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LIFO, University of Orléans, France
wadoud.bousdira@univ-orleans.fr

Abstract—The problem of analyzing parallel programs that
access shared memory and use barrier synchronization is known
to be hard to study. For a special case of those programs with
minimal SPMD (Single Program Multiple Data) constructs, a
formal definition of textually aligned barriers with an operational
semantics has been proposed in previous work. Then, the tex-
tual alignement of the synchronization barriers that is defined
prevents deadlocks. However, the textual alignement property
is not verified by all SPMD programs. We propose a set of
transformation rules using rewriting techniques which allows to
turn a non-textually aligned program to be textually aligned. So,
we can benefit of a simple static analysis for deadlock detection.
We show that the rewrite rules form a terminating confluent
system and we prove that the transformation rules preserve the
semantics of the programs.

Keywords : SPMD programs; synchronization; textual aligne-
ment; rewriting rules

I. INTRODUCTION

Since its introduction, static source code analysis has had a
mixed reputation with development teams due to long analysis
times, excessive noise or an unacceptable rate of false-positive
results. Excessive false-positive results are the main reason
why many source code analysis products quickly become
shelfware after a few uses. Despite early shortcomings, the
promise of static analysis remained of interest to developers
because the technology offers the ability to find bugs before
software is run, improving code quality and dramatically
accelerating the availability of new applications.

With applications assuming more critical functions for busi-
ness and industry, the consequence of defects in the field now
mandates that software meet specific quality standards prior to
release. Applying static analysis to software, the automated re-
view of code prior to run-time with the intention of identifying
defects, was an obvious solution to this fundamental challenge
of ensuring code quality.

In this paper, we focus on a static analysis applied to
scalable parallellism in a so called BSP model. Many parallel
programs are written in SPMD (Single Program Multiple Data)
style, i.e. by running the same sequential program on all
processes. Typically, SPMD-style programs have a barrier syn-
chronization primitive that can be used to partition the program
into a sequence of parallel phases. When a thread reaches a
barrier statement it cannot proceed until all other threads have

arrived at the barrier statement. Barriers are textually aligned if
all threads must reach the same textual barrier statement before
they can proceed. A barrier synchronization error occurs if a
thread bypasses a barrier, leaving the remaining threads stalled.

Usually, SPMD programs are written using a standard
communication library (e.g. MPI[16], implementations of the
BSP model [7, 17, 28]). However, in this model, there are no
constraints on the placement of barrier statements in the pro-
gram. Barrier statements may be textually unaligned making
it more difficult for programmers to understand the synchron-
ization structure of the program and, thus, easier to write
programs with synchronization errors. Textually unaligned
barriers also hinder concurrency analysis [1, 14, 21, 27] be-
cause understanding which barrier statements form a common
synchronization point is a prerequisite to analyzing the order-
ing constraints imposed by the program. Some concurrency
analyses therefore require barriers to be named or textually
aligned[3].

An extensive amount of work on static analysis of SPMD
programs has been done. In the synchronization point of
view, the most relevant previous work on verifying barrier
synchronization is proposed by Aiken and Gay [4]. The authors
propose a system for SPMD programs that verifies their
synchronization pattern, based on structural correctness and
single-valued expressions. This analysis has been extended
inter-procedurally and with barrier matching [29]. In[3], the
authors exploit that barriers in Titanium (a Java-dialect) are
statically guaranteed to be textually aligned. They construct a
May-Happen-in-Parallel relation and use it for data-race de-
tection. Jeremiassen and Eggers developed a static analysis for
barrier synchronization for SPMD programs with non-textual
barriers and used the information to reduce false sharing on
cache-coherent machines [25]. Their analysis does not take
advantage of barrier alignment or single-valued expressions,
S0 it is not as precise as in[8].

However, in these papers devoted to a correct synchron-
isation of SPMD programs, there is no definition of any
semantics underlying the corresponding programs. About se-
mantics, a number of formal semantics for functional and
imperative BSP languages has been proposed. Loulergue form-
alizes BSML [20], Tesson and al. formalize BSPIlib [26] and
Gava and al. formalize Paderborn’s BSPlib[15]. As far as



we know, the only contribution that proposes a denotational
semantics which gives meaning exactly to programs with
textual alignment is in[8]. The author proposes a formal
definition of textual alignment for a small language with
minimal SPMD support, based on an operational semantics.
The textual alignment property entails the absence of dead-
locks and provides an intuitive programming model that
makes it easier to perform program analysis and program
optimization. Our work is based on this semantics that is
explicitly designed to model the features of BSPLIB most
relevant to synchronization. Our contribution in this paper
concerns non-textually aligned SPMD programs. We propose a
transformation strategy based on rewriting technics to modify
these programs to make them textually aligned. Of course,
the transformation that we propose does not guarantee to turn
all non-textually aligned SPMD programs to textually aligned
ones. In fact, only if the constructions of the program can be
captured by the transformation pattern, then we can obtain an
equivalent textually aligned program. As far as we know, there
is no work about transforming a non-textually aligned SPMD
program by rewriting techniques to make it textually aligned.
In these last decades, the evolution of rewriting concepts is
opening new fields of application, and we show in this paper
that parallel programming is one of them.

The paper is organized as follows: Section 2 defines the
syntax of the imperative language we use to write SPMD pro-
grams. Section 3 is devoted to the textual alignment property
of SPMD programs and gives a precise intuition how it can
prevent deadlocks. Then for non-textually aligned programs,
we present a pre-processing based on constant propagation
analysis. In Section 4, the second step of transformation
is introduced by using simplification axioms and rewriting
technics. Then we conlude in Section 5.

II. LANGUAGE

We consider an extension of a basic imperative language
supporting collective operations in the SPMD style. For the
sake of simplicity, we focus on global synchronization barriers
and we omit communications. The syntax of the language is
given below, where X stands for the set of program variables
and N is the set of integers. The following grammars define
respectively the set expr of arithmetic expressions, the set
bexpr of boolean expressions and the set stmt of program
statements :

e u= z|nlete|le—e|exe|nprocs |pid

b == true| false|e<e|e=e|borb|bandb
| 1b|b=b

s u= skip|xz:=e|if (b) then selse s

| while (b) do s | sync
Where x € X and n € N.

A program is a single statement that is executed in a parallel
way by p processors. Each processor executes a copy of the
program. p > 0 indicates the number of processors. The
specific element nprocs in the language evaluates to p.
The expression pid represents the identifier of the current

process, ranging over P = {0,1,...,p — 1}. The instruction
sync requests a global synchronization barrier. As a collective
operation, it needs to be performed by all processes. For ex-
ample, the statement 1 f (z < y) then sync else skip
is correct only if executed in a context where the condition
evaluates to the same value at every process. When a process
executes a sync instruction, it interrupts, waiting all other
processes reach the synchronization barrier. If all processes
interrupt, the synchronization succeeds and communications
between processes occur exchanging data (we do not detail this
step). Then each process continues with the next instruction. If
all processes terminate normally then the program terminates.
Finally, a deadlock situation occurs if some processes interrupt
while other terminate normally.

In the SPMD programming model, collective operations rely
on a global synchronization scheme, that is all processes must
execute the same operation before they can proceed further.
Therefore, a deadlock is detected because at least two distinct
processes execute distinct instruction streams. To ensure that
there is no deadlock situation, a distinction between separation
global and local flow of control is made in the language.
On the one hand, the former produces a single instruction
stream among processes. On the other hand, the latter can
produce distinct instruction streams but they must be free of
collective operations. However, SPMD programs are usually
written using a standard communication library (e.g. mpi[7],
implementations of the bsp model[9, 17],...) where the two
flows are merged. This raises the need for program analysis
tracking the global flow of control of SPMD programs in order
to validate the use of collective operations.

In [8], an operational semantics is given in term of trans-
itions between global states which are tuples of local states.
A local state is either a non-terminal state composed of a
statement and a substitution ¢ : X — N or a terminal state
only composed of o. A global state I' is a tuple of p local
states or E'rr. Err denotes an error state, considered as a
terminal state. The author defines a small step semantics and a
big step semantics. The operational semantics records suitable
information about the execution flow, and then distinguish
three cases 1) if all processors terminate normally then the
global computation terminates normally ; 2) if all processors
interrupt then the global computation interrupts; 3) if some
processes terminate with different status, then an error occurs.

III. TEXTUAL ALIGNMENT PROPERTY

Standard practices show that collective operations are most
frequently textually aligned [18], which means that all pro-
cesses synchronize on the same textual instruction. The oper-
ational semantics of SPMD programs is formalized by trans-
itions between global states which are tuples of local states.
A local state «y describes the behavior of local computations.
Local rules state that executing s at location ¢ over p with
local memory o produce the new state . A local rule is
either a non-terminal state (s, o) € stmt x (X — N), or
a terminal state 0 € X — N. Local rules are of the form
p, i (s, ) =4 v where a € {k, 1}. The process interrupts



if & = k which occurs if and only if the step terminates with a
sync instruction. In this case,  is a pair (s, o) where s is the
continuation for the next step. Otherwise, if o = ¢, the process
terminates. In this case, vy is a terminal state 0. A global state
I is an element of (stmt x (X — N))’ U (X - N)? U{Err}
where p is the number of processes, Err denotes an error
state. It corresponds to a situation in which some processes
terminate with different status. A global state cannot comprise
both terminal and non-terminal states. For example, to give an
intuition of the operational semantics, we show one of the two
local rules of the sequence (seq;) and the global rule (stop)
which illustrates the termination of the program:

pvli_ 8270/ —a Y
p,i|—51;82,0—>a’7
ViePp,it m(T) -y mi(6)
pT — 0

. /
Dt 81,0 =4 0

(seqq)

(stop)

Definition 1: A program P is textually aligned if for every
call to a collective operation, all processes execute the same
textual instance.

Textual instances of instructions are represented by paths
associated with the execution. One can refer to[8] for more
details.

(i) if (pid>0) then sync else sync
(ii) if (pid < nprocs) then sync else sync
(ili) z:=0; while (x < nprocs) do
(if (zx=pid) then sync else skip;
xi=x+1)
(iv) if (pid %2 =0) then sync else skip
(v) z:=0;if (z>0) then skip
else
if (pid <nprocs) then
if (pid%2 =0) then sync
else sync
else skip;
Figure 1: Examples of SPMD programs

For instance, sync instructions are not textually aligned
in (i) nor (iii) nor (iv) nor (v) while they are in (ii). In (i)
the process 0 executes an instance of the sync instruction
different from the one performed by all other processes.
In (iii), at iteration ¢, only the process % executes a sync
instruction, then each process executes a different instance of
sync. In (iv), some processes execute the sync instruction
while others do not, according to the pid identifier. (v) is
not textually aligned because of the condition (pid%2 = 0)
which leads processes do not execute the same instance of
sync. (v) illustrates why a correct synchronization can be
subtil. Indeed, all processes execute e lse branch of the first
conditional instruction provided the value of the variable x
(which is replicated i.e. each process has a variable z local to
the process) is the same at this point of the program.

Identifying textual instances of instructions during the exe-
cution is necessary to guarantee the textual alignement prop-
erty. For this, an annotated version of the operational semantics

is used to record the path associated with an execution of a
processor in [8] and the author proves that programs verifying
the textual alignment property are well-synchronized. An
immediate consequence is that textual alignment of collective
operations prevents deadlocks.

For every program for which the analysis fails to state that
it is well-synchronized, we propose a transformation routine
to modify the code of the program in order to make it textually
aligned. As we will see later, the transformation focuses on
conditional instructions of the program which are the crucial
points that we observe if all processes execute the same branch
of the instruction. First this routine needs a prior labelling
treatment Labelling.

1) Labelling: we detect all the conditional instructions

of the program that contain at least a sync instruction.
Then a unique label, (different form all the others) [ € L
is attached to each of the conditions. Note that labels
are natural numbers and that L < N is a finite set.
For instance, for (i) we get if [ (pid > 0)]° then
sync else sync. For (v) we obtain the following
tagged code:

r:=0;if [(z>0)]° then skip
else
if [(pid < nprocs)]! then
if [(pid%2 =0)]?> then sync
else sync
else skip;
Figure 2: Labelling task

2) CP Analysis : this second part consists in applying
the Constant Propagation Analysis over all the program,
and then focusing on labelled conditions and using some
specific axioms such that pid < nprocs = true, and
pid < 0= false etc... to symbolically evaluate the
conditional expressions.

The Constant Propagation Analysis is a classical static
analysis which maintains information about what con-
stant, if any, a variable has at each point. It supposes that
each variable of the program takes a value in a domain
D extended by two values T and L. T is used to indicate
that a variable is not a constant, | means that we do not
yet know anything and all other elements indicate that
the value is that particular constant. The analysis defines
a lattice on DU{T, L} and the analysis process contains
the following stages: 1) construct a control flow graph
(CFG) of the program, 2) associate transfer functions
with the edges of the CFG. The transfer function of
an edge reflects the semantics as its source node. 3) at
each node (program point), we maintain the values of the
program’s variables at this point. We initialize those to
1. 4) iterate until the values of the variables stabilize.
One can refer to[23] for more details about Constant
Propagation analysis.

Once the analysis is finished, given the set of labels
L of Labelling, we define an abstract interpretation
A L — {IT, FF, T} = Bool* such that A(l) = 1T



(respectively FF) if in the condition b labelled by [, there
are only variables associated to constant values and if
the condition is evaluated to ¢¢ by replacing variables by
the values, where ¢t is the boolean value of the constant
true (respectively to ff, where ff is the boolean value
of the constant false). In all other cases, A(l) = T.
After this, for the conditions labelled by T, we try to
use specific axioms such that pid < nprocs = true,
and pid < 0 = false etc... to modify the value to
T or FF or to keep it to T.

Thereafter, we introduce three notations to represent the
conditional symbol if of the language, and in every
labelled condition, we replace the symbol if by if 4.
Note that a boolean condition b can be evaluated to ¢t
or ff whether it is pid-dependent or not. For example,
CP Analysis returns the code of Figure 3 for (v):

r:=0;ifm [(x >0)]” then skip
else
ifnw[(pid<<nprocs)]1then
ifr [ (pid%2 =0)]? then sync
else sync
else skip;
Figure 3: Result of CP Analysis

Proposition 1: Let P be an SPMD program and let P’ be
the program obtained from P by performing Labelling and
PC Analysis; then P and P’ are semantically equivalent,
that is, both programs have the same execution trace.

Proof: Labelling does not modify the semantics of

P since it just detects the if statements in P that contain
a sync instruction and attaches a different unique label
to each different condition. Furthermore, since the Constant
Propagation analysis preserves the semantics of the program,
the translation does not modify the semantics of the program.
|

IV. REWRITING RULES

In this section, we propose a set of axioms which express
the equality between portions of code that contain conditional
instructions. We aim to define a method that simplifies a
conditional instruction to another one using this set of axioms.
These transformations of an SPMD program which contains
non-textually aligned synchronization instructions aim to ob-
tain an equivalent SPMD program with textually aligned
instructions. The set of transformation axioms is given in
term of equalities. Then, to have a deterministic transformation
method, instead of using equalities, we will use rather rewrite
rules after running the Knuth-Bendix (KB) completion on the
set of transformation axioms. Running the KB completion, we
propose a semantically equivalent set of terminating confluent
rewrite rules, ensuring in this way that if we rewrite an SPMD
program by this set of rules, we get an SPMD program that
is semantically equivalent. One can refer to [18] for a survey
of equational and rewriting theories.

Given two (denumerable) sets X of variable symbols and
F = uUps>oFn of function symbols, the set of first order-

terms 7 (F, X) is the smallest set containing X such that
f(t1,..., tn) is in T(F, X) whenever f € F, and ¢; €
T(F, X) for i € [1...n]. Each symbol f in F has an arity
which is the index of the set F,, it belongs to. A position
within a term ¢ is represented as a sequence w of positive
integers describing the path from the root of ¢ to the root of
the subterm at that position, denoted by ¢,,. We note D(t)
the set of positions in ¢. As usuallly defined, a substitution on
T(F, X) is a mapping of T (F, X) on itself, written out as
{x1 — t1,..., &, — t,} when there are only finitely many
variables x; not mapped to themselves.

Equality is a binary relation between terms meaning that
the terms are identical, in the sense that replacement of one
by the other in an expression does not change its value. Given
a set E of axioms, we write s «—pg t if s, = o(l) and
t = s[o(r)]. for some position w in D(s), substitution o and
equality [ = r (or r = [) in E. The term s[o(r)],, denotes
the term s which contains the subterm o (r) at position w. The
equation s = ¢ is deduced from E iff s <~ ¢ where the
relation <2 is the reflexive transitive closure of «—p.

With the need to give an operational (implementable) ver-
sion of equality, while avoiding the halting problem intrinsic-
ally related to the symmetrical nature of equality, the central
idea of rewriting is to impose directionnality in the use of
equalities.

A rewrite rule is an ordered pair of terms denoted [ — .
The terms [ and r are respectively called the left-hand side
and the right-hand side of the rule. A rule [ — r is applied by
replacing an instance [ by the same instance of r, but never the
converse, contrary to equalities. A rewrite system R induces a
binary relation on terms called the rewriting relation. From
a logical point of view, the deduction rules are similar to
equational logic without the Symmetry rule (ii;) and with the
rewrite relation instead of equality. One can refer to [6, 11, 13]
for more details on rewriting techniques.

In order to orient equations to rewrite rules, many orderings
and termination proof techniques have been developed, surveys
are developed in [2, 11, 12]. Many of these orderings have the
subterm property denoted by <: st iff s is a subterm of ¢. 5 is
a proper subterm of ¢ if s<It and s # t. In the formalization of
the term algebra, we later use the lexicographic path ordering
(Ipo) >ip, defined by :

Definition 2: Let >r be a precedence on F. s =

f(s1,--0, 8n) >ipo t = g(t1, ..., tm) if
D) f=gand {s1: .5 s} >0 {ts .t} and V) €
L., n, 8>t
2) f>rgand Vjel, ..., m, s>t
3) diel,..., nsuch that either s; >;,, t or s; = t.

Proposition 2: lpo is a simplification ordering [11].

A strong termination property is often needed to normalize a
rewrite system. In general, termination of a rewriting system is
undecidable. Some approaches aim to relate termination with
orderings (reduction or polynomials orderings, simplification
orderings [10]). The termination of rewriting can be proved by



just comparing left and right-hand sides of rules: [ > r for
each rule of R.

When a function is computed with rewrite rules, the prop-
erty required for the rewrite system is therefore the uniqueness
of the normal form for any term. Uniqueness of the normal
form is implied by adding to termination another property
called confluence. A rewrite system is confluent when two
rewrite sequences beginning from the same term can always be
extended to end with the same term. Although undecidable in
general, confluence is decidable for terminating finite rewrite
systems. Assuming termination, confluence is equivalent to
local confluence, itself equivalent to the convergence of critical
pairs [22]. All these properties are expressed as follows :

(1) <op=-Tpodp
(2) <po-Hpc Tpolp

(3) <—RO—>Rgi>RO<iR

The Church-Rosser property (1) states the relation between
replacement of equals by equals and rewriting. (2) (respec.
(3)) expresses that the relation — g is confluent (respec. locally
confluent).

Lemma 1: [9]

o If —p is terminating, then — g is confluent iff —p is
locally confluent.

o If —p is terminating and locally confluent, then — 5 is
Church-Rosser. In other words, to prove the equality ¢ =g
t’, it is equivalent to rewrite ¢ and ¢’ to the same term.

The local confluence of a rewriting system R can be checked
on special patterns computed from pairs of rules called critical
pairs. Critical pairs characterize minimal conflicts that can
happen when two rewrite rules apply to a same term and
overlap each other. Then the term can be rewritten in two
different ways that may or may not have a common normal
form. If the relation — g is terminating, the KB completion
procedure aims to compute critical pairs between rules of
R. When critical pairs are not convergent, they are added
to R after they have been oriented. Of course, adding new
rules implies computing new critical pairs and the process is
recursively applied. A critical pair is an equation obtained by
superposition of left-hand sides of two rewrite rules. During
the completion process, equations are simplified by rewriting,
and tautologies, i.e. equations of the form s = s are removed.
A completion process has three possible outcomes: either it
terminates, or fails on an unorientable equality, or diverges,
that is, generates infinitely many new rules. A critical pair
o(g[r]w) = o(d) between rule [ — r and g — d is computed
if there is a minimal unifier o of g, and [.

Lemma 2: [9] Let E be a set of equations and let R be the set
of rewrite rules obtained from £ by a KB completion process.
Suppose that R is a terminating confluent rewrite system. Then
the equational theory induced by F is semantically equivalent
to the semantics induced by R.

In the literature, we say that R is a complete rewrite system
if R is confluent and terminating.

Now in the SPMD program application, let us define the
first order terms on which the rewrite relation will be applied.

Definition 3: The set of first order terms 7T (F, X) is
the set of terms built from the set of function symbols
F = {ifm, ifw, ift, seq, sync} v L. ifrr, ifgr, if T have an
arity equal to 3, the arity of seq is equal to 2, sync and all
labels are constants (arity = 0). The variables in X are all
other symbols.

Consider an SPMD program P such that on each piece
of code in P the head instruction of which is a conditional
statement, we perform Labelling and CP Analysis. On
each part of code resulting from this procedure, we infer a
first order term the following way :

o from ifzr[(b)]' then s else s/, we build the term
ifmr(l, s, s')

o from ifg=[(b)]' then s else s, we build the term
ifm(l, s, )

o from ift[(b)]' then s else s, we build the term
ifr(l, s, 8

o from s; s’ contained below if7r, if g or ift, we build
the term seq(s, §).

This encoding consists in capturing in a simple way the
point of the original SPMD program in which the synchron-
ization has to be checked. For example, the program (v) of
Figure 3 corresponds to the term of Figure 4 :

T (0, skip, ifzr(L, if7(2, sync, sync), skip))
Figure 4: First order term of (v)

In the following of the paper, transformation process by
rewriting will be executed on each term coded in this way.

In Figure 5, we give the set of axioms E which we use
to simplify terms. Axioms (1) and (2) express the natural
semantics of conditional statements. Axiom (3) states that
whatever the value of b, (tt or ff) the program executes the
instruction s. Axioms (4) and (5) ride up the condition labelled
by the same label in both branches of a conditional statement
if these branches contain the same statements in the same case
(case tt or case ff). Axiom (8) is a generalization of (6) and
(7). These three axioms allow to take out sync instruction
of if statement. So, whatever the branch executed by the
processes, all of them execute the same textual instance of
sync.

The intuition of these axioms is the same as the small
step semantics defined in [8]. The first order term that is
built captures for each process, the semantics of its piece of



program.

(1) ifmr(l, s, 8)=s
) ifm(l, s, ) =4
) ift(l, s, 8)=s
) ifT(l/’ ifT(lv S, 8/)7 ifT(la S, S”))
=ifr(l, s, ifr(l', s, s"))
(5) it (U, ifr(l, s, 8), ifr(l, 87, 8))
=ifr(l,ifr({l', s, 87), s)
(6) ifr(l, seq(s, sync), seq(s’, sync))
= seq(ift(l, s, §'), sync)
(7) ift(l, seq(sync, s), seq(sync, s'))
= seq(sync, ift(l, s, s'))
(8) ift(l, seq(seq(s1, sync), s3), seq(seq(ss, sync), s4))
= seq(seq(ift(l, s1, s3), sync), ifr(l, s2, $4))

Figure 5: Transformation axioms.

In order to orient the equations of E from left to right, we
use a [po ordering:

Definition 4: Let >y be the ordering on natural numbers,
and let >x be a precedence on F such that ift >r seq,
and such that VI, I’ € N, I >7 I" iff | >y I’ then >, is a
lexicographic path ordering on 7 (F, X).

In this definition, we just adapted the definition of lexico-
graphic path ordering[24] by integrating the >y ordering.

Proposition 3: If we orient the axioms of E from left to
right, using >;,,, defined as above, we get a set I? of rewrite
rules such that for every rule | — r in R, [ >, 7.

Proof: Clearly, (1), (2), (3) are oriented from left to right
by a subterm property. Remember that the lexicographic path
ordering which is a simplification ordering enjoys the subterm

property.

To orient (4), let wus note « the term
if—l—(llv ifT(l’ S S/)a ifT(lv S5, 5”));

a > ift(ly s, ift(U, 8, 87)) iff
a) {l/v lfT(l? S, Sl); ZfT(la S, S”)} >§;§ {la 53 ifT(l/v S/, 5”)}

b) a >lpo l
C) a0 >ppo s and
d) o > if (), s, 7).

(a) holds according >;,, by using >y on labels [ and .
Indeed, we are sure that ! and !’ are two different labels
and that they correspond to two natural numbers, one of
them greater than the other. If we affect an integer to each
if statement in a decreasing order each time a statement is
encountered in the program, then the outermost label is greater
than the innermost and this corresponds to the direction of
our transformation. (b) and (c) are valid thanks to the subterm
property. To check (d), we have
) {U;ifr, s, ¢) 547, s, )} >§;ﬁ {l'; '; §”} which

holds by the subterm property,
(€2) a >ppo U0 >y 8" and a >pp, 7. (c2) holds by the
subterm property.

For similar reasons, (5) is oriented from left to right.

Axiom (6) is oriented from left to right since ifT >r seq
and because the left term of (6) is bigger than ift (s, s', [)

and sync according to >;,,. We justify the orientation of (7)
and (8) for the same reasons. |

Let us call R the set of axioms of E all oriented from left
to right; note that R is a finite set of rewrite rules. Indeed,
the set I of labels is finite since it depends on the number of
conditional statements of the program.

In order to use the rules of R in a deterministic way, and
to preserve the expressiveness of the axioms, the following
consists in running the KB completion procedure on R, in
order to get a ncetherian confluent system. This is achieved
by computing critical pairs between all the rewrite rules and
by adding those that are not trivial as equations; then the
algorithm orients them and again, it computes new critical
pairs and so on, until the state of the rewrite system is stable.
The execution of KB completion on R provides 4 non-trivial
critical pairs. Let us explain in detail how one of them is
computed :

1) The left-hand side of rule (4) at position 1 can be
unified with the left-hand side of rule (3) at position
e and the substitution o such that o(s) = o(s').
Therefore the term ift (', ift(l, s, ), ift(l, s, 87))
can be rewritten by (3) at position 1 to the term
ifr(l'y s, ift(l, s, s7)). On the other hand, the same
term if (I, ifv(1, s, s), ift(l, s, s”)) can be rewritten
by (4) at position € to ift(l, s, ift(I', s, s”)). This
yields pcl :
ifr (U, s, ifv (1, s, 87)) = ifr(l, s, ifv(U, s, 7))
which can be oriented according >, by using >y on
labels [ and !’ by using the fact I’ >y [ as for the
orientation of (4).
2) pc2 computed between (3) and (4) at position 2:
it ifr(l, s, '), 8) = ift(l, s, ift(l, ¢, 8))
which can be oriented from left to right according to
>lpo-
3) pc3 is computed by unification of rules (3) and (5) at
position 1:
ifr (U, s, ifv(l, 87, 8)) = ifr (I, if v (', s, 87), )
pc3 is oriented from left to right.
4) Finally, pc4 is computed from unification of rules (3)
and (5) at position 2:
ifTU,v ifT(la S, S/)a 3/) = ifT(lv ifT(llv S, S'), Sl)
which is oriented from left to right according to that
U >N l.

Finally, for any [, I’ € N, such that I’ >y [, we get the complete
set of rewrite rules R presented in figure 6. It is not so difficult
to show that R is complete. However, it would be interesting to
automatically check this property using a rewriting tool such
that for example Saigawa [5].

With this complete system R, and given a first order term ¢
derived from a piece of code of a textually unaligned SMPD
program P, we reduce ¢ to its normal form by R. Then we get
possibly another term ¢’ (depending if there are possibilities to
rewrite ) such that the code corresponding to ¢’ under some
conditions is textually aligned. There is no difficulty to infer



the SMPD program from the new term ¢’

ifmr(l, s, ') > s
ifm(l, s, 8) > ¢
ifr(l, s,5) > s
it ifr(l, s, 8, ifr(1, s, 87)) —
ifr(l, s, ift(l', ¢, 8"))
(U, ifr (1, s, 8, ifr(l, 87, §)) —
ifr(l,if+('y s, 8), §)
ift(l, seq(s, sync), seq(s’, sync)) —
seq(ifr(l, s, ), sync)
ift(l, seq(sync, s), seq(sync, s')) —
seq(sync, ifr(l, s, )
ift(l, seq(seq(s1, sync), s2), seq(seq(ss, sync), s4))
— seq(seq(ift(l, s1, s3), sync), ifv(l, s2, s4))
ifr (U, s, ifv(l, s, 87)) = ift(l, s, ifr (U, s, 87))
ifr (U, ifr (1, s, ), s) = ift(ly s, ifv (U, ', 8))
) aift (s, ift(l, 87, 8)) = ift (L it (U s, 87), )
) aft (i, s, ), §) = aifr (L ifr (U s, ), 8

Figure 6: A complete rewriting system.

Let us continue the illustration of our method with the term ¢
of Figure 4. Using the complete rewrite system of Figure 6,
we obtain the normal form of ¢:

if e (0, skip, ifm (1, if1(2, sync, sync), skip)) —>gr
if (0, skip, ifmr (1, sync, skip)) —gr
if (0, skip, sync) —g sync

Figure 7: Normal form of term of (v)

Proposition 4: Let P be a textually unaligned SMPD pro-
gram and let P’ be the SPMD program obtained by performing
Labelling and PC Analysis and the transformation by
rewriting over all pieces of code of P that contain conditional
statements with sync statements. Then P and P’ are semantic-
ally equivalent.

Proof: let P” be the SPMD program obtained after
running Labelling and PC Analysis. We have shown in
Proposition 1, that P and P” are semantically equivalent. Con-
sider now a piece of code in P” that is a conditional statement.
The way we infer the first order term ¢ = if 4(;)(l, s, s') from
the instruction if 4 [(b)]" then s else s expresses a natural
semantics of boolean conditions except that the condition does
not appear explicitly in the term since it is represented by its
label. Reducing ¢t by our complete rewriting system R yields
a normal form of ¢ that is semantically equivalent to ¢ in
the axiomatic theory defined by R. After that, we can write
the program P’ as the original program P where all pieces
of conditional code are replaced by equivalent code obtained
from normal forms. Then P and P’ are semantically equivalent.

|

Theorem 1: Let P be a textually unaligned SPMD program ;
if every piece of code in P that contains a sync instruction
in a conditional statement is translated to a first order term ¢

which contains only if7r or if g function symbols, then after
reducing ¢ by R and reconstituting the new equivalent SPMD
program P’, then P’ is textually aligned.

Proof: Reduction by the rewrite system R for rules (1)
and (2) removes the branching in the code. Then, all processes
follow the same execution path, and then synchronize together
at the same point. Then P’ is textually aligned. [ ]

Theorem 2: Let P be a textually unaligned SPMD program ;
let us consider every piece of code ¢ in P that is a conditional
instruction which contains a sync instruction. If each ¢ in P
verifies : let ¢ be the first order term corresponding to ¢ and let
t’ be the R-normal form of ¢ such that " does not contain any
sub-term of the form ift (..., sync,...) (i.e. under ift there
is no sync) then P’ obtained from ¢’ is textually aligned.

Proof: Rules (6), (7) and (8) allow to rewrite a term such
that the symbol function sync is removed from the term the
root of which is equal to ift. If there is no sync under ift
in all normal forms obtained by reduction, then all processes
use the same textual instance of synchronization, and then P’
is textually aligned. [ ]

V. CONCLUSION AND FUTURE WORK

The work we have proposed is at the crossroads of two
domains, the parallel programming and the term rewriting.
Based on a denotational semantics of SPMD programs form-
ally defined in [8], we present a complete method to transform
textually unaligned programs into textually aligned programs.
Our method is based on static analysis of the program and
only some pieces of code are targeted and then changed if
necessary. In the near future, we are interested to deal with
while statements. We think that it will be not so trivial to
extend our work to the loops, it will be probably necessary to
integrate the notion of repeated labels.

This work is related to code refactoring. However, we
present a program transformation method which is correct and
automatically implementable.

In this context of semantics, the static analysis of replicate
synchronization has been implemented as a plug-in to the
Frama-C analysis platform. Initial experimentation suggests
that the analysis performs well, with results in seconds for
programs ranging up to hundreds of lines. For more details, see
[19]. It would be interesting to combine the implementation
of the analysis with the transformation method by rewriting
for SPMD programs which are not textually aligned. The new
code in the transformed program could be a way to learn the
user how to write more easily textually aligned code with
collective operations. The coding of the transformation par
rewriting is in progress.
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