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Abstract

The impact of autonomous vehicles (AVs) on urban mobility systems is an increasingly discussed topic in recent years.
There is currently some discussions about different ownership models and their consequences. Regarding
autonomous vehicles (AVs), two ownership models are being considered for future transportation systems. These are:
autonomous vehicles as a public service or individual owning ownership. The first ownership model is based on AVs
operating within an on-demand (taxi) service while the second proposes private vehicle ownership combined with
offering the AV to other users when not used by its owner and thereby partially financing the vehicle’s acquisition
cost. In addition to the ownership model comes the possibility of sharing rides. The main difference when sharing a
trip is that an individually-owned vehicle always prioritizes its owner. Based on an existing approach for assessing the
potential of predefined meeting points in a ride-sharing service, we develop a method for assessing the sharing
potential of those different variants. We consider the number and distance of shared trips, and thus, we evaluate the
potentially saved vehicle kilometers. We analyze several ownership and sharing scenarios on a case study for New
York and Paris. The results demonstrate that sharing AV trips has the potential of increasing the system-wide matching
rate as well as saving up to 25% of the overall traveled distance.

Keywords: Optimization, Autonomous vehicles, Ownership models, Ride-sharing, Meeting points

1 Introduction
With the increasing urbanization rates, a swift growth in
people demand for transportation is taking place nowa-
days. This increasing demand is associated with a set
of challenges, such as limited oil supplies and growing
levels of pollution and traffic congestion. These chal-
lenges have pushed research towards more sustainable
systems of transportation [20]. Autonomous mobility ser-
vices and their potential impact on existing mobility sys-
tems represent one of those opportunities that can help
in replying to this growing transportation demand while
providing an enhanced traveling experience. According to
([2, 18]), fully autonomous vehicles (AVs) are expected
to make traveling safer, more comfortable, more sustain-
able, and to reduce traveling costs. If all those assumptions
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are to become true, autonomous vehicles can dramati-
cally change the urban form especially that they might
be used as a shared transportation service. The poten-
tial deployment of autonomous vehicles going in hand
with the increasing need for shared mobility services have
attracted the attention of the operations research commu-
nity. This increasing interest can also be observed after
many large mobility operators (Tesla, Ford, Uber, Lyft
and others) have declared their plans for deploying new
autonomous mobility services.
Different ownership models and usage scenarios have

been introduced by various actors.1 These models
include, among others, owning an AV, renting an AV for a
one-way ride, using an on-demand AV service (also called
robotaxi) or an autonomous public transport shuttle, and
sharing an AV with other travelers during part of the trip
([22]). We focus in this paper on individually-owned and
on-demand AVs that can be shared by multiple travel-
ers during their trips. The first ownership model is based
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on the idea that autonomous vehicles can be individually-
owned. Every user might have his own AV. Additionally,
this model proposes that an individually-owned AV can
serve other users during the time its owner does not need
it. This might be the case when an AV owner is at work
and the AV is not in use. Such an ownership model can
help in partially financing AV acquisition cost. The sec-
ond ownership model is to consider a fleet of on-demand
AVs. In this model, AVs are invoked from their stations
(depots) to satisfy mobility demands such that one sin-
gle AV can serve multiple demands before getting back
to the station. Unlike the first model where owners have
the priority to be served by their AVs, all users have the
same priority to be served by an AV in an on-demand
service. In addition, an important aspect is that an AV,
whether it is individually-owned or on-demand, can be
shared by multiple users. Although it may increase depre-
ciation and risk of damage and leads to longer trips for
owners, the idea of ride-sharing, which aims to minimize
the number of vacant seats in vehicles so that the number
of required vehicles is reduced, comes with many bene-
fits. These benefits include reducing travel cost and time,
alleviating traffic congestion, conserving fuel and energy
and reducing air pollution. Using autonomous vehicles in
a ride-sharing system represents a promising opportunity
in future transportation systems.
Extending the work on vehicle sharing by [21], the aim

of this research is to study and compare the different own-
ership and usage scenarios for autonomous vehicles and
assessing the sharing potential of those different variants
by a case study for New York and Paris. This paper is orga-
nized as follows. In Section 2, we provide an overview of
related literature. In Section 3, we describe both variants
of the problem introduced earlier. The solution method
we have developed is detailed in Section 4. In Section 5,
we present the computational study we have conducted
on the cities of New York and Paris and we discuss and
analyze its results. Finally, in Section 6, the key findings
are summarized and directions for future research are
suggested.

2 Background
Recent studies on autonomous mobility have been
directed towards three main research objectives. These
are: assessing public opinions regarding AVs, studying
the potential impacts of introducing such a new service
on existing urban mobility systems, and developing new
methods and approaches for planning them. In order to
assess public opinions with regards to AVs, [8] observed
the willingness to pay for partial or full automation
through collecting and analyzing answers to a vehicle-
purchase choice experiment focused on energy consump-
tion and autonomous features. Another study, conducted
by [3], surveyed respondents across Texas to understand

their opinions about such a new technology. Their study
showed that affordability and equipment failure are Tex-
ans’ top two concerns regarding AVs. Furthermore, [13]
concluded that service attributes including travel cost,
travel time and waiting time may be critical determinants
of the use and acceptance of shared AVs. Their results
implied also that the adoption of shared AVs may differ
across cohorts, whereby young individuals and individu-
als with multimodal travel patterns may be more likely to
adopt shared AVs.
On the other hand, more research has focused on ana-

lyzing the impact of deploying AV-based services on exist-
ing transportation systems. For example, [5] simulated
a city-wide replacement of private cars with a fleet of
autonomous taxis in Berlin. Their simulation suggested
that a fleet of 100000 vehicles will be enough to replace
private cars in Berlin (more than 1.1 million private car
trips) at a high service quality for customers. Considering
that AVs can be used as a shared mobility service, [9] sug-
gested that each shared AV can replace around 11 conven-
tional vehicles, but adds up to 10% more travel distance
than comparable non-shared AV trips resulting in over-
all beneficial emissions impacts.Moreover, [25] developed
models to examine how much vehicle ownership reduc-
tion can be achieved once private conventional vehicles
are replaced by AVs and the spatial distribution of unoc-
cupied vehicle-miles-traveled (VMT) accompanied with
the vehicle reduction. Their results showed thatmore than
18% of the households can reduce vehicles, while main-
taining the current travel patterns. Furthermore, [17],
simulated performance characteristics of shared AV fleets
serving travelers across the Austin, Texas 6-county region
where a set of charging stations with different charg-
ing times were considered. Their results suggested that
reducing charge times does lower fleet response times (to
trip requests), but increasing fleet size improves response
times the most. Additionally, [19] used scenario analysis
to identify future deployment paths of automated vehi-
cles in the Netherlands. According to their scenarios, fully
automated vehicles are expected to be commercially avail-
able between 2025 and 2045, and to penetrate the market
rapidly after their introduction. On exploring the impact
of shared AVs on urban parking demand, [24] showed,
through an agent-based simulation approach, that 90% of
parking demand for clients who adopt the system might
be eliminated at low market penetration rate. In addi-
tion, [11] estimated bounds on the potential increases in
travel in a fully automated vehicle environment due to
an increase in mobility from the non-driving and senior
populations and people with travel-restrictive medical
conditions. Their results estimate 14% increase in annual
vehicle-miles-traveled for the US population 19 and older.
Therefore, the study of the potential impacts of intro-

ducing AVs in urban mobility systems associated with
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assessing their sharing potential are at the heart of nowa-
days research regarding autonomous mobility. Although
research on studying the impacts of deploying AVs has
been growing in popularity in recent years, less amount
of research on how to plan and operate their trips is yet
available. This is mainly because most scientific advances
for operating AVs have been done by AV manufactur-
ers and service providers who do not always publicly
unfold the details of their approaches and algorithms due
to commercial sensitivity ([20]). In addition, some stud-
ies suggested that methods and algorithms that operate
conventional vehicles can still be applied to autonomous
vehicles. However, an increasing effort is being directed
recently towards building new methods for planning AV
trips. For this purpose, [12] propose a taxonomy for clas-
sifying AV fleet management problems to inform future
research on autonomous vehicle fleets. In their paper, they
review the existing categories for classify scheduling and
routing problems, refine some of them as they relate to
the AV fleet problem and propose novel taxonomic cate-
gories for classifying AV fleet management problems. On
planning new infrastructures to adapt and promote the
deployment of AV technology, [7] presented a mathemat-
ical framework for the optimal design of AV zones in a
general network. Their framework is based on, first, a
mixed routing equilibrium model which captures differ-
ent routing behaviors (within and outside AV zones), and
mixed-integer bi-level programming model to optimize
the deployment plan of AV zones. In their general frame-
work for modeling shared autonomous vehicles, [16] pro-
pose a heuristic for dynamically constructing shared rides
using autonomous vehicles. The proposed approach con-
sists of a dispatcher that checks whether there are any
AVs that are already located or en route to where a travel
demand has appeared and then assigns the AV to carry
the longest waiting traveler. Furthermore, other travelers
are allowed to join the shared trip if they are traveling
to the same, or a close, destination giving the priority to
travelers already in the vehicle because they have been
traveling. In addition, [14] introduce a theoretical frame-
work for autonomous vehicles based on the model of a
family (the provider of physical services as the “father”, the
strategic manager as the “mother”, and the individual AVs
as the “children”). Their model allows vehicles to nego-
tiate among them in a decentralized fashion and, at the
same time, it allows the fleet manager to set fleet priorities
and pre-allocate vehicles in locations of expected future
demand. Moreover, [1] propose a general mathemati-
cal model for real-time high-capacity ride-sharing that,
on the one hand, scales to large numbers of passengers
and trips, and on the other hand, dynamically generates
optimal routes with respect to online demand and vehi-
cle locations. Their algorithm, which applies to fleets of
autonomous vehicles, starts from a greedy assignment and

improves it through a constrained optimization, quickly
returning solutions of good quality and converging to the
optimal assignment over time. Their approach is based
on the idea of decoupling the problem by first computing
feasible trips from a pairwise shareability graph and then
assigning trips to available vehicles.
In this paper, we consider a simplified ride-sharing set-

ting in which only one pickup and one drop-off is allowed
during a shared trip. Thus, riders sharing the same trip
will be all picked up at the same pick-up location and all
dropped off at the same drop-off location. For this pur-
pose, we define a set of fixed locations where pickups
and drop-offs can take place, or in other words, a set of
meeting points. The idea of using meeting points goes
in hand with the original work, by [21], that we extend
in this research. In their paper, the authors propose a
two-phase algorithm that optimally matches drivers and
riders in large-scale ride-sharing systems with meeting
points where the aim is to investigate the potential bene-
fits of introducing meeting points in such a ride-sharing
system. Unlike the original research which considered
commutermorning trips, we propose a heuristic approach
that extends the proposed approach. We focus on study-
ing the sharing potential of autonomous vehicles through
comparing their different ownership models and usage
scenarios on a full day time horizon where demands are
known beforehand. The originality of this research is that
it proposes an approximation approach that allows us to
analyze a large number of ride-sharing scenarios for AVs
where most of the available research on this domain uses
simulation-based approaches (see [5, 6, 10, 24]). While
considering travel costs is not in the scope of this paper,
we focus on studying the number of matched participants
as well as the system-wide distance savings through a case
study for New York and Paris.

3 Problem description
In this paper, we consider two ownership models for
AVs; individually-owned and on-demand service. There
are two main differences between these two ownership
models. The difference is illustrated in Fig. 1 where each
node represents a meeting point (MP), the origin or des-
tination of an owner or a rider, or a depot. Owner’s are
denoted with o’s and riders are denoted with r’s. In the
individually-owned case, AVs are based at their owners’
home locations and the owners have a higher priority to
be served by their own AVs. Additionally, owners can indi-
cate howmuch extra time they can afford to accommodate
a shared ride. On the other hand, all users have the same
priority in the on-demand case and AVs are located at
certain locations (depots) waiting for requests. Nonethe-
less, both cases have similar problem settings and will
be modeled and solved by the same solution approach
(Section 4).
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(a) (b)
Fig. 1 Different ownership models. a Individually-owned AVs b On-demand AVs

As mentioned in Section 2, we consider a full day plan-
ning horizon where transportation demands are known in
advance. For example, an individually-owned AV brings
its owner (o1) from his home to his work in the morn-
ing and brings him back home in the evening while
offering rides to other potential riders (r1,r2 and r3)
(Fig. 1a). Riders are picked up and dropped off at their
home/destination locations or at feasible meeting points
(MPs). We call this kind of trips one-way trips, where
the origin and the destination of the trip are two differ-
ent locations. One-way trips represent mainly, but not
only, morning and evening commutes. Furthermore, the
individually-owned AV can serve riders (r4, r5 and r6)
while its owner (o1) is at work and must return to him
before he finishes his work. We call this kind of trips,
where AVs depart from and return to the same loca-
tion, round trips. In the on-demand AV case (Fig. 1b),
AVs are based at service centers (C) and waiting for
incoming requests. AV#2, for example, departs from its
center, serves riders (r4, r5 and r6), and once all riders
are dropped off and no more scheduled trips to serve, it
returns to the center. We can observe that an on-demand
AV trip has similar characteristics to the round trip in the
individually-owned AV case. In both cases, multiple (con-
secutive) shared trips may take place but only one pickup
and one drop-off are allowed during each shared trip (In
Fig. 1, riders r4 and r5, sharing the same trip, are picked
up and dropped off at the same meeting point). Further-
more, since AVs are assumed to be electric ones, both
individually-owned and on-demand AVs cannot be in ser-
vice for more than a certain amount of time because they
need to be recharged. Thus, an individually-owned AV is
assumed to be recharged at its owner home location (dur-
ing the night) and work location (during the day). Simi-
larly, on-demand AVs are assumed to be recharged at their
depots. The main difference is that when an individually-
owned AV is doing a round trip, it has a time window
specified by its owner. Thus, if the owner is willing to

allow his AV to serve other potential riders, the AV is only
available while its owner does not need it and must return
to him before he needs it again. These additional time
restrictions are considered in the proposed model. For the
sake of simplifying the problem, we assume that all AVs
have the same capacity and that traveling occurs at a con-
stant speed (i.e. driving speed for AVs and walking speed
for riders are fixed). However, most of those assumptions
can be relaxed so as to cover a more realistic settings.

3.1 Notation and parameters
In this problem, a set of trip announcements S is consid-
ered. Every announcement s ∈ S is characterized by: an
origin os, a destination ds, an earliest departure time es and
a latest arrival time ls. The set of announcements S is parti-
tioned into two subsets; O ⊂ S set of trip announcements
by the owners and R ⊂ S set of trip announcements by
the riders. While on-demand AVs are located at different
centers (depots) and ready to serve riders, owners specify
when and where their owned AVs are available for sharing
(for example, during a morning trip from home to work or
a day trip while owner is at work). Thus, every owner i ∈ O
specifies the maximum trip duration Ti, which implies the
extra time he accepts to accommodate a shared trip, and
the number of available seats Ci, which indicates the max-
imum number of riders his AV can accommodate. On the
other hand, every rider j ∈ R specifies the maximum dis-
tance mj that he is willing to walk to and from a meeting
point. Furthermore, we denote the origin and the desti-
nation of a trip announcement s ∈ O ∪ R with os and
ds. In addition, distances and travel times between every
two locations are considered. Thus, we denote the dis-
tance from location i to location j with δi,j and the travel
time between them with ti,j. A set of meeting point loca-
tions M is given. A rider can be picked up at his origin or
at one of his feasible pickup meeting points and dropped
off at his destination or at one of his feasible drop-off
meeting points. A feasible meeting point is a point which
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the rider can reach in an acceptable walking distance (i.e.
less than the maximum walking distance that he speci-
fied). As such, we denote the set of feasible pickupmeeting
points for a rider j with Mp

j :=
{
k ∈ M|δoj ,k ≤ mj

}
and

the set of feasible drop-off meeting points for rider j with
Md

j := {k ∈ M|δk,dj ≤ mj}. Furthermore, we use the
concept of meeting point arc introduced in [21]. A meet-
ing point arc a ∈ A denotes a combination of a pickup
meeting point and a drop-off meeting point. As such,
the set of feasible meeting point arcs for rider j is Aj :={
(k, l)|k ∈ oj ∪ Mp

j , l ∈ dj ∪ Md
j

}
. Thus, a rider j can be

picked up at his origin oj or a meeting point in Mp
j and

dropped off at his destination dj or a meeting point inMd
j .

Finally, the service time at each meeting point m ∈ M,
which is the time needed for riders to get into and out the
AV, is denoted by τm.

3.2 Definition of a feasible match
Amatch is a combination of an owner i ∈ O, a set of riders
J ⊂ R and a trajectory that indicates the route which the
AV will follow during the trip which is represented by a
meeting point arc a ∈ A. In order for a match (i, J , a) to be
feasible, it must have the following properties:

– Capacity feasible:

A feasible match must satisfy the capacity constraint of
the AV, or in other words, the number of riders that can
participate in the trip must be less than or equal to the
number of available seats specified by the AV owner i.
Thus, if the owner i is not participating in the trip (round
trip), then the number of available seats will be equal to
the AV capacity:

|J| ≤ Ci (1)

– Time feasible:

A feasible match must satisfy the time-window con-
straints of its participants. A match is time-feasible if
it respects, for all its participants, the earliest departure
times from their origin locations and the latest arrival
times at their destination locations and, for the owner, the
maximum trip duration. In order to check time feasibility
of a match (i, J , a), [21] suggested to construct an implied
time window

[
ekp, lkp

]
at the pickup meeting point k for

each participant p (either i or j ∈ J) in the match. Follow-
ing their proposition, ekp represents the earliest departure
time possible for participant p from the pickup meeting
point k, such that: ekp = ep + top,k , where ep is the earli-
est departure time of participant p and top,k is the travel
time between participant origin op and the pickup meet-
ing point k. In addition, lkp represents the latest departure
time possible for participant p from the pickup meeting

point k, such that: lkp = lp−(τk+tk,l+τl+tl,dp), where lp is
the latest arrival time of participant p, tk,l is the travel time
between pickup and drop-off meeting points (k, l), tl,dp is
the travel time between the drop-off meeting point l and
participant destination dp, and τk and τl represent the ser-
vice time at meeting points k and l respectively. Thus, in
a time feasible match, the intersection of the implied time
windows has to be non-empty, which implies that:

max
(
eki , max

j∈J ekj
)

≤ min
(
lki ,minj∈J lkj

)
(2)

Where max
(
eki , maxj∈J ekj

)
is the earliest time, and

min
(
lki ,minj∈J lkj

)
is the latest time, at which the shared

ride can depart from meeting point k. In addition, a time
feasible match should respect the maximum trip duration
specified by the owner, thus:

toi,k + τk + tk,l + τl + tl,di ≤ Ti (3)

In other words, the sum of travel times between differ-
ent locations (i.e. owner origin to pickup meeting point
toi,k , pickup meeting point to drop-off meeting point tk,l,
and drop-off meeting point to owner destination tl,di ) and
service times at meeting points (i.e. τk and τl) must not
exceed themaximum trip duration (Ti) that the owner can
accept to accommodate the shared ride.

– Distance feasible:

Since only one pickup and one drop-off are allowed in a
shared trip, then themeeting point arc a should be feasible
to all riders J ⊂ R in a feasible match (i, J , a). Thus, the
pickup and drop-off meeting points shaping arc a should
be at feasible walking distances for all riders participating
in the feasible match:

a ∈
⋂
j∈J

Aj (4)

Furthermore, a distance-feasible match must achieve a
distance saving compared to the case of non-shared (indi-
vidual) trips. Consider the example in Fig. 2 with one
owner o1, two riders r1, r2, a pickup meeting point and
a drop-off meeting point (numbers above arcs represent
distances between locations). If each traveler will drive
individually from his origin to his destination then the
overall traveling distance will be 10+10+10 = 30. On the
other hand, if a shared trip will take place (bold arrows)
then the overall traveling distance will be 8+ 10+ 8 = 26.
As such, the shared trip has the potential of reducing the
overall traveling distance, and thus, the match has a posi-
tive distance saving. A match between owner i and riders
in J ⊂ R on a meeting point arc a = (k, l) has an associ-
ated distance saving of σ(i,J ,a) = δoi,di −(δoi,k+δk,l+δl,di)+∑

j∈J δoj ,dj , where (δoi,di +
∑

j∈J δoj ,dj) is the travel distance
of individual (non-shared) trips of participants (including
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owner and riders’ trips), and (δoi,k +δk,l+δl,di) is the travel
distance of the shared trip. Thus, the match is feasible if
σ(i,J ,a) > 0:

σ(i,J ,a) > 0 (5)

st. σ(i,J ,a) = δoi,di − (δoi,k + δk,l + δl,di) + ∑
j∈J δoj ,dj

As a result, a match is feasible when it respects capacity,
time and distance constraints. With every feasible match,
two values are associated; the number of participants and
the distance saving. By solving this problem, we aim at
finding the set of matches that maximizes the number
of matched participants as we will see in the following
section.

3.3 Matching problem
The matching problem is formulated as a maximum
weight bipartite matching problem. A node is created for
each owner i ∈ O and for each rider j ∈ R. An edge con-
necting node i and node j is added if there is a feasible
match between owner i and rider j. Furthermore, nodes
representing a set of riders in R are also created and an
edge connecting owner i and a set of riders is added if a
feasible match between them exists. Each edge e has two
weights associated with it: the number of participants in
the match ve, and a distance saving σe. Let E represent the
set of all edges in the bipartite graph and let the binary
decision variable xe for edge e ∈ E indicate whether the
edge is chosen in an optimal matching ( xe = 1 ) or not
( xe = 0 ). In addition, let Ei and Ej represent the set of
edges in E associated with owner i and rider j. Thus, the
matching problem with the objective of maximizing the
number of matched participants (Z) can be formulated as
the following integer program:

maxZ =
∑
e∈E

vexe (6)

subject to
∑
e∈Ei

xe ≤ 1 ∀i ∈ O (7)

∑
e∈Ej

xe ≤ 1 ∀j ∈ R (8)

The objective function (6) maximizes the number of
matched participants. Constraints (7) and (8) assure that
each owner and each rider is only included in at most one
match in a final matching.

4 Solution approach
As it was defined earlier, a match is a combination of
an owner, a set of riders and a meeting point arc where
the shared ride can take place. As such, the problem
is to find the set of those matches in which as many

travelers (owners and riders) as possible are matched and
participating in shared rides. In order to solve this prob-
lem, we propose a heuristic algorithm. The proposed
approach is an extension of the two-phase algorithm
introduced by [21]. The two phases are: generating feasi-
ble matches and selecting the best among them through a
matching problem. In the first phase, we look for feasible
matches for every owner iteratively and we add them to
the matching problem. Then, the matching problem aims
at selecting the best matches such that each owner/rider
is matched at most once in a final solution. Our approach
aims to maximize the number of matched participants. It
is important to mention that the main driver of our algo-
rithm design is the fast execution times. This allows us to
test and analyze various scenarios of the problem.
In the first phase, the aim is to find the set of feasible

matches. For this purpose, the algorithm considers own-
ers one by one and tries to build feasible matches with
potential riders. If a feasible match is found, an edge, link-
ing the matched participants (owner and riders), is added
to the matching problem with two associated coefficients;
the number of participants and the potential distance sav-
ings. On the other hand, the algorithm finds for every
rider, according to the maximum walking distance that
the rider accepts, the sets of feasible pickup and drop-off
meeting points (Section 4.1). Furthermore, once an owner
is considered, the algorithm checks whether his trip offer
is a one-way trip or a round trip and generate his fea-
sible matches accordingly (Sections 4.2, 4.3 respectively).
We extend the original algorithm presented in [21], which
only considers one-way trips, by allowing AVs to perform
round trips. Thus, the proposed algorithm aims at gener-
ating feasible solutions for both one-way and round trips
at short computational times.

4.1 Determine feasible meeting point arcs for a rider
In order to generate feasible matches, the algorithm
defines the set of feasible meeting point arcs for every
rider. In other words, the sets of meeting points where a
rider can be picked up and dropped off need to be defined.
For this purpose, we store the set of meeting points in
a k-d tree data structure. k-d trees have the ability of
performing n nearest neighbors search and fixed-radius
near-neighbor search in logarithmic time ([4]). Thus, we
use the k-d tree to find, for each rider j, the meeting points
that are accessible from his origin oj and destination dj
within an acceptable walking distance (less thanmj). Once
feasible meeting points for rider j are known, a set of
feasible meeting point arcs is constructed by combining
every possible pair of feasible pickup and drop-off meeting
points.

4.2 Generate feasible matches for a one-way trip
If a one-way trip is considered (Fig. 3a), the algorithm
iterates over the set of riders seeking to find feasible
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Fig. 2 Distance feasible match - Positive distance saving

matches.When a rider is considered, the algorithm checks
all his feasible meeting point arcs. If the combination
(owner, rider, meeting point arc) is time feasible, the algo-
rithm proceeds to calculate its associated distance saving.
If the combination has a positive distance saving, it will
be temporarily conserved while the other feasible meeting
point arcs of the rider are checked. A match combining
an owner, a rider and a meeting point arc that has the
best distance saving will be added to the set of feasible
matches. Afterwards, the algorithm will consider the next
rider similarly until the whole set of riders is checked and
all feasible single-rider matches are added (Fig. 4 left part).
Once all feasible single-rider matches are added, the algo-
rithm will try to find feasible multi-rider matches and add
those found to the matching problem (Fig. 4 right part).

4.3 Generate feasible matches for a round trip
If the considered offer is a round trip (Fig. 3b), the algo-
rithm selects a set of artificial owners in order to construct
a concatenation of one-way trips (See Fig. 5a). The idea
is to choose one rider to be a temporal owner of the
AV which will pick him up at his origin location and
drop him off at his destination location. In this case,
this selected rider will be considered as a new “artifi-
cial” owner of the AV and the algorithm will then try
to match him with other potential riders. Once the first
artificial owner is considered and matched, the algo-
rithm will add other artificial owners as long as the
AV can still return to its real owner (or equivalently to
its depot in the on-demand case) at the specified latest
arrival time.

)b()a(
Fig. 3 Generating feasible matches. a One-way trip match b Round trip match
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Fig. 4 Algorithm 1 - Find-Owner-Feasible-Matches

)b()a(
Fig. 5 Generating feasible matches for a round trip. a Artificial Owners b Choosing the next one
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The choice of which rider to be selected as the next arti-
ficial owner is made in a greedy fashion (see Fig. 5b). The
earliest departure time of the rider and the time that the
AV needs to arrive at his origin location are considered.
Thus, the rider that can be served the earliest is chosen. In
this example, rider a1 is chosen as the next artificial owner
because the AV can arrive to his origin location at 9:25
(Earliest departure from the depot at 9:00 + 25 mins trav-
eling to a1 origin location) and his earliest departure time
is 9:00. Thus, his trip can start at max(9:00,9:25) = 9:25
where a2 and a3 trips can start at 9:30 and 12:30 respec-
tively. So, a1 is chosen because his trip can be started
the earliest. The process of assigning artificial ownership
to riders continues until there is only time for the AV to
return to its original location (In the example, the AVmust
return to its origin o before 5 pm). This greedy choice is
made as we want to approximate a dynamically operat-
ing ride-sharing system in which a vehicle is assigned to a
first customer and then others are added as soon as their
requests arrive. Once all round trips are transferred into
sequences of one-way trips, they can be treated similarly
(Section 4.2). Thus, the algorithm will look for all their
feasible matches and add those found to the matching
problem.

4.4 Algorithm
As mentioned above, the algorithm aims to look for the
feasible matches for every single owner and then pass-
ing those feasible matches to the matching problem which

will choose the best among them. The algorithm takes an
instance as input (see Fig. 6). The instance is composed
of three sets: set of owners O, set of riders R and a set of
meeting points M. The algorithm starts by storing meet-
ing points in the k-d tree so they can be rapidly retrieved
later. In the next step, the algorithmwill search the k-d tree
in order to find the feasible pickup and drop-off meeting
points, and thus the feasible meeting point arcs, for every
rider. Once the feasible meeting point arcs of every rider
are found, the algorithm considers owner trip announce-
ments one by one and checks whether it is a one-way or
round trip. If it is one-way trip, the algorithm finds all fea-
sible single-rider matches, then two-riders matches, etc.,
until the available capacity is reached. If a feasible match
is found, an edge is added to the matching problem with
two associated coefficients; the number of participants
and the potential distance savings. On the other hand, if
the considered owner trip announcement corresponds to
a round trip, the algorithm selects a set of riders as arti-
ficial owners. Thus, a sequence of artificial owner trips
will be constructed as long as the original time window
specified by the “real” owner can still be respected. Those
constructed artificial owner trips are one-way, and thus,
feasible single andmultiple rider matches are computed in
a similar manner (see Fig. 6).

4.5 Early checking for feasible matches
When the number of participants (owners and riders) is
relatively large, it can become computationally prohibitive

Fig. 6 Algorithm 2 - Match-Generation
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to find all their feasible matches. This huge computa-
tional effort is illustrated by the fact that the algorithmwill
have to check for every owner, all rider feasible meeting
point arcs. Thus, reducing the number of meeting point
arc feasibility checks has the potential of accelerating of
the algorithm. For this purpose, [21] suggests that if we
assume that the rider travels to the boundary of his walk-
ing range at vehicle speed and there is no feasible match
under that assumption, then there is no feasible match
when the rider is walking. Thus, there will be no need to
check all his feasible meeting point arcs (see Fig. 7).
Following this assumption, let tmax

j denote the time
needed to travel distance dmax

j at vehicle speed, where
dmax
j is the longest distance a rider j is willing to walk

to and from a meeting point. From Fig. 7, it is obvious
that there cannot be a feasible match between owner i
and rider j if the trip time when rider j is picked up and
dropped off at the boundary of his acceptable walking dis-
tance is longer than the maximum trip duration that the
owner i can accept:
(
toi,oj − tmax

j

)
+

(
toj ,dj − 2tmax

j

)
+

(
tdj ,di − tmax

j

)
> Ti

(9)

Thus, only if this infeasibility check indicates that there
may be a feasible match between owner i and rider j, the
algorithm proceeds to examine the possible matches for
each meeting point arc. As such, the number of meeting
point arc feasibility checks can be reduced.

5 Results and discussion
In this section, the results of a computational study are
reported. The aim of this computational study is to test

the proposed solution approach and to assess the sharing
potential of the different ownership and usage scenarios
using datasets for the cities of New York and Paris.

5.1 Generating instances
For generating the required instances for New York
City, Taxi and Limousine Commission (TLC) trip record
datasets are used2. For Paris, we consider traveler daily
trips introduced by [23] where a multi-agent simulation
is used for estimating transport demands around the city.
In both cases, trip records include fields capturing pickup
and drop-off times and locations, trip distances, fares and
other related fields. We use these trips to generate owner
and rider trips according to different usage scenarios.
Since the set of meeting points is predefined and used

for all instances (Section 5.1.3), trips are interpreted and
processed in order to generate sets of owner and rider trip
announcements for each city over a full-day time horizon.
Therefore, we use a similar approach for generating 16 dif-
ferent streams of trips based on datasets obtained during
different working days for both New York and Paris.
For generating one-way trip announcements, their ori-

gin and destination locations, earliest pickup and latest
drop-off times have to be defined. Origin and destination
locations are generated based on the original locations
that are available for each traveler trip (i.e. based on orig-
inal taxicab trips for NYC, and simulated traveler trips
for Paris). Since original trip time records represent the
actual departure and arrival times, we extend them by a 30
min time flexibility parameter in order to be matched in a
shared trip ([21]). We thus deduct 15 min from the origi-
nal departure time and add 15 min to the original arrival
time so that the difference between the latest arrival time

Fig. 7 Early checking - infeasibility check of a match
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and the earliest departure time is equal to the sum of the
actual trip duration and the time flexibility parameter. For
owner trips, we assume that owners, who wish to par-
ticipate in a shared ride, are not willing to extend their
original trip time bymore than 20min. The capacity of the
AVs, whether they are individually-owned or on-demand,
is assumed to be the same. Thus, if AV owner is participat-
ing in the trip (one-way trip), then he has a capacity of 3
spare seats. Furthermore, if the owner is not participating
in the trip (round trip), then we assume that the AV has 4
spare seats to accommodate riders. In addition, we assume
that the maximum walking distance that riders are will-
ing to walk to and from a meeting point is 0.5 kilometer
(see Table 1).
For generating round trip announcements, we assume

that not all owners, having a morning trip with an earliest
departure time between 5 and 9 am, from their homes to
their work locations, are willing to let their AV serve oth-
ers while they are at work. For this purpose, we randomly
select 25% of those morning trips and we accordingly gen-
erate their relative round trips. We thus consider that
the origin, which is also the destination, of the generated
round trip is the owner work location. We also assume
that the earliest departure time for a round trip to be 15
min later than the arrival of the owner to his work loca-
tion (for example, if the owner arrives to his work location
at 8:30 am, then his AV will be available for service at 8:45
am). Furthermore, we assume that an AV should return to
its owner before 4 pmbecause he needs it to get back to his
home. As mentioned before, individually-owned AVs are
assumed to be recharged at their owner home/work loca-
tions and that their round trips should not be longer than
6 hours because they need to be recharged. On the other
hand, on-demand AVs are recharged at predefined service
centers, where they are located, and should return to their
centers at most after 6 hours in service so that they can
be recharged. We assume that an on-demand AV needs 2

Table 1 Base case instance characteristics

Trip pattern: short trips around city center Parameters

Average number of participants 3042

Average number of owners 1519

Average number of riders 1522

Owner-to-rider ratio 1 : 1

Average trip distance for participant 3.64 km

Average trip time for participant 9.04 mins

Max. walking distance to/from a meeting point 0.5 km

Walking speed 4 ft/s

Vehicle speed 24 km/h

Max. time flexibility of an owner 20 mins

AV capacity 4

hours in order to be fully recharged before it gets back in
service.
Moreover, we assume that AVs circulate at a fixed speed

(24 km/h) and that riders move at 4 ft/s walking speed
([15]). The service time, which is the time needed for rid-
ers to get in or out the AV at ameeting point, is assumed to
be 2 min. For calculating travel distances between differ-
ent locations, the haversine formulation (which computes
the great circle distance between two points) is used.
Finally, we generate, for each of the instances, three

variants in which the owner-to-rider ratio is different
(see Table 2). In the first variant we generate an equivalent
number of owner and rider trip announcements where the
number of riders increases to four times and ten times
the number of owners in the second and third variant
respectively.
The goal of generating those different variants is to see

how an increasing demand could affect the different ele-
ments of the analysis and compare the results obtained
by testing instances with different owner-to-rider ratios.
In addition, a higher demand better reflects city-wide
mobility where thousands of trips take place every day.
Furthermore, we provide a set of scenarios by which each
one of the instances is tested as we will see in the following
section.

5.1.1 AV usage scenarios
As mentioned above, the main aim of this research work
is to analyze the different ownership models and their
different usage scenarios. We thus consider different sce-
narios for testing each instance. The idea is to start with a
scenario in which only individually-owned AVs (IO AVs)
are used to serve a set of riders. We then assume that a
set of those owners (10% of them at each scenario) are
not willing to use their own AV, or in other words, they
are willing to be picked up by an AV as potential riders.
As such, they are added to the set of riders. Moreover,
we replace those owner trip announcements by a num-
ber of on-demand AVs (OD AVs) which are based at the
predefined service centers. Therefore, 10% of the owner
trip announcements are randomly selected, transferred
into rider trip announcements, and replaced by a set of
on-demand AVs. The process of generating scenarios con-
tinues until all owner trip announcements are replaced by
on-demand ones and all travelers participate as riders (see
Table 3 for an example).

Table 2 Instances with different owner-to-rider ratio

1-to-1 1-to-4 1-to-10

Average number of participants 3043 7609 16435

Average number of owners 1519 1519 1519

Average number of riders 1523 6090 14915
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Table 3 Base case instance with different usage scenarios and
1-to-1 replacement rate

Scenario # IO AVs # OD AVs # Riders

100% IO 1510 0 1522

90% IO 1360 150 1672

80% IO 1210 300 1822

70% IO 1060 450 1972

60% IO 910 600 2122

50% IO 760 750 2272

40% IO 610 900 2422

30% IO 460 1050 2572

20% IO 310 1200 2722

10% IO 160 1350 2872

0% IO 0 1510 3022

Furthermore, three different rates for replacing
individually-owned AVs with on-demand ones are consid-
ered. Thus, we consider that each added on-demand AV
replaces one, two or five individually-owned ones (1-to-1,
1-to-2 and 1-to-5 replacement rates). For example, in
Table 3, 150 individually-owned AVs are replaced by the
same number of on-demand AVs at each scenario (1-to-1
replacement rate). Relatively, the number of on-demand
AVs replacing the 150 individually-owned ones will drop
to 75 and 30 with 1-to-2 and 1-to-5 replacement rates
(respectively). Regardless of the replacement rate used for
generating the different scenarios, replaced owner trip
announcements are all considered as riders.

5.1.2 Meeting points
In order to test the generated instances and their scenar-
ios, a set of meeting points, where riders can be picked
up and dropped off, is needed. We generate the required
meeting points based on actual public transport stations
in New York and Paris (Fig. 8a & c). For New York City,
we use data records that are provided by the Metropolitan
Transportation Authority MTA3. These records capture
New York City transit subway and bus locations. Similarly,
Paris railway station records are used (these records were
obtained using the simulation approach provided in [23]).
In order to have aminimal andwell-distributed set of loca-
tions, we filter the available locations and we eliminate
some of them such that a minimum distance of 500meters
between every pair of locations is guaranteed. Without
filtering those locations, the number of feasible meeting
point arcs for each rider will dramatically increase, and
thus, generating feasible matches will be computationally
prohibitive. In addition, this 500 meters distance is in-line
with the maximum walking distance a rider can walk to
get into a meeting point (see Table 1) [21].

The choice of using public transport stations as meeting
points comes with two main benefits. First, they are well
distributed around the city, and thus, cover the studied
area especially that their locations are available. Second,
those stations are accessible by different transportation
modes (subway and bus). As such, considering them as
meeting points opens the door for integrating the use of
autonomous vehicles with other transportation modes in
future research.

5.1.3 Depots
For the on-demand AVs case, we need to define a set
of locations (depots) where the on-demand AVs can be
located. For New York City, we fix four locations cor-
responding to actual taxi-service and car-service centers
(one center in Manhattan (“Lower East Side Car Ser-
vices”), two centers in Queens (“Liberty Taxi NYC” and
“Athena Car Service”) and one center in Brooklyn (“East-
ern Car Service”) (Fig. 8b). For Paris, we select four
locations corresponding to public transit stations around
the city (“CDG Etoile”, “Gare Montparnasse”, “Nation” and
“Stalingrad”, see Fig. 8d). In both cases, on-demand AVs
are invoked from these centers to serve requests and get
back to their centers once their trip is finished.

5.2 Performance
The algorithm for generating feasible matches is imple-
mented in Java 1.8.0. For solving the matching problem,
CPLEX 12.6 is used (CPLEX is an IBM software pack-
age, also called CPLEX optimizer, that is used for solving
integer programming problems).4 Instances were tested
on a quad-core i5-5300U machine with 8 GB of RAM.
The base case instance, with 1-to-1 owner-to-rider ratio
(Table 1), solves in less than 7 min while instances with 1-
to-4 and 1-to-10 owner-to-rider ratios solve in less than
25 and 90 min respectively. CPLEX solves the matching
problem in a few seconds for different instance sizes. Most
of the computational time is thus spent generating feasi-
ble matches for one-way and round trips. However, these
relatively short running times suggest that our approach
is suitable for approximating dynamic operations where
instances with a much smaller set of trip announcements
have to be solved at any one time.

5.3 Experiments
The solution approach that we have implemented pro-
vides a good basis because it allows us to test instances
with different sizes, scenarios and replacement rates in
relatively short computational times. We thus use the
generated instances and the set of solutions (matches)
provided by the algorithm to compute and evaluate a
number of metrics in two case studies for New York and
Paris. We use the following metrics in our analysis: the
number of participants, the matching rate for riders, the
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(a) (b)

(c) (d)
Fig. 8 Generating meeting points and AV depots. a NYC - Public transport stations b NYC - Depots c Paris - Public transport stations d Paris - Depots

average number of used AVs, the average system distance
savings, the average number of served participants per AV
(PpV), the average traveled distance per vehicle (DpV) and
the average extra travel time for participants. All metrics
are measured at different scenarios. Hence, the x-axis in
the following graphs represents the different usage scenar-
ios, or in other words, the percentage of on-demand AVs
that are available for service at each of the scenarios. We
then analyze their values over different replacement rates
(1-to-1, 1-to-2 and 1-to-5, as introduced in Section 5.1.1).
As introduced earlier in Section 3.3, every feasible

match is associated with the number of travelers that are
participating in it. The matching problem aims at maxi-
mizing the overall number of participants in the system. A
participant is thus a traveler (owner or rider) who is par-
ticipating in the system. Since an owner uses his own AV
to travel, we always consider owners as participants even if
they are not matched in a shared trip. On the other hand,
a rider is considered as participant only if he is matched in
a shared trip.
Results, obtained by averaging the 16 instances for each

city with different owner-to-rider ratios, indicate that
when the number of available on-demand AVs increases,
the number of matched participants increases as well
(results for NYC and Paris are presented in Figs. 9 & 10

respectively). This applies to the three owner-to-rider
ratios when each on-demand AV is replacing one, two or
five individually-owned AVs. We observe that when the
number of riders becomes four or ten times the number
of owners with 1-to-5 replacement rate, the number of
participants decreases in scenarios with more than 80% of
on-demand AVs (Figs. 9c & e & 10c & e). This is due to
the large number of riders and the fewer number of AVs
which is not sufficient for serving this increasing demand.
Another important metric is rider matching rate. This

metric represents the percentage of riders that are
matched in the system. Only riders are thus included. The
goal of measuring this metric is to observe how the dif-
ferent scenarios and replacement rates could affect the
number of riders that are successfully matched in a shared
ride.
As for the number of matched participants, results

indicate that as more on-demand AVs are replac-
ing individually-owned ones, the rider matching rate
increases. This is mainly because on-demand AVs have a
higher flexibility in terms of time constraints (unlike the
individually-owned where owner preferences have to be
respected). An on-demand AV can thus provide service to
a larger number of potential riders. We also observe that
the convergence towards the 100% matching rate is faster
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(a) (b)

(c) (d)

(e) (f)
Fig. 9 NYC - Different owner-to-rider ratios. a 1-to-1 ratio, Number of Participants b 1-to-1 ratio, Matching Rate (%) c 1-to-4 ratio, Number of
Participants d 1-to-4 ratio, Matching Rate (%) e 1-to-10 ratio, Number of Participants f 1-to-10 ratio, Matching Rate (%)

when the number of owners and riders are equal (Figs. 9b
& 10b). When the number of riders becomes higher, the
convergence becomes relatively slower (Fig. 9d for exam-
ple). Furthermore, with 1-to-4 and 1-to-10 owner-to-rider
ratios, the matching rate does not converge when five IO
AVs are replaced by one OD AV. This is due to the lack
of enough AVs to serve the increasing demand (Figs. 9d
& f & 10d & f). If we take the 1-to-1 owner-to-rider
ratio as an example (Fig. 9b), we observe that satisfy-
ing all rider requests is obtained with the three different
replacement rates but in different scenarios. For satisfying
NYC demand in this case, we need the percentage of on-
demand AVs to be at least: 10% of the available AVs with
1-to-1 replacement rate, 20% with 1-to-2 replacement
rate, or 50% with 1-to-5 replacement rate (Fig. 9b). The
same observation can be made for Paris but with a slower
convergence towards satisfying the full demand (20, 30
and 60% respectively, Fig. 10b). On the other hand, for
the 1-to-4 owner-to-rider scenario (9d), satisfying rider
requests can be achieved by having at least 30% OD AVs

with 1-to-1 replacement rate or 60% OD AVs with 1-to-
2 replacement rate but cannot be achieved with 1-to-5
replacement rate (similarly for 1-to-10 ratio, Fig. 9f ).
This observation can help in fixing the number of on-

demand AVs needed to fully satisfy the demand in each
one of the instances. This is illustrated by the number
of used AVs at each of the scenarios (Fig. 11). Since the
number of available AVs depends on the replacement rate
used at each scenario, the presented graph correspond to
1-to-1 replacement rate (blue line with circled points). If
we consider instances with 1-to-1 owner-to-rider ratio as
an example (Figs. 9b & 10b), in the first scenario (where
around 1500 IO AVs are available), we still have about
20% of rider demands which are not served. In the second
scenario, when 10% of the available IO AVs are replaced
by a similar number of OD AVs (similarily with 20% for
Paris), rider demands are totally satisfied and the number
of used AVs starts to decrease. We thus observe that not
all the added OD AVs are actually used, or in other words,
fewer number of OD AVs is needed to satisfy all demands
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(a) (b)

(c) (d)

(e) (f)
Fig. 10 Paris - Different owner-to-rider ratios. a 1-to-1 ratio, Number of Participants b 1-to-1 ratio, Matching Rate (%) c 1-to-4 ratio, Number of
Participants d 1-to-4 ratio, Matching Rate (%) e 1-to-10 ratio, Number of Participants f 1-to-10 ratio, Matching Rate (%)

in this scenario. When more OD AVs are added in the
later scenarios, the number of used AVs keep decreas-
ing while the 100% matching rate is maintained. In the
last scenario, where riders are only served by OD AVs, we
observe that around 250 OD AVs (out of 1500 that are
available for service) were used to satisfy all demands. A
similar observation can be seen for instances with larger
owner-to-rider scenarios. As such, in a fully on-demand
scenario, around 600 and 900 OD AVs are needed to
fully satisfy rider demands with 1-to-4 and 1-to-10 owner-
to-rider ratios. However, the decreased number of used
AVs while maintaining high matching rates means that an
on-demand AV is serving more rider requests and doing
longer trips than an individually-owned one.
In order to compute the average number of partici-

pants that are served by anAV (i.e. Participant-per-Vehicle
(PpV)), we divide the average number of participants by
the average number of used As in each of the scenarios (i.e.
PpV = number-of-participants / number-of-used-AVs).
Results indicate that the average number of participants
served by an AV gradually increases as more on-demand

AVs becomes available and shared (While an individually-
owned AV is serving 2 participants in average in 0%
on-demand AV scenario, an on-demand AV is serving up
to 15 (17 for Paris) participants in average in 100% on-
demand AV scenario) (Fig. 12a). This observation also
goes in hand with the increasing matching rates presented
earlier.
Similarly, we compute the average distance traveled by

an AV per day (Distance-per-Vehicle (DpV )) by dividing
the overall distance traveled by all AVs by the number
of AVs circulating in the system. We call the overall dis-
tance traveled by all AVs by distance-with-sharing which
is the actual distance covered by all AVs for accommodat-
ing the shared rides. Thus, DpV = distance-with-sharing
/ num-of-used-AVs. The DpV also increases when more
on-demand AVs are added and shared (Fig. 12b). This
increase is obtained, not just because an on-demand AV
is serving more riders and thus traveling for longer dis-
tances to cover the increasing demand, but also because
of the empty trips that an on-demand AV might have
to do between two consecutive shared rides (an empty
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Fig. 11 Number of used AVs

trip appears after an AV drops off one, or more, rider
and heads to pick up the next one) or when depart-
ing/returning to its owner (or depot) location. Reducing
the distance covered by those empty trips, which mainly
appear in round trips for both IO and OD AVs, represents
a challenge in such systems and an opportunity to enhance
the service and maximize its benefits if it is treated effi-
ciently. One way to reduce the effect of empty trips is to
consider a more realistic ride-sharing settings where rid-
ers can be picked up and dropped off dynamically at any
time during AV trip.
As a result, the increasing rider matching rate illustrates

the potential benefit of having a fleet of on-demand AVs
replacing individually-owned ones. In addition, replac-
ing individually-owned AVs with on-demand ones has the

potential of decreasing the overall number of AVs circu-
lating in the system. However, the previous observations
indicate that when the demand becomes higher, a fully
on-demand AV system, especially with high replacement
rates, might not be able to satisfy all rider requests. Amin-
imum number of AVs circulating in the fleet thus need to
be ensured.
One important metric of the analysis is the potential

distance saving that might be obtained when ride-sharing
takes place. For calculating the saving, we compare two
distances: the actual distance covered by all AVs for
accommodating the shared rides (distance-with-sharing,
introduced earlier), and the overall distance if all par-
ticipants perform individual trips with no sharing at all
(called distance-with-no-sharing). The distance-with-no-

(a) (b)
Fig. 12 Participant and Distance per Vehicle (%). a Participant per Vehicle (PpV) b Distance per Vehicle (DpV)
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sharing is actually the sum of origin-to-destination dis-
tances of all participants (owners and riders). As such, the
distance saving is calculated as follows; distance-saving =
1 - (distance-with-sharing / distance-with-no-sharing).
Results illustrate the benefit of ride-sharing in terms of

distance saving.We can observe that sharing AVs, whether
they are individually-owned or on-demand, has the poten-
tial of saving approximately 22 and 25% of the overall
traveling distance in New York and Paris respectively (see
Fig. 13) when compared to a system in which no sharing
takes place. This considerable distance saving rate can be
observed in all scenarios and with the different replace-
ment rates. Fagnant and Kockelman [9] suggest that a
shared AV can replace around 11 conventional vehicles,
but might add up to 10% travel distance compared to
non-shared AV trips. This difference between our results
and theirs is due to three main reasons. The main reason
is that we use meeting points to match different par-
ticipants, while in their paper, a shared AV should pass
by rider origin and destination locations. Meeting points
can thus lead to shorter detours and better distance sav-
ings. The second reason is related to trip patterns. While
we consider short trips around city center (with aver-
age trip distance of 3.64 km), in [9] suburb-city trips
are considered (with average trip distance of 8.74 km).
Finally, our heuristic approach, in selecting the next arti-
ficial owner for AV round trips, leads to short relocation
trips (i.e. traveling from one artificial owner to another),
and thus, better distance savings. However, our results
are consistent with the original study, by [21], where 27
to 29% distance savings were obtained. This small differ-
ence (between 22 and 25% savings in our case, and 27 to
29% in their case) is due to round trips, which require
more relocation empty-AV trips, that do not exist in the
original study. In addition, it was observed earlier that a
minimum number of available AVs is needed to ensure

the satisfaction of rider demands. Our results show that
having a larger number of AVs in the fleet might not lead
to a better distance saving ratio unless the use of available
seats in each AV is maximized. In other words, a critical
key for a successful ride-sharing system is to minimize the
number of used AVs while maintaining the quality of the
provided service.
Finally, we consider the average extra travel time for

participants (owners and riders) which indicates the extra
travel time a participant can have in his trip in order to
be matched in a shared ride. This extra time is obtained
by comparing the actual travel time of the participant in
a shared ride with the travel time of a direct trip from
his origin location to his destination location (no sharing
takes place).
As for AV owners, results indicate that they might

have approximately 3 min of additional travel time when
matched in a shared ride compared to their non-shared
trips. This additional time, which demonstrates the detour
an AV should perform to transport potential riders,
decreases as more on-demand AVs enter the system
(Fig. 14, in 100% on-demand AV scenario, all owners
participate as riders). Although sharing trips impose addi-
tional travel time to owner trips, they can still have
reduced trip costs and they might benefit from reserved
lanes for vehicles with multiple travelers. On the other
hand, our results indicate that the average extra travel
time for the rider decreases when the number of on-
demand AVs increases (Fig. 14). This is due to the flexi-
bility that on-demand AVs provide where the possibility
of picking up and dropping off a rider at meeting points
that are relatively close to his origin and destination
locations becomes more probable. Thus, in a sharable
on-demand service, a rider will be matched to a closer
meeting point, and thus, the extra time needed to travel
from his origin to his destination will be decreased, or

Fig. 13 Average Distance Saving (%)



Mourad et al. European Transport Research Review           (2019) 11:31 Page 18 of 20

(a) (b)
Fig. 14 Average Extra Travel Time per Participant (mins). a NYC b Paris

in other words, a better ride-sharing experience can be
achieved.

6 Conclusion
In this study, a heuristic approach for studying and com-
paring the different ownership models for autonomous
vehicles has been introduced. The proposed approach
consists of two phases: an identification phase for gen-
erating the set of feasible matches, and an optimization
phase, for selecting the best among them. The algorithm
was tested with different scenarios and replacement rates
using instances generated based on New York City taxicab
datasets and Paris simulated trip records.
Results of the analysis indicate that sharing AVs has the

potential of increasing the number of participants and the
matching rate for riders as well as the number of partici-
pants that can be served by an AV. Although shared AVs
might have to circulate for longer distances, sharing rides
can save up to 25% of the overall traveling distance which
has a considerable impact on traffic in big cities such as
New York and Paris. In addition, our results suggest that
a system, in which on-demand AV service is partially or
fully used and shared, has a better performance than a sys-
tem in which only individually-owned AVs are used. The
advantages of the shared on-demand AV service are illus-
trated in higher ridermatching rates, fewer number of AVs
needed to satisfy the demand, better distance saving rates
and shorter travel times. In addition, this study suggest
that fleet sizing, the efficient planning of AV trips, and
the use of meeting points are important factors in a suc-
cessful ride-sharing system in which autonomous vehicles
operate.
Since we build our analysis on a set of assumptions that

simplify the problem, the door is always open for con-
sidering different and more realistic settings. As such,
we point out some future research directions: (1) In

this paper we considered a static ride-sharing setting in
which travel demands are known in advance and only one
pickup and one drop off are allowed. Thus, an interest-
ing research direction would be to consider more realistic
ride-sharing settings in which travelers (owners and rid-
ers) are matched on-the-fly, (2) since autonomous vehi-
cles will be electric ones, a promising research direction
would be to consider recharging operations when building
shared rides, and (3) as we use the haversine formula-
tion for calculating the great circle distance, it might be
interesting to consider more realistic approaches for cal-
culating travel distances between different locations (e.g.
road network distance). We believe that this study will
help in better understanding the potential deployment of
autonomous vehicles with their different ownership mod-
els, and thus, promote more research towards studying
this emerging technology.

Endnotes
1 For example, Tesla and Ford for the individually-

owned AVs, and Lyft and Uber for the on-demand ones
2The taxicab trip records were collected and provided

to the NYC Taxi and Limousine Commission (TLC) by
technology providers authorized under the Taxicab &
Livery Passenger Enhancement Programs (TPEP/LPEP).
Datasets were obtained from TLC website: https://www1.
nyc.gov/site/tlc/about/tlc-trip-record-data.page

3 Subway and bus station locations at New York City
are made available by the Metropolitan Transportation
Authority (MTA) for development and research purposes.
Data records are provided at MTA website: http://web.
mta.info/developers/developer-data-terms.html#data

4 For more details on CPLEX: https://www.ibm.com/
analytics/cplex-optimizer

https://techcrunch.com/2015/09/29/elon-musk-says-tesla-cars-will-reach-620-miles-on-a-single-charge-within-a-year-or-two-have-fully-autonomous-cars-in-three-years/?guccounter=1
https://www.citylab.com/transportation/2016/09/the-guy-from-lyft-is-coming-for-your-car/500600/
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
http://web.mta.info/developers/developer-data-terms.html#data
http://web.mta.info/developers/developer-data-terms.html#data
https://www.ibm.com/analytics/cplex-optimizer
https://www.ibm.com/analytics/cplex-optimizer
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