x′ and update x to it only with a certain probability depending on
the current temperature T and the respective number of S-boxes found for
x and x′.

We first launched this algorithm using n = 20, and were able to find the
permutation Pk (given below) reaching this minimal number of S-boxes in about
216 tries:

Pk =
(
8 1 7 15 10 4 2 3 6 9 11 0 5 12 14 13

)
.

Reaching 21 S-boxes is still an open question and for reference, we were able
to test about 224 permutations in several days. However, we were able to show
that using Pk as the key schedule, while only reaching a minimum amount of
20 S-boxes in the truncated setting, still guarantee that no characteristic with
a probability better then 2−128 can be found when one use the DDT of the
AES S-box. To do that, we used Model 2, which allows to check if there is a
characteristic with a better probability than 2−128 and to exhibit one if that is the
case. To make this model work, we need to give it a list of truncated differential
characteristics, and it will check if such a characteristic can be instantiated with a
probability better than 2−128. Hence, to prove that Pk has no such characteristic,
we need a list of all valid truncated characteristics of 20 and 21 S-boxes (since
22 S-boxes already guarantees that no characteristic will be instantiable with
a probability better than 2−128). This can be computed rather quickly using
Model 1 and asking the solver to find all characteristics of length 20 and 21.
There are 253 characteristics of length 20 and 3284 of length 21. After about
nine hours on a standard desktop to loop through all these characteristics, it
turns out that none of them can be instantiated4 with a probability better than
2−128. In conclusion, we were able to find a permutation Pk such that using
this permutation as the key schedule of AES-128 guarantees that no differential
characteristic with a probability better than 2−128 exists over 6 or more rounds.
For reference, we also ran Model 1 on this permutation to get the minimal
number of active S-boxes for a lower amount of rounds, summarized in Table 1.
4 For reference, the best probability we could reach among all the characteristics of
length 20 was 2−134



Number of rounds 2 3 4 5 6 7

Original key schedule 1 3 9 11 13† 15
PKLPS 1 5 10 14 18† 22
Pk 1 5 10 15 20† 23

Table 1: Minimal number of S-boxes that our permutation Pk reaches on a given
number of rounds compared to the one from [14]. †No instantiation with a better
probability than 2−128.

Now, even if we were able to find a permutation leading to no differential
characteristic of probability better than 2−128 for 6 rounds or more, it still only
reaches 20 S-boxes in the truncated setting. Hence, we would like to see if by
modifying further the AES round function, we could reach more active S-boxes.
This is treated in the next section.

5 Tweaking Both ShiftRows and the Key Schedule

Using the approach given in the previous section allowed to find a permutation
for the key schedule, which induces a minimal number of S-boxes of 20 for 6
rounds. Here, we would like to see if by changing the ShiftRows operation
in the AES-128, we could reach a better number of active S-boxes, namely 21
or 22. Obviously, we cannot try all possible permutations for ShiftRows, as
again, there are 244 permutations over 16 elements. Hence, we show here how we
restricted ourselves to only a few thousand candidates for ShiftRows, which
are the most likely to lead to a good minimal number of active S-boxes, and give
a few examples of pairs (Ps, Pk) that reach 21 S-boxes for 6 rounds, where Ps
is used instead of the ShiftRows operation, and Pk instead of the original key
schedule KS of AES.

First, we can see that we can drastically reduce the number of candidates for
Ps using the following two propositions. We denote Pi the set of all permutations
Pi acting insides the columns of the state, i.e., there exists four permutations
P 0
i , P

1
i , P

2
i , P

3
i over four elements such that P ji acts on the j-th column and

Pi = P 0
i ◦ P 1

i ◦ P 2
i ◦ P 3

i , and Pc the set of all permutations which permutes the
columns of the state.

Proposition 5. Let Ps and P ′s be two permutations over 16 elements such that
P ′s = P ′i ◦ Ps ◦ Pi, where Pi, P ′i ∈ Pi, and let P ′k = P−1i ◦ Pk ◦ Pi. Then using
(P ′s, P

′
k) instead of (SR, KS) will lead to the same minimal number of active S-

boxes that using (Ps, Pk) instead of (SR, KS). Hence, we can build equivalence
classes Ei(Ps) = {P ′s | ∃ Pi, P ′i s.t. P ′s = Pi ◦ Ps ◦ P ′i}, and there are 10147 such
equivalence classes.

Proof. We need to show that, for each characteristic we can build using (Ps, Pk),
one can find a characteristic with the same number of active S-boxes using
(P ′s, P

′
k), where P

′
s = P ′i ◦ Ps ◦ Pi and P ′k = P−1i ◦ Pk ◦ Pi.



Given a characteristic (X0, . . . , Xr) such that the length of the characteristic

is given by
r∑
i=0

Xi, and denote Yi the state after the MC operation such that

Xi+1 = Yi⊕Ki. We have Yi+1 = MC◦Ps◦SB(Yi⊕Ki) andKi+1 = Pk(Ki), where
Pk is a bytewise permutation. For all i, let K ′i = P−1i (Ki) and Y ′i = P−1i (Yi),
hence we have

K ′i+1 = P−1i (Ki+1) = P−1i ◦ Pk(Ki)

= P−1i ◦ Pk ◦ Pi ◦ P−1i (Ki)

= P ′k ◦ P
′−1
i (Ki)

= P ′k(K
′
i).

So P ′k is a valid key schedule. Furthermore, note that when considering the
propagation of active bytes through MC, one only need to consider the number
of active bytes before MC in one given columns to know the number of active byte
after MC in that same column. Hence, since Pi ∈ Pi only permutes bytes inside
each column, the number of active bytes does not change in each column and
thus for any Pi ∈ Pi, MC and MC′ = MC ◦ Pi behave similarly when searching
for truncated differential characteristics, i.e., replacing MC by MC′ has no effect.
In the same way, one can replace MC by Pi ◦MC with Pi ∈ Pi. Moreover, SB
acts on each byte separately, hence Pi ◦ SB = SB ◦ Pi. Thus, we have:

Y ′i+1 = P−1i (Yi) = P−1i ◦MC ◦ Ps ◦ SB(Yi ⊕Ki)

= P−1i ◦MC ◦ Ps ◦ SB(Pi ◦ P−1i (Yi)⊕ Pi ◦ P−1i (Ki))

= MC ◦ Ps ◦ SB(Pi(Y ′i )⊕ Pi(K ′i)) replacing P−1
i ◦MC by MC has no effect

= MC ◦ P ′i ◦ Ps ◦ Pi ◦ SB(Y ′i ⊕K ′i) replacing MC by MC ◦ P ′i has no effect

= MC ◦ P ′s ◦ SB(Y ′i ⊕K ′i).

So (P ′s, P
′
k) correctly defines a round function and we have X ′i+1 = Y ′i ⊕K ′i =

P−1i (Yi ⊕ Ki) = P−1i (Xi+1) for all i. Hence, each X ′i is a permutation of Xi,
and thus the corresponding characteristic (X ′0, . . . , X

′
r) has the same number of

active S-boxes as (X0, . . . , Xr).

Proposition 6. Let Ps and P ′s be two permutations over 16 elements such that
P ′s = P−1c ◦Ps◦Pc where Pc ∈ Pc, and let P ′k = P−1c ◦Pk◦Pc. Then, using (P ′s, P ′k)
instead of (SR, KS) will lead to the same minimal number of active S-boxes that
using (Ps, Pk) instead of (SR,KS). Hence we can combine this with the previous
proposition, and for each class representative Ps of some class Ei(Ps) defined
previously, we can build equivalence classes E(Ps) = {P ′s | ∃ Pc ∈ Pc s.t. P ′s =
P−1c ◦ Ps ◦ Pc}, and there are 9186 such equivalence classes.

The proof of the previous theorem is very similar to the proof of Proposi-
tion 5 and is given in Appendix D. Hence, we only need to consider 9186 possible
candidates Ps to replace SR, instead of 244. Moreover, we would like to avoid
weakening AES in the single-key model. In that model, the original ShiftRows



allows to reach full diffusion after 3 rounds. So we only considered the permu-
tations that also reached full diffusion in at most 3 rounds, and there are 4381
of them. Finally, recall that in the pure truncated differential setting, using the
original ShiftRows implies that there is always a characteristic of length 18
which is built using a fully active key. While this characteristic has high chances
of being invalidated once we consider the equations it implies on the key, we still
would like to avoid it. To do that, we used the following proposition.

Proposition 7. If one uses a permutation Ps instead of ShiftRows such that
Ps send the bytes from any one column to at most three columns, then the char-
acteristic from Proposition 4 cannot happen.

Proof. The characteristic from Proposition 4 can be built because a state con-
taining a single fully active column lead to a fully active state after MC ◦ SR.
However, if one uses a permutation Ps which send the bytes from any one col-
umn to at most three columns, then the state after MC ◦Ps will contain at most
3 fully active column. Thus, when XOR-ing the key afterwards, the resulting
state would have at least 4 active bytes, instead of 3 in the characteristic from
Proposition 4, thus this characteristic cannot happen.

Hence, we only want to try some permutations Ps instead of ShiftRows
which verify the previous propositions and achieve a full diffusion in at most 3
rounds in the single-key model, which lead to 3288 possible candidates for Ps.
Now everything is quite straightforward. We reuse Algorithm 1 to search for a
permutation leading to 21 S-boxes, except that we use a different permutation
than ShiftRows in the quicksearch algorithm and modified Model 1 to
use that permutation instead of ShiftRows for the fullsearch algorithm.
We also added the additional condition that it should stop after 24 hours if no
permutation reaching the objective was found. Surprisingly, the quicksearch
algorithm ran faster with those permutations than with the original SR, which
allowed us to test about 225 permutations Pk on average in 24 hours for a specific
candidate Ps. After a few more than 100 possible Ps tried, we were able to find
several pairs (Ps, Pk) that reach 21 S-boxes (see Appendix E). After testing
about 1100 candidates for Ps, finding a pair (Ps, Pk) that reaches 22 S-boxes is
still an open problem.

We also used Model 2, tweaked to use a different permutation instead of
SR, to check if there is a differential characteristic with a probability better
than 2−128 over 6 rounds with these pairs (Ps, Pk), and again, none of these
permutation allows such a characteristic.

6 Conclusion

In this paper, we studied how AES would behave in the related-key model if
we change its key schedule to a much simpler and efficient one, namely a per-
mutation. We first gave a few generic bounds about the best number of active
S-boxes reachable for a given number of round, and especially, we showed that



no permutation can reach a minimal number of 18 or more active S-boxes over
5 rounds. However we were able to exhibit a permutation reaching 16 S-boxes
over 5 rounds, hence closing the gap a bit further. We showed that we can find
a permutation which allows to have at least 20 active S-boxes over 6 rounds,
while guaranteeing that no characteristic with a probability larger than 2−128

exists. This allows us to reach the same amount round than with the original
AES-128 key schedule (see [9]), but with a more efficient key schedule which is
also easier to analyze and has a higher minimal number of active S-boxes. We
also took a look at how modifying the SR operation could improve the minimal
number of S-boxes over 6 rounds. It turns that we can find several pairs (Ps, Pk)
to use instead of SR and the key schedule (respectively) which allows to have at
least 21 S-boxes over 6 rounds, and again, no characteristic with a probability
better than 2−128. We also provided a Constraint Programming model which
can handle directly the equations coming from MixColumns, thus allowing to
find the exact minimal number of active S-boxes considering everything but the
S-box DDT in a reasonable amount of time and memory. Our implementation
is available at https://github.com/TweakAESKS/TweakAESKS.

A few open questions remain. First, could we reach a minimal number of 22
active S-boxes changing only the key schedule (and possibly SR) for 6 rounds?
In the same idea, could we close the gap for 5 rounds? We know that we cannot
get 18 or more active S-boxes, but 16 S-boxes is reachable, thus the possibility
of reaching 17 S-boxes is still unknown. Finally, we chose to change the SR
operation, but how about changing either MC or the S-box? While changing
everything would lead to a cipher that does not have much in common with
AES, it could answer the following generic question: Can we build an AES-like
SPN (with a round function structured as MC◦Ps◦SB where Ps is a permutation
and MC uses an MDS matrix) using a permutation as the key schedule, which
could reach either 22 S-boxes over 6 rounds, or guarantee that no characteristic
with probability better than 2−128 exists over 5 rounds?

References

1. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack reduced to 31
rounds using impossible differentials. In: International Conference on the Theory
and Applications of Cryptographic Techniques, Springer (1999) 12–23

2. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. Jour-
nal of CRYPTOLOGY 4(1) (1991) 3–72

3. Biryukov, A., Khovratovich, D.: Related-Key Cryptanalysis of the Full AES-192
and AES-256. In Matsui, M., ed.: Advances in Cryptology - ASIACRYPT 2009,
15th International Conference on the Theory and Application of Cryptology and
Information Security, Tokyo, Japan, December 6-10, 2009. Proceedings. Volume
5912 of Lecture Notes in Computer Science., Springer (2009) 1–18

4. Biryukov, A., Khovratovich, D., Nikolic, I.: Distinguisher and Related-Key Attack
on the Full AES-256. In Halevi, S., ed.: Advances in Cryptology - CRYPTO 2009,
29th Annual International Cryptology Conference, Santa Barbara, CA, USA, Au-
gust 16-20, 2009. Proceedings. Volume 5677 of Lecture Notes in Computer Science.,
Springer (2009) 231–249



5. Biryukov, A., Nikolic, I.: Automatic Search for Related-Key Differential Charac-
teristics in Byte-Oriented Block Ciphers: Application to AES, Camellia, Khazad
and Others. In Gilbert, H., ed.: Advances in Cryptology - EUROCRYPT 2010,
29th Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, French Riviera, May 30 - June 3, 2010. Proceedings. Volume
6110 of Lecture Notes in Computer Science., Springer (2010) 322–344

6. Černỳ, V.: Thermodynamical approach to the traveling salesman problem: An
efficient simulation algorithm. Journal of optimization theory and applications
45(1) (1985) 41–51

7. Choy, J., Zhang, A., Khoo, K., Henricksen, M., Poschmann, A.: AES Variants Se-
cure against Related-Key Differential and Boomerang Attacks. In Ardagna, C.A.,
Zhou, J., eds.: Information Security Theory and Practice. Security and Privacy
of Mobile Devices in Wireless Communication - 5th IFIP WG 11.2 International
Workshop, WISTP 2011, Heraklion, Crete, Greece, June 1-3, 2011. Proceedings.
Volume 6633 of Lecture Notes in Computer Science., Springer (2011) 191–207

8. Daemen, J., Rijmen, V.: AES Proposal: Rijndael (1999)
9. Fouque, P., Jean, J., Peyrin, T.: Structural Evaluation of AES and Chosen-Key

Distinguisher of 9-Round AES-128. In Canetti, R., Garay, J.A., eds.: Advances in
Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara,
CA, USA, August 18-22, 2013. Proceedings, Part I. Volume 8042 of Lecture Notes
in Computer Science., Springer (2013) 183–203

10. Gérault, D., Lafourcade, P., Minier, M., Solnon, C.: Revisiting AES Related-
Key Differential Attacks with Constraint Programming. IACR Cryptology ePrint
Archive 2017 (2017) 139

11. Jean, J.: TikZ for Cryptographers. https://www.iacr.org/authors/tikz/
(2016)

12. Jean, J., Nikolic, I.: Efficient Design Strategies Based on the AES Round Function.
In Peyrin, T., ed.: Fast Software Encryption - 23rd International Conference, FSE
2016, Bochum, Germany, March 20-23, 2016, Revised Selected Papers. Volume
9783 of Lecture Notes in Computer Science., Springer (2016) 334–353

13. Jean, J., Nikolic, I., Peyrin, T.: Tweaks and Keys for Block Ciphers: The
TWEAKEY Framework. In: Advances in Cryptology - ASIACRYPT 2014 - 20th
International Conference on the Theory and Application of Cryptology and Infor-
mation Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014, Proceedings,
Part II. (2014) 274–288

14. Khoo, K., Lee, E., Peyrin, T., Sim, S.M.: Human-readable Proof of the Related-Key
Security of AES-128. IACR Trans. Symmetric Cryptol. 2017(2) (2017) 59–83

15. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.
science 220(4598) (1983) 671–680

16. Knudsen, L.: DEAL-a 128-bit block cipher. (1998)
17. Liu, G., Ghosh, M., Song, L.: Security analysis of SKINNY under related-tweakey

settings. IACR Transactions on Symmetric Cryptology 2017(3) (2017) 37–72
18. Matsui, M.: On Correlation Between the Order of S-boxes and the Strength of

DES. In Santis, A.D., ed.: Advances in Cryptology - EUROCRYPT ’94, Workshop
on the Theory and Application of Cryptographic Techniques, Perugia, Italy, May 9-
12, 1994, Proceedings. Volume 950 of Lecture Notes in Computer Science., Springer
(1994) 366–375

19. Nikolic, I.: Tweaking AES. In Biryukov, A., Gong, G., Stinson, D.R., eds.: Se-
lected Areas in Cryptography - 17th International Workshop, SAC 2010, Waterloo,
Ontario, Canada, August 12-13, 2010, Revised Selected Papers. Volume 6544 of
Lecture Notes in Computer Science., Springer (2010) 198–210



20. Nikolic, I.: How to Use Metaheuristics for Design of Symmetric-Key Primitives.
In Takagi, T., Peyrin, T., eds.: Advances in Cryptology - ASIACRYPT 2017 -
23rd International Conference on the Theory and Applications of Cryptology and
Information Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part
III. Volume 10626 of Lecture Notes in Computer Science., Springer (2017) 369–391

21. Zong, R., Dong, X., Wang, X.: MILP-Aided Related-Tweak/Key Impossible Dif-
ferential Attack and Its applications to QARMA, Joltik-BC. Cryptology ePrint
Archive, Report 2018/142 (2018) https://eprint.iacr.org/2018/142.

A Modelizing the MC equations in Constraint
Programming

MC

z y

k

x

Fig. 4: A partial round that implies one equation

We will give here an example as how we generate constraints to modelize the
equations coming from the MC operation. From the MDS property of MC, we
know that there is en equation between any set of five bytes taken from the same
column of z and y. Specifically, we have the following equation, where coefficient
are in F256:

5.z[0] + 7.z[1] + z[3] = 2.y[0] + y[2].

Now we take the situation given in Fig. 4. First, all bytes 0,1 and 3 of z are
inactive, hence we can replace z[0], z[1] and z[3] in the previous equation by
zeros. Moreover, we can see that both y[0] and y[2] are cancelled by some bytes
in k, i.e. y[i]⊕k[i] = 0, i ∈ {0, 2}. Hence, our equation becomes 2.k[0]+k[2] = 0.

So, if this situation occurs, we know that we have a specific equation involving
bytes of k. However, this equation has coefficient in F256, which are not handled
by Constraint Programming solvers. Hence, we modelize this equation at a bit-
level, using the fact that the scalar multiplication in F256 corresponds to a linear



operation in F8
2. By denoting kij , j ∈ [0, 7], i ∈ 0, 2 the j-th bit of k[i], we have

0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 1

0 0 0 1 0 0 0 1

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0


.



k00
k01
k02
k03
k04
k05
k06
k07


+



k10
k11
k12
k13
k14
k15
k16
k17


= 0.

We now have everything to modelize this case using an if-constraint. In our
model, we have a binary variable for each byte of the state which is set to 0
if the corresponding byte is inactive, and 1 otherwise. Since all the equations
only involves some key-bits, we also have binary variables for each bit of each
subkey. Restricting this in the situation given in Fig. 4, we would have binary
variables z[i], y[i], x[i], k[i], i ∈ [0, 15] modelizing whether or not bytes are active,
and binary variables kij , i ∈ [0, 15], j ∈ [0, 7] for each bit of the key. Obviously,
we need to modelize the fact that if a key byte is inactive, then its bits are all
zeros, which is easily modelized with

k[i] = 0 ⇐⇒ kij = 0 ∀j ∈ [0, 7].

Hence, the above equation only holds when z[0] = z[1] = z[2] = 0, y[0] = y[2] = 1
and x[0] = x[2] = 0. Note that we do not need to check that k[0] = 1 since the
fact that y[0] = 1 and x[0] = 0 necessarily implies that k[0] = 1 (and the same
argument goes for k[2]). So, to modelize this case, we use an if-constraint. Such
a constraint is of the form E ⇒ C, and means that if the expression E is true,
then the constraint C must hold. Thus, we modelize the above situation with
the constraint

z[0] = 0 ∧ z[1] = 0 ∧ z[2] = 0 ∧ y[0] = 1
∧ y[1] = 1 ∧ x[0] = 0 ∧ x[2] = 0

⇒

k07 + k10
k00 + k07 + k11
k01 + k12

k02 + k07 + k13
k03 + k07 + k14
k04 + k15
k05 + k16
k06 + k17

= 0 mod 2∧
= 0 mod 2∧
= 0 mod 2∧
= 0 mod 2∧
= 0 mod 2∧
= 0 mod 2∧
= 0 mod 2∧
= 0 mod 2

Hence in our model, we need to do this for all rounds and for each column
of the state. The number of constraints coming from this is easy to compute.
For a fixed round and column, denote i the number of inactive bytes taken in



z, hence
(
4
i

)
possibilities, with 1 ≤ i ≤ 3. Denote j the number of inactive bytes

taken in y hence
(
4
j

)
possibilities. Hence, we have 5 − i − j active bytes (that

are cancelled) in y, taken in the remaining 4− j bytes, thus
(

4−j
5−i−j

)
possibilites.

Moreover, we know from Lemma 1 that we must have 5 − i − j ≥ 2. So the
number of constraints for a fixed round and a fixed column is

3∑
i=1

3−i∑
j=0

(
4

i

)(
4

j

)(
4− j

5− i− j

)
= 164,

hence 656r constraints for r rounds.

B Number of cycles to build a permutation reaching 18
S-boxes over 5 rounds

If one would want to build a permutation reaching 18 active S-boxes over 5
rounds, then Table 2 gives the number of possible cycle which can be used to
build such a permutation. For example, this table means that if the permutation
contains a cycle of length 11, then there are only 48 cycles of this length which can
be used to build the permutation. This table also implies that the permutation
should not contain a cycle of length ≥ 12. As mentioned in Section 4.1, none of
the possible combinations of those cycles allows to build a permutation reaching
18 active S-boxes over 5 rounds.

Length of the cycle Number of cycles
1 16
2 120
3 796
4 6576
5 25656
6 78448
7 112608
8 74904
9 15576
10 1344
11 48

Table 2: Number of cycles which must be use to build a permutation reaching
18 A-boxes over 5 rounds



C Generic simulated annealing algorithm

Algorithm 2 Simulated Annealing [20]
Input: initial temperature T0, cooling schedule α(T ), neighbor function ε(x)

1: x← random, T ← T0
2: while termination criteria not met do
3: x′ ← ε(x)

4: if f(x′) > f(x) then
5: x← x′

6: else
7: r ← U [0, 1] Generate a uniformly random real number in [0,1]
8: if r < e

f(x′)−f(x)
T then

9: x← x′

10: end if
11: end if
12: T ← α(T )

13: end while
Output: x

D Proof of Proposition 6

As in the proof of Proposition 5, we need to show that, for each characteristic
we can build using (Ps, Pk), one can find a characteristic with the same number
of active S-boxes using (P ′s, P

′
k), with P

′
s = P−1c ◦Ps ◦Pc and P ′k = P−1c ◦Pk ◦Pc,

Pc ∈ Pc.
Given a characteristic (X0, . . . , Xr), and using the same notation as in the

the proof of Proposition 5, for all i let K ′i = P−1c (Ki) and Y ′i = P−1c (Yi).
Showing that P ′k is a valid key-schedule is done in the same way as for Proposition
5. Furthermore, note that since MC acts on each column separately, we have
MC ◦P−1c = P−1c ◦MC. In the same way, SB acts on each byte separately, hence
Pc ◦ SB = SB ◦ Pc. Thus we have

Y ′i+1 = P−1c (Xi+1) = P−1c ◦MC ◦ Ps ◦ SB(Yi ⊕Ki)

= P−1c ◦MC ◦ Ps ◦ SB(Pc(Y ′i )⊕ Pc(K ′i))
= P−1c ◦MC ◦ Ps ◦ SB ◦ Pc(Y ′i ⊕K ′i)
= MC ◦ P−1c ◦ Ps ◦ Pc ◦ SB(Y ′i ⊕K ′i)
= MC ◦ P ′s ◦ SB(Y ′i ⊕K ′i)



So again, (P ′s, P ′k) correctly defines a round function and X ′i+1 = P−1c (Xi+1) for
all i. Thus each X ′i is a permutation of Xi, hence the corresponding character-
istic (X ′0, . . . , X

′
r) has the same number of active S-boxes as the characteristic

(X0, . . . , Xr).

E Pairs (Ps, Pk) reaching 21 Sboxes over 6 rounds

(Ps, Pk) # iterations
P 1
s = (0 1 2 4 3 8 9 12 5 13 14 15 6 7 10 11)

P 1
k = (10 4 12 11 6 2 5 1 8 0 9 7 13 14 15 3)

3151253 ∼ 221.6

P 2
s = (0 1 2 4 3 8 9 12 5 6 13 14 7 10 11 15)

P 2
k = (15 14 11 10 6 12 4 0 3 8 1 9 2 5 13 7)

42414349 ∼ 225.3

P 3
s = (0 1 4 8 9 10 12 13 5 6 14 15 2 3 7 11)

P 3
k = (14 12 8 6 7 4 0 1 3 11 10 2 9 5 13 15)

8588115 ∼ 223

P 4
s = (0 1 2 8 4 9 12 13 5 6 7 14 3 10 11 15)

P 4
k = (12 14 11 4 8 0 3 7 10 15 2 9 6 13 5 1)

15016901 ∼ 223.8

P 5
s = (0 1 2 8 4 9 12 13 3 5 14 15 6 7 10 11)

P 5
k = (5 9 15 13 3 4 6 2 11 7 10 0 8 14 1 12)

51700477 ∼ 225.6

Table 3: Pairs (Ps, Pk) which reach 21 S-boxes, along with the number of Pk
tried before founding it

For a given P is , we also took a look at the permutations P ′k that are rather
"close" to the ones we found, that is, permutations P ′k which are one or two
transpositions away from each P ik. It turns out that, except for (P

4
s , P

4
k ), none of

these permutations also reach 21 S-boxes. Oddly, there are 3 permutations that
are 1 transposition away from P 4

k which also reach 21 S-boxes when using P 4
s

instead of SR , and again, none of them has a differential characteristic with a
probability better than 2−128 over 6 rounds. Those three permutations are

P 4′

k =
(
14 12 11 4 8 0 3 7 10 15 2 9 6 13 5 1

)
,

P 4′′

k =
(
12 14 11 4 10 0 3 7 8 15 2 9 6 13 5 1

)
,

P 4′′′

k =
(
12 14 11 4 8 0 3 7 2 15 10 9 6 13 5 1

)
.


