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Abstract. In this paper, we investigate the complexity of the emptiness
problem for Parikh automata equipped with a pushdown stack. Push-
down Parikh automata extend pushdown automata with counters which
can only be incremented and an acceptance condition given as a semi-
linear set, which we represent as an existential Presburger formula over
the final values of the counters. We show that the non-emptiness prob-
lem both in the deterministic and non-deterministic cases is NP-c. If the
input head can move in a two-way fashion, emptiness gets undecidable,
even if the pushdown stack is visibly and the automaton deterministic.
We define a restriction, called the single-use restriction, to recover decid-
ability in the presence of two-wayness, when the stack is visibly. This syn-
tactic restriction enforces that any transition which increments at least
one dimension is triggered only a bounded number of times per input
position. Our main contribution is to show that non-emptiness of two-
way visibly Parikh automata which are single-use is NExpTime-c. We
finally give applications to decision problems for expressive transducer
models from nested words to words, including the equivalence problem.

1 Introduction

Parikh automata. Since the classical automata-based approach to model-
checking [28], finite automata have been extended in many ways to tackle
the automatic verification of more realistic and powerful systems against more
expressive specifications. For instance, they have been extended to pushdown
systems [3,26,30], concurrent systems [5], and systems with counters or spec-
ifications with arithmetic constraints have been the focus of many works in
verification [7,11,15–18,23].

Along this line of work, Parikh automata (or PA), introduced in [22], are
an important instance of automata extension with arithmetic constraints. They
are automata on finite words whose transitions are equipped with counter oper-
ations. The counters can only be incremented, and do not influence the run
(enabling a transition requires no test on counter values), but the acceptance
of a run is defined by the membership of the final counter valuations to some
semi-linear set S. Expressivity of PAs goes beyond regularity, as the language
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L = {w | |w|a = |w|b} of words having the same numbers of as and bs is realised
by a simple automaton counting the numbers of as and bs in counters x1 and x2

respectively, and the accepting condition is given by the linear-set {(i, i) | i ∈ N}.
Semi-linear sets can be defined by formulas in existential Presburger arithmetic,
ie first-order formulas with equality and sum predicates over integers, whose free
variables are evaluated by the counter values calculated by the run.

A central problem in automata theory is the non-emptiness problem: does
the automaton accepts at least one input. Although PAs go beyond regular lan-
guages, they retain relatively good algorithmic properties. The emptiness prob-
lem is decidable, and it is NP-c [12]. The hardness holds even if the semi-linear
set is represented as a set of generator vectors. Motivated by applications in
transducer theory for well-nested words, we investigate in this article extensions
of Parikh automata with a pushdown stack.

First contribution: pushdown Parikh automata. As a first contribution, we study
the complexity of the emptiness problem for Parikh automata with a pushdown
store. Parikh automata extend finite automata with counter operations and
an acceptance condition given as a semi-linear set, pushdown Parikh automata
extend pushdown automata in the same way. We show that adding a stack can be
done for free with respect to the emptiness problem, which remains, as for stack-
free Parikh automata, NP-c. However in this case, we are able to strengthen the
lower bound: it remains NP-hard even if there are only two counters, the automa-
ton is deterministic, and the Presburger formula only tests for equality of these
two counters. In the stack-free setting, it is necessary to have an unfixed number
of counters to get such a lower bound.

Contribution 1. The emptiness problem for pushdown Parikh automata (PPA)
is NP-c. The lower bound holds even if the automaton is deterministic, has only
two counters whose operations are encoded in unary, and they are eventually
tested for equality.

Second contribution: adding two-wayness. We investigate the complexity of push-
down Parikh automata when the input head is allowed to move in two direc-
tions. It is not difficult to see that in that case emptiness gets undecidable, since,
already without counters, one can simulate the intersection of two determinis-
tic pushdown automata, by performing two passes over the input (visiting each
input position at most three times). We consider a first restriction on the stack
behaviour, which is required to be visibly.

A pushdown stack is called visibly if it is driven by the type of letters it reads,
which can be either call symbols, return symbols or internal symbols. Words
formed over such a structured alphabet are called nested words, and well-nested
words if additionally the call/return structure of the word is well-balanced, such
as in the following example:

c c r r c r
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Automata for nested words, called visibly pushdown automata (or VPA), have
been introduced in [2]. They are pushdown automata whose stack behaviour
is constrained by the input in the following way. Upon reading a call symbol,
exactly one symbol is pushed onto the stack. Upon reading a return symbol,
exactly one symbol is popped from it. Upon reading an internal symbol, the
stack is left unchanged. Hence, the symbol that is pushed while reading a given
call symbol is popped while reading its matching return symbol. Consequently,
visibly pushdown automata enjoy nice properties, such as closure under Boolean
operations and determinisation.

VPA have been extended to two-way VPA (2VPA) [8] with the following stack
constraints: in a backward reading mode, the role of the return and call symbols
regarding the stack are inverted: when reading a call, exactly one symbol is
popped from the stack and when reading a return, one symbol is pushed. It was
shown in [8] that adding this visibly condition to two-way pushdown automata
allows one to recover decidability for the emptiness problem. However, for Parikh
acceptance, this restriction is not sufficient. Indeed, by encoding diophantine
equations, we show the following undecidability result:

Contribution 2. The emptiness problem for two-way visibly pushdown Parikh
automata (2VPPA) is undecidable.

Single-use property. The problem is that by using the combination of two-
wayness and a pushdown stack, it is possible to encode polynomially, and even
exponentially large counter values, with respect to the length of the input word.
We consider therefore the single-use restriction, which appears in several trans-
ducer models [6,8,10], by which it is possible to keep a linear behaviour for
the counters. Informally, a single-use two-way machine bounds the size of the
production per input positions. It is syntactically enforced by asking that tran-
sitions which strictly increment at least one counter are triggered at most once
per input position. Our main result is the decidability of 2VPPA emptiness under
the single-use restriction, with tight complexity.

Contribution 3 (Main). The emptiness problem for two-way single-use visi-
bly pushdown Parikh automata (2VPPAsu) is NExpTime-c. The hardness holds
even if the automaton is deterministic, has only two counters whose operations
are encoded in unary, and they are eventually tested for equality.

To prove the upper-bound, we show that two-wayness can be removed from
single-use 2VPPA, at the price of one exponential. In other words, single-use
2VPPA and VPPA have the same expressive power, although it can be shown that
the former model is exponentially more succinct. The lower bound is obtained by
encoding the succinct variant of the subset sum problem, based on a reduction
which uses the fact that, by combining the pushdown and two-way features,
single-use 2VPPA can encode doubly-exponential values 22

n

with a polynomial
number of states (in n).
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Visibly Pushdown Pushdown
one-way NP-complete NP-complete

2-way Single-use NExptime-complete Undecidable
2-way Undecidable Undecidable

Fig. 1. Complexity of the emptiness of different Pushdown Parikh Automata. All
results hold for deterministic and non-deterministic machines.

Contribution 4 (Applications). As an application, we give an elementary
upper-bound (NExpTime) for the equivalence problem of functional single-use
two-way visibly pushdown transducers [8], while an ExpTime lower bound was
known. This transducer model defines transductions from well-nested words to
words and, as shown in [8], they are well-suited to define XML transformations,
have the same expressive power as Courcelle’s MSO-transducers [6] (casted to
well-nested words), and admit a memory-efficient evaluation algorithm. We also
provide two other new results on single-use 2VPT (not necessarily functional).
First, we show that given a positive integer k, it is decidable whether a single-
use 2VPT produces at most k different output words per input (k-valuedness
problem). Then, we show the decidability of a typechecking problem: given a
single-use 2VPT T and a finite (stack-free) Parikh automaton P , it is decidable
whether the codomain of T has a non-empty intersection with P . This allows for
instance to decide whether a single-use 2VPT produces only well-nested words
and thus describes a well-nested words to well-nested words transformation, since
the property of a word to be non well-nested is definable, as we show, by a Parikh
automaton.

Finite-visit vs single-useness. The single-use property is more general than
the more classical finite-visit restriction, used for instance in [9,19]: it requires
to visit any input position a (machine-dependent) constant number of times,
while single-useness only bounds the number of visits by producing transitions.
Although, consequently to our results, 2VPPA single-use and finite-visit have
the same expressive power, this extra modelling feature is desirable, for instance
when using 2VPPA to test properties of 2VPT: single-use 2VPT are strictly more
expressive than finite-visit ones, and this relaxation is crucial to capture MSO
transductions [8]. Moreover, we somehow get it for free: we show that the NEx-
pTime lower bound also holds for finite-visit 2VPPA. Finally, we note that as
we deal with single-use machines rather than finite-visit ones, the usual ingredi-
ent for going from two-way to one-way consisting of memorizing simply crossing
sections of states, is not sufficient to get the result here, since we cannot bound
the size of these crossing sections.

Related work. Parikh automata are closely related to reversal-bounded counter
machines [18]. In fact, both models have equivalent expressiveness in the non-
deterministic case [22]. The difference of expressive power in the deterministic
case is due to the fact that counter machines can perform tests on its counters
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that can influence the run, while counters in Parikh automata only matter at the
end of the run. Several extensions of reversal-bounded counter machines were
studied, whether they are two-way or equipped with a (visibly) pushdown stack.
However, to the best of our knowledge, the combination of the two features has
never been studied (see [19] for a survey). It is possible to define a model of
single-use reversal-bounded two-way visibly pushdown counter machines, where
the single-useness is put on transitions that modify the counters. This model
is expressively equivalent to 2VPPAsu in the non-determinstic case, and thanks
to our result, has a decidable emptiness problem. The non-emptiness problem
for reversal-bounded (one-way) pushdown counter machines for fixed numbers
of counters and reversals is known to be in NP [13] and NP-hard [16]. Convert-
ing PPA into reversal-bounded counter machines would yield an unfixed number
of counters. Our NP lower-bound for PPA however follows ideas of [16] about
encoding, using the stack, integers n with O(log(n)) states and stack symbols.

Two-way (stack-free) reversal-bounded counter machines, even deterministic,
are known to have undecidable emptiness problem [19]. Decidability is recov-
ered by taking the finite-visit restriction [19]. Our result on 2VPPAsu entails the
decidability of emptiness of two-way reversal-bounded counter machines which
are single-use.

Finally, all the decidability results we prove on two-way visibly pushdown
transducers were already known in the one-way case [13]. Two-way visibly push-
down transducers, which are strictly more expressive, can also be seen as a
model of unranked tree-to-word transducers, modulo tree linearisation. To the
best of our knowledge, this is the first model of unranked tree-to-word transduc-
ers for which k-valuedness and codomain well-nestedness is shown to be decid-
able. Another model, introduced in [1], is known to be expressively equivalent
to 2VPTsu [8], and in the functional case, has decidable equivalence problem in
NExpTime. However, translating 2VPTsu to this model requires an exponential
blow-up, yielding a worst complexity for equivalence testing.

Structure. Section 2 introduces the computing models used, the proof of the lower
bound for 2VPPAsu is given in Sect. 3 and the upper bound in Sect. 4. Finally,
some applications to the main theorem to transducers are given in Sect. 5.

2 Two-Way Visibly Pushdown (Parikh) Automata

In this section, we first recall the definition of two-way visibly pushdown
automata and later on extend them to two-way visibly pushdown Parikh
automata.

We consider a structured alphabet Σ defined as the disjoint union of call
symbols Σc, return symbols Σr and internal symbols Σi. The set of words over
Σ is Σ∗. As usual, ε denotes the empty word. Amongst nested words, the set of
well-nested words Σ∗

wn is defined as the least set such that Σi ∪ {ε} is included
into Σ∗

wn and if w1, w2 ∈ Σ∗
wn then both w1w2 and cw1r (for all c ∈ Σc and

r ∈ Σr) belong to Σ∗
wn.
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When dealing with two-way machines, we assume the structured alphabet Σ
to be extended to Σ by adding a left and right marker symbols �, � in Σc and
Σr respectively, and we consider words in the language �Σ∗�.

Definition 1. A two way visibly pushdown automaton (2VPA for short) A over
Σ is given by (Q, qI , F, Γ, δ) where Q is a finite set of states, qI ∈ Q is the initial
state, F ⊆ Q is a set of final states and Γ is a finite stack alphabet. Given the set
D = {←,→} of directions, the transition relation δ is defined by δpush∪δpop∪δint

where

– δpush ⊆ ((Q × {→} × Σc) ∪ (Q × {←} × Σr)) × ((Q × D) × Γ )
– δpop ⊆ ((Q × {←} × Σc × Γ ) ∪ (Q × {→} × Σr × Γ )) × (Q × D)
– δint ⊆ ((Q × D × Σi) × (Q × D)

Additionally, we require that for any states q, q′ and any stack symbol γ, if
(q,←, �, γ, q′, d) ∈ δpop then d =→ and if (q,→, �, γ, q′, d) ∈ δpop then d =←
ensuring that the reading head stays within the bounds of the input word.

Informally, a 2VPA has a reading head pointing between symbols (and pos-
sibly on the left of � or the right of �). A configuration of the machine is given
by a state, a direction d and a stack content. The next symbol to be read is on
the right of the head if d =→ and on the left if d =←. Note that when reading
the left marker from right to left ← (resp. the right marker from left to right
→), the next direction can only be → (resp. ←). The structure of the alphabet
induces the behavior of the machine regarding the stack when reading the input
word: when reading on the right, a call symbol leads to push one symbol onto
the stack while a return symbol pops one symbol from the stack. When reading
on the left, a dual behaviour holds. In any direction internal transitions from
δint read internal symbols and do not affect the stack; hence, at a given position
in the input word, the height of the stack is always constant at each visit of
that position in the run of the machine. The triggering of a transition leads to
the update of the state of the machine, the future direction as well as the stack
content. For a direction d, a natural i (0 ≤ i ≤ |w|) and a word w, we denote by

– move(d, i) the integer i − 1 if d =← and i + 1 if d =→.
– read(w, d, i) the symbol w(i) if d =← and w(i + 1) if d =→.

Note that when switching directions (i.e. when the direction of the first part of
the transition is different from the second part), we read twice the same letter.
This ensures the good behavior of the stack, as reading a call letter from left to
right pushes a stack symbol, we need to pop it if we start moving from right to
left.

Formally, a stack σ is a finite word over Γ . The empty stack/word over Γ is
denoted ⊥. For a word w from Σ and a 2VPA A = (Q, qI , F, Γ, δ), a configuration
κ of A is a tuple (q, i, d, σ) where q ∈ Q, 0 ≤ i ≤ |w|, d ∈ D and σ is a stack. A
run of A on a word w is a finite sequence ρ from K(δK)∗, where K is the set of
all configurations κ (that is a sequence starting and ending with a configuration
and alternating between configurations and transitions); a run ρ is of the form
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(q0, i0, d0, σ0)τ1(q1, i1, d1, σ1)τ2 . . . τ�(q�, i�, d�, σ�) where for all 0 ≤ j < , we
have:

– either dj =→ and read(w, dj , ij) ∈ Σc or dj =← and read(w, dj , ij) ∈ Σr,
τj+1 = (qj , dj , read(w, dj , ij), qj+1, dj+1, γ) ∈ δpush, ij+1 = move(ij , dj) and
σj+1 = σjγ

– either dj =← and read(w, dj , ij) ∈ Σc or dj =→ and read(w, dj , ij) ∈ Σr,
τj+1 = (qj , dj , read(w, dj , ij), γ, qj+1, dj+1) ∈ δpop, ij+1 = move(ij , dj) and
σj+1γ = σj

– read(w, dj , ij) ∈ Σi, τj+1 = (qj , dj , read(w, dj , ij), qj+1, dj+1) ∈ δint, ij+1 = ij
and σj+1 = σj .

Note that any configuration is actually a run on the empty word ε. The initial
configuration is (qI , 0,→,⊥). A configuration (q, i, d,⊥) is final if q ∈ F and i
is the last position. A run for the word w is accepting if its first configuration is
initial and its last configuration is final. A two-way visibly pushdown automaton
A is:

– deterministic (denoted D2VPA) if δpush (resp. δpop, δint) is a function from
Q × D × Σ (resp. Q × D × Σ × Γ , Q × D × Σ) to Q × D × Γ (resp. Q × D,
Q × D).

– one-way (denoted VPA) if all transitions in A have → for direction.
– finite-visit if for some k ≥ 0, any run visits at most k times the same input

position.

The size of a 2VPA is the number of states times the size of the stack alphabet.
For A an automaton, we denote by L(A) the language recognized by A.

Lemma 1 ([8]). Given a 2VPA A, deciding if L(A) is empty is ExpTime-
complete.

Parikh automata. Parikh automata were introduced in [22]. Informally, they
are automata with counters that can only be incremented, and do not
act on the transition relation. Acceptance of runs is done by evaluating
a Presburger formula whose free variables are set to the counter values.
In our setting, a Presburger formula is a positive formula ψ(x1, . . . , xn) =
∃y1 . . . ymϕ(x1, . . . , xn, y1, . . . , ym) such that ϕ is a boolean combination of atoms
s + s′ ≤ t + t′, for s, s′, t, t′ ∈ {0, 1, x1, . . . , xn, y1, . . . , ym}. For a set S and some
positive number m, we denote by Sm the set of all mappings from [1 . . . m] to
S. If (s1, . . . , sm) and (t1, . . . , tm) are two tuples of Sm and + is an binary oper-
ation on S, we extend + to Sm by considering the operation element-wise, i.e.
(s1, . . . , sm) + (t1, . . . , tm) = (s1 + t1, . . . , sm + tm).

Definition 2. A two-way visibly pushdown Parikh automaton (2VPPA for
short) is a tuple P = (A, λ, φ) where A is a 2VPA and for some natural dim, λ
is a mapping from δ to Ndim , the set of vectors of length dim of naturals and
φ(x1, . . . , xdim) is a Presburger formula with dim free variables.
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When clear from context, we may omit the free variables from the Presburger
formula, and simply note φ. A run of a 2VPPA is a run of its underlying
2VPA. We extend canonically the mapping λ to runs. For a run ρ of the form
(q0, i0, d0, σ0)τ1(q1, i1, d1, σ1)τ2 . . . τ�(q�, i�, d�, σ�), we set

λ(ρ) = λ(τ1) + λ(τ2) + . . . + λ(τ�)

We recall that a single configuration c is a run over the empty word ε.
For such a run c, we set λ(c) = 0dim . A run (q0, i0, d0, σ0)τ1(q1, i1, d1, σ1)
τ2 . . . τ�(q�, i�, d�, σ�) is accepted if (q0, i0, d0, σ0), (q�, i�, d�, σ�) are respec-
tively an initial and a final configuration of the underlying automaton and
for λ(ρ) = (n1, . . . , ndim), [x1 ← n1, . . . , x� ← ndim ] |= φ(x1, . . . , xdim).
The language L(P ) is the set of words which admit an accepting run.
We define the set of values computed by P as Val(P ) = {λ(ρ) |
ρ a valid run of the underlying automaton of P}. We define the size of P as the
size of A plus the number of symbols in φ and |δ| · dim · log(W ) where W is the
maximal value occurring in the codomain of λ.

It is deterministic (resp. one-way), denoted D2VPPA (resp. VPPA) if its
underlying automaton is deterministic (resp. one-way). It is known from [4] that
DPA (i.e. deterministic one-way and stack-free Parikh automata in our setting)
are strictly less expressive than their nondeterministic counterpart. As a counter
example, they exhibit the language L = {w | w#a(w) = b}, ie all words w such
that if n is the number of a in w, the letter at the nth position is a b. Note
that even in the two-way case, a deterministic machine recognizing L needs to
either have access, during the computation, to the number of a’s, or be able to
store, in counters, the position of each b. As the first solution cannot be done
since Parikh automata only access their counters at the end of the run, and the
second is also impossible since there are only a finite number of counters, this
language is also non definable by a D2VPPA, furthering the separation between
deterministic and nondeterministic Parikh automata.

Example 1. As an example, we give a deterministic 2VPPA P that, given an
input incki�rk with c, i, r in Σc, Σi and Σr respectively, accepts if k =  and
n = k2. The 2VPPA P uses 4 variables xn, xk, x� and y. The first 3 variables
are used to count the number of the first block of is, the number of calls and
the second block of is respectively. The handling of these 3 variables is straight-
forward and can be done in a single pass over the input. The fourth variables
y counts the multiplication k ·  and doing so is more involved. The part of the
underlying 2VPA of P handling y is given in Fig. 2. On this part, the mapping
λ simply increments the counter on transitions going to state 2 (i.e. on reading
the letters i from left to right). It makes as many passes on the set of internal
symbols in state 2 as there are call symbols, and the state of the stack upon
reading i� for the jth time is 1j0k−j . Finally, the accepting formula φ of P is
defined by xn = y ∧ xk = x�. Note that this widget allows us to compute the set
{(k2, k, k, k2) | k ∈ N} which is not semilinear.
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0, → 1, → 2, →

3, ←

4, ←5, ←6, →

Acc
c, push(1)

c, push(0)

i | y++

i | y++

r, pop(0)

r, push(0)

i

c, pop(0)

c, pop(0)

c, pop(1)

c, push(1)

r, pop(1)

Fig. 2. A 2VPPA reading words cki�rk and making k passes on i�, adding k · � to the
variable y. The transitions have two components, the first being the letter read, and
the second being the stack operation. There is no stack operation upon reading internal
symbols. The variable y is incremented in transitions going to state 2 only.

As we have seen in the previous example, the set Val(P ) is not necessarily
semi-linear, even with P a D2VPPA. We use this fact to encode diophantine
equations, and get the following undecidability result:

Theorem 1. The emptiness problem of D2VPPA is undecidable.

Single-useness. In order to recover decidability, we adapt to Parikh Automata
the notion of single-useness introduced in [8]. Simply put, a 2VPPA is single-use
(denoted 2VPPAsu) if the transitions that affect the variables can only be taken
once on any given input position, thus effectively bounding the size of variables
linearly with respect to the size of the input. Formally, a state p of a 2VPPA P is
producing if there exists a transition t from p on some symbol and λ(t) �= 0dim .
A 2VPPA is single-use if for every input w and every accepting run ρ over w,
there do not exist two different configurations (p, i, d, σ) and (p, i, d, σ′) with
p a producing state, meaning that ρ does not reach any position in the same
direction twice in any given state of P . This property is a syntaxic restriction
of the model. However, since this property is regular, it can equivalently be
seen as a semantic one. Moreover, deciding the single-useness of a 2VPPA is
ExpTime-c (see [8] for the same result but on transducers). Note that the Parikh
automaton given in Example 1 is not single-use, since it passes over the second
subword of internal letters i in state 2 as many times as there are call symbols.
In the following, we prove that 2VPPAsu have the same expressiveness as VPPA,
while being exponentially more succinct. In particular, this equivalence implies
by Parikh’s Theorem [24], semi-linearity of Val(P ) for any 2VPPAsu P .

3 Emptiness Complexity

We show that the non-emptiness problem for VPPA is NP-complete. We actu-
ally show the upper-bound for the strictly more expressive Pushdown Parikh
Automata (PPA), i.e. VPPA without the visibly restriction. While decidability
was known [20,21], the precise complexity was, to the best of our knowledge,
unknown. Let us also remark that the model and the proof are similar to the
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proof of NP-completeness of k-reversal pushdown systems from [16]. However,
it is adapted here to Parikh automata as well as deterministic machines, which
was not the case in [16].

Theorem 2. The non-emptiness problem for VPPA and PPA is NP-complete.
The complexity bounds hold even if the automata are deterministic, with a fixed
dimension 2, tuples of values in {0, 1}2 and with a fixed Presburger formula
φ(x1, x2) ≡ x1 = x2.

From 2VPPAsu to VPPA From a two-way visibly pushdown Parikh automaton
satisfying the single-useness restriction, one can build an equivalent one-way
visibly pushdown Parikh automaton. The construction induces an exponential
blow-up, which cannot be avoided, as with most constructions from two-way to
one-way machines.

Theorem 3. For any 2VPPAsu A, one can construct a VPPA B whose size is
at most exponential in the size of A and such that L(A)=L(B). Moreover, the
procedure can be done in exponential time.

Proof (Sketch). The goal is to be able to correctly guess all the transitions exactly
taken by a run of the two-way machine at once. More precisely, the one-way
machine guesses the behavior of the two-way machine on each well-nested sub-
word of the input, i.e. a set of partial runs over a subword. A partial run is a pair
from Q × {←,→}. Informally, they describe a maximal subrun over a subword
of the input. We call these sets of partial runs profiles, and we define relations
C and Nc,r to describe compatible profiles. Formally, the relation C ⊆ P3 is the
concatenation relation, defined as set of triples (P, P ′, P ′′) such that there exists
a word u = u1vv′u2 where v and v′ are well-nested subwords of u, and a run r
on u such that P (resp. P ′) is the profile of v in r (resp. of v′) and P ′′ is the
profile of vv′ in r. Similarly, the relation Nc,r ⊆ P2 for c, r call and return letters
respectively, is the cr-nesting relation, and defined as the set of pairs (P, P ′)
such that there exists a word u = u1cvru2 where v is well-nested, and a run r of
A on u such that P is the profile of v in r and P ′ is the profile of cvr in r. We
prove that these relations are computable in exponential time.

Given these relations, we can compute a VPPA B whose runs are bijective to
the runs of A. Moreover, we can recover from a run of B which transitions are
effectively taken at each positions by its bijective run of A. Then, the increment
function simply does all the increments done by the run at a given position at
once. Since the operation is the addition on integers, it is commutative and the
variables are updated in the same way they were by the run of A. Note that
we only recover which transitions are taken, and not how many times they are
taken, which can depend on the size of the input. However, since A is single-use,
we only have to add each non zero transition once, which gives the result.

As a direct corollary of Theorems 3 and 2, we get the following.

Corollary 1. The emptiness of 2VPPAsu can be decided in NExpTime.
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4 NExpTime-Hardness

In this section, we show that the problem of deciding whether the language of
a 2VPPAsu is non-empty is hard for NExpTime. Moreover, we show that this
hardness does not depend on the fact that we have taken existential Presburger
formulas, nor on the vector dimensions, and nor on the fact that the values in
the tuples are encoded in binary.

Theorem 4. The non-emptiness problem for 2VPPAsu is NExpTime-hard. The
result holds even if the automaton is deterministic, of dimension 2, with counter
updates in {0, 1}, the Presburger formula is φ(x1, x2) ≡ x1 = x2, and it is finite-
visit.

Succinct Subset Sum Problem. We reduce to the succinct subset sum prob-
lem (SSSP), which is NExpTime-hard [16]. Let us define SSSP. Let m, k ≥ 1,
X = {x1, . . . , xk} and Y = {y1, . . . , ym} be sets of Boolean variables. Let θ be
a Boolean formula over X ∪ Y . Any word v ∈ {0, 1}k+m naturally defines a
valuation of X ∪ Y (the first bit of v is the value of x1, etc.). We denote by
θ[v] ∈ {0, 1} the truth value of θ under the valuation v. The formula θ defines
2k non-negative integers a1, . . . , a2k each with 2m bits, as follows:

ai = θ[bid1].22
m−1 + θ[bid2].22

m−2 + · · · + θ[bid2m ].20

where bi is the binary encoding over k bits of i, and d1, . . . , d2m is the lex-
icographic enumeration of {0, 1}m, starting from 0m. Note that for all i ∈
{1, . . . , 2k}, ai ∈ {0, . . . , 22

m −1}. The Succinct Subset Sum Problem asks, given
X,Y and θ, whether there exists J ⊆ {1, . . . , 2k − 1} such that

∑
j∈J aj = a2k .

Overview of the construction and encoding the values ai. Given an instance of
SSSP I, our goal is to construct a D2VPPAsu P = (C, ρ, φ) of dimension 2 such
that |P| is polynomial in |θ| + k + m and L(P) �= ∅ iff I has a solution.

The main idea is to ensure that L(C) = {X1e1 . . . X2k−1e2k−1#e2k | Xi ∈
{0, 1}} where the Xi are internal symbols which are used to encode a subset
J ⊆ {1, . . . , 2k − 1}, and each ei is an encoding of ai, defined later, over some
alphabet containing the symbol 1, and such that the number of occurrences of 1
in ei is ai. In other words, ei somehow encodes ai in unary. For the vector part,
the machine P, when running over Xiei, updates its dimensions depending on
two cases: (1) if Xi = 1 (“put value ai in J”), then any transition reading 1
has weight (1, 0) and any other transition has weight (0, 0), (2) if Xi = 0, then
every transition has weight (0, 0). So, if Xi = 1, the value in the first dimension
after processing Xiei has been incremented by ai. Similarly, when processing
#e2k , any transition reading 1 increments the 2nd dimension by 1, so that after
processing #e2k , this dimension has value a2k . The formula φ(x1, x2) then only
requires equality of x1 and x2, i.e. φ(x1, x2) ≡ x1 = x2.

We now explain how to encode ai by a well-nested word ei. Due to the finite-
visit restriction, every incremental transition can be triggered at most once for
each input position. Since the value ai is possibly doubly exponential in m and
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Σ<i Σ<i
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Σ<m Σ<m

m m

Fig. 3. On the left, the automaton Ai, for i < m. On the right, the automaton Am.

we are allowed to have a polynomial number of transitions (in |θ| + k + m),
necessarily ei must be of doubly exponential length. The main idea is to use
the stack and the two-wayness to recognise with a polynomial number of states
well-nested words which are of doubly exponential length. We need a series of
intermediate lemmas to achieve this idea. We start with a useful result about
intersection of finite automata, here reversible finite automata (deterministic
and backward deterministic). Let Σ = {1, . . . , m} and let us define recursively
the sequence of words (ui)0≤i≤m ∈ Σ∗ as follows: u0 = 1, ui = ui−1iui−1 for
1 ≤ i < m and um = um−1mum−1m.

Lemma 2. The word um has length 2m, and there exist m reversible finite
automata A0, . . . , Am (Fig. 3) such that (i) each Ai has O(1) states, and (ii)⋂m

i=1 L(Ai) = {um}.

Encoding of the values ai. The idea is to define a well-nested word ei over
an alphabet of call symbols Σc = {c1, . . . , cm}, an alphabet of return symbols
Σr = {r1, . . . , rm} and an alphabet of internal symbols Σι = {0, 1,1,0}. The
number of occurrences of 1 in ei will be exactly ai, i.e. #1(ei) = ai and hence,
the Parikh automaton will just have to count the number of 1 occurrences. Let
us remind the reader that ai is actually given by θ, and therefore, the automaton
P will somehow have to evaluate θ for valuations of its variables that will be
contained in ei. Let us now define the words ei. For that, we call a binary
tree either an internal symbol 1,0, or a well-nested word of the form cjt1t2rj

where t1, t2 are themselves binary trees. For a well-nested word of the form
cwr, a root-to-leaf branch π is a sequence of calls x1 . . . xn such that cwr =
x1w1x2w2 . . . xnwnrnw′

nrn−1w
′
n−1 . . . r2w

′
2r1 where x1 = c, r1 = r and for some

wi, w
′
i well-nested words such that wn contains only internal symbols. The height

of a binary tree t is the maximal length of a root-to-leaf branch, and it is complete
if all root-to-leaf branches have the same length. Note that the number of internal
symbols of a complete binary tree of height n is 2n.

Then, ei is the well-nested word defined by ei = cj1bid1t1cj2bid2t2 . . . cj2m

bid2mt2mrj2m . . . rj1 where

1. the words ti are binary trees
2. every root-to-leaf branch π = ci1 . . . ci�

of ei satisfies i1 . . . i� = um

3. bi ∈ {0, 1}k and d1, . . . , d2m is a lexicographic enumeration of {0, 1}m (start-
ing from 0m)

4. for all j, all internal symbols occurring in tj are 1 if θ[bidj ] = 1, 0 otherwise.
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Our goal is now to prove that ei is a correct encoding of ai.

Lemma 3. For all i ∈ {1, . . . , 2k}, #1(ei) = ai, where #1(ei) denotes the num-
ber of occurrences of 1 in ei.

Proof. By Condition 2, every root-to-leaf branch of ei has length 2m. There-
fore, for all j ∈ {1, . . . , 2m}, every root-to-leaf branch in tj has length 2m − j.
In particular, t2m does not contain any call symbol. Hence all the trees tj
are complete binary trees of height 2m − j. So, every tj has 22

m−j inter-
nal symbols and by Condition 4, we get #1(tj) = θ[bidj ].22

m−j . Therefore,
#1(ei) =

∑2m

j=1 #1(tj) =
∑2m

j=1 θ[bidj ].22
m−j = ai.

Note that Condition 3 was not used in the previous proof, but it will be useful
to define a succinct D2VPA recognising ei. The key result is the following. It
states the existence of a succinct D2VPA which recognises exactly the candidate
solutions to SSSP.

Lemma 4. One can construct a D2VPA B such that B has polynomially many
states in |θ| + k + m and L(B) = {X1e1 . . . X2k−1e2k−1#e2k | Xi ∈ {0, 1}}.
Proof (Sketch). First, we show the existence of a D2VPA A with polynomially
many states in |θ|+k+m such that L(A) = {ei | i ∈ {1, . . . , 2k}} (Proposition ??
in Appendix). The main idea is to construct succinct D2VPA which check each
of the conditions 1 to 4 of the definition of the encoding independently, and then
to take their intersection (by running the first, then the second, etc.). Condition
1 is easy to check. For condition 2, we rely on Lemma 2, and run sequentially the
automata Ai (in m passes) to check independently that for all i, each root-to-leaf
branch has a sequence of indices that belongs to Ai. Thanks to the reversibility
of Ai, it is possible when going upward in the tree, to recover the previous state
of Ai. For condition 3, we rely on the two-wayness to check that a sequence of
m bits is a successor of another sequence succinctly, by doing O(m) passes over
the two successor vectors. The stack is not necessary there. For condition 4, we
rely on the existence of a succinct 2DFA which accepts all the valuations that
satisfy a given Boolean formula.

We can finally construct the D2VPPAsu P = (C, ρ, φ) of dimension 2 whose
language is non-empty iff the SSSP instance I has a solution. The automaton C
performs a first pass on the whole word by running the automaton B of Lemma 4,
to check that the input is of the form X1e1 . . . X2k−1e2k−1#e2k . During this pass,
no vector dimension is incremented. During a second pass, C, when reading some
Xi = 1, it goes to some state q1 from which it increments the 1st dimension
whenever 1 is read (all other transitions have value (0, 0)). When reading some
Xi+1, it stays in q1 if Xi+1 = 1 or to q0 otherwise, from which no transition
touches the counters. When reading #, it goes to a state from which it increments
only the 2nd dimension on reading 1. Note that this automaton is single-use:
any symbol 1 occurring in the whole input word is counted at most once. It
is even finite-visit (each position is visited O(m + k + |θ|) times). Finally, one
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only needs to check whether the first dimension equals the second one, using a
formula φ(x1, x2) ≡ x1 = x2. Note that the following lemma proves Theorem4,
since SSSP is NExpTime-c.

Lemma 5. Given an instance X,Y, θ of SSSP, one can construct a D2VPPAsu

P of polynomial size in |θ| + |X| + |Y | such that L(P) �= ∅ iff SSSP has a
solution.

5 Applications to Decision Problems for Nested Word
Transducers

In this section, we give two applications of 2VPPA, namely on decision problems
for two-way visibly pushdown transducers (2VPT). 2VPT were introduced in [8]
as a model to define transductions from well-nested words to words, or, modulo
tree linearisation, from tree to words. It was shown that they can express, even in
their deterministic and single-use version, all functions from well-nested words to
words definable in MSOT, in the sense of Courcelle [6], while having decidable
equivalence problem. No upper bound was provided however. Using 2VPPA,
we show that the equivalence of 2VPTsu defining functions can be tested in
NExpTime. We also consider other standard problems from transducer theory
and show, again using 2VPPA, their decidability. First, let us define formally
2VPT.

A two-way visibly pushdown transducer (2VPT for short) is a pair (A,μ)
where A is a 2VPA and μ is a morphism from the sequences of transitions δ∗ to
some output alphabet Γ ∗. A run of a 2VPT is a run of its underlying 2VPA. The
output of a run ρ of the form (q0, i0, d0, σ0)τ1(q1, i1, d1, σ1)τ2 . . . τ�(q�, i�, d�, σ�)
is μ(τ1...τ�). A run is accepted if it is accepted by its underlying automaton. The
transduction defined by a 2VPT is the set of pairs (u, v) such that v is the output
of some accepting run on u. A state p of a 2VPT is producing if there exists a
transition τ such that p is the first component of τ and μ(τ) �= ε. Similarly to
Parikh automata, a 2VPT T is single-use (denoted 2VPTsu) if for any valid run
of T , we do not reach the same position twice in the same producing state. It is
deterministic, denoted D2VPT, if its underlying automaton is deterministic.

Deciding the k-valuedness and equivalence problems. For any positive integer k,
we say that a transducer is k-valued if all input word have at most k different
outputs. In particular, it is 1-valued if it defines a (partial) function, and also
called functional in that case.

Theorem 5. Let T be a 2VPTsu, and k an integer. Then the k-valuedness of T
can be decided in NExpTime. It is also ExpTime-hard.

The theorem is proved by reducing the k-valuedness of T to the emptiness of
a 2VPPAsu P that guesses k + 1 runs of T that produce k + 1 different outputs.
To ensure that the output are different, during each run P guesses, and stores
in counters, k output positions and the letters produced at these positions. The



Two-Way Parikh Automata with a Visibly Pushdown Stack 203

formula of P at the end simply checks, for each pairs of runs, that the same posi-
tions were guessed by both runs, and that the letters were different, ensuring
that the guessed runs have different output pairwise. As two functional trans-
ducers are equivalent if they have the same domain and their union is 1-valued,
we get the following corollary.

Corollary 2. The equivalence of two functional 2VPTsu T and T ′ can be decided
in NExpTime. It is also ExpTime-hard.

The NexpTime complexity of equivalence of tree to string transducers was
already established for Streaming Tree to string transducers (STST), introduced
in [1]. However, the conversion between the 2VPTsu and STST yields an expo-
nential blow-up.

We can generalize Corollary 2 to strictly k-valued transducers. We say that
a transducer T is strictly k-valued if each input word in the domain of T has
exactly k different images. Then similarly to the previous corollary, two strictly
k-valued transducers are equivalent if, and only if, they have same domain and
their union is k-valued.

Corollary 3. The equivalence of two strictly k-valued 2VPTsu T and T ′ can be
decided in NExpTime. It is also ExpTime-hard.

Strict k-valuedness is however an undecidable property (this can be shown by
using the Post correspondence problem), even for k = 2. Deciding the equivalence
problem for k-valued 2VPTsu (which are not necessarily strictly k-valued) is open
already in the stack-less case, and a (very) particular case has been solved in
[14].

Type-checking against Parikh properties. Given a 2VPT T , it might be desirable
to check some properties of the output words it produces, i.e., for a language L,
whether the codomain of T is included in L. Formally, the type-checking problem
asks, given a transducer T and a language L, whether T (Σ∗) ⊆ L. Unfortunately,
this problem is undecidable when L is given by a visibly pushdown automaton
(and T is a VPT) [13]. Nevertheless, we show that the type-checking problem is
decidable when T is a 2VPTsu and L is the complement of the language given
by a (stack-less) Parikh Automaton. As a consequence, we are able to decide
whether a 2VPTsu T produces only well-nested words, i.e. if the output alphabet
of T is structured and for every input word u and any v ∈ T (u), v is a well-nested
word.

Theorem 6. Let T be a 2VPTsu and P be a (stack-free) Parikh Automaton
over the output alphabet of T . Then we can decide whether T (Σ∗) ∩ L(P ) = ∅
in NExpTime. It is also ExpTime-hard.

This is done by constructing a 2VPPAsu P ′ which simulates T , and instead
of producing letters, simulates P on the output of T . A word w on a structured
alphabet Σ is not well-nested if either |w|c �= |w|r, i.e. the number of call letters
is not equal to the number of return letters, or if there exists a prefix u of w
such that |u|c < |u|r. As this can be checked by a (non-deterministic) Parikh
automata, we get the following corollary.
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Corollary 4. Let T be a 2VPTsu whose output alphabet is structured. It can be
decided in CoNExpTime whether T only produces well-nested words.
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ICGT 2010. LNCS, vol. 6372, pp. 107–122. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-15928-2 8

24. Parikh, R.J.: On context-free languages. J. ACM 13(4), 570–581 (1966). https://
doi.org/10.1145/321356.321364

25. Scarpellini, B.: Complexity of subcases of Presburger arithmetic. Trans. Am. Math.
Soc. 284(1), 203–218 (1984)

26. Schwoon, S.: Model checking pushdown systems. Ph.D. thesis, Technical Univer-
sity Munich, Germany (2002). http://tumb1.biblio.tu-muenchen.de/publ/diss/in/
2002/schwoon.html

27. Shepherdson, J.C.: The reduction of two-way automata to one-way automata. IBM
J. Res. Dev. 3(2), 198–200 (1959)

28. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program
verification (preliminary report). In: LICS, pp. 332–344. IEEE Computer Society
(1986)

https://doi.org/10.1109/LICS.2015.39
https://doi.org/10.1109/LICS.2015.39
https://doi.org/10.1007/978-3-642-15155-2_32
https://doi.org/10.1007/978-3-642-15155-2_32
https://doi.org/10.4230/LIPIcs.STACS.2017.34
http://drops.dagstuhl.de/opus/volltexte/2017/6999
http://drops.dagstuhl.de/opus/volltexte/2017/6999
http://ora.ox.ac.uk/objects/uuid:f43bf043-de93-4b5c-826f-88f1bd4c191d
http://ora.ox.ac.uk/objects/uuid:f43bf043-de93-4b5c-826f-88f1bd4c191d
https://doi.org/10.1007/978-3-642-22110-1_60
https://doi.org/10.1007/978-3-642-31424-7_22
https://doi.org/10.1007/978-3-642-31424-7_22
http://doi.acm.org/10.1145/322047.322058
https://doi.org/10.1007/978-3-319-09704-6_2
https://doi.org/10.1007/3-540-45061-0_54
https://doi.org/10.1007/3-540-45061-0_54
http://dl.acm.org/citation.cfm?id=1759210.1759277
https://doi.org/10.1007/978-3-642-15928-2_8
https://doi.org/10.1007/978-3-642-15928-2_8
https://doi.org/10.1145/321356.321364
https://doi.org/10.1145/321356.321364
http://tumb1.biblio.tu-muenchen.de/publ/diss/in/2002/schwoon.html
http://tumb1.biblio.tu-muenchen.de/publ/diss/in/2002/schwoon.html


206 L. Dartois et al.

29. Verma, K.N., Seidl, H., Schwentick, T.: On the complexity of equational horn
clauses. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 337–
352. Springer, Heidelberg (2005). https://doi.org/10.1007/11532231 25

30. Walukiewicz, I.: Pushdown processes: games and model-checking. Inf.
Comput. 164(2), 234–263 (2001). https://doi.org/10.1006/inco.2000.2894.
http://www.sciencedirect.com/science/article/pii/S0890540100928943

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/11532231_25
https://doi.org/10.1006/inco.2000.2894
http://www.sciencedirect.com/science/article/pii/S0890540100928943
http://creativecommons.org/licenses/by/4.0/

	Two-Way Parikh Automata with a Visibly Pushdown Stack
	1 Introduction
	2 Two-Way Visibly Pushdown (Parikh) Automata
	3 Emptiness Complexity
	4 NExpTime-Hardness
	5 Applications to Decision Problems for Nested Word Transducers
	References




