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A BESICOVITCH-MORSE FUNCTION PRESERVING THE
LEBESGUE MEASURE

JOZEF BOBOK AND SERGE TROUBETZKOY

Abstract. We continue the investigation of which non-differentiable maps
can occur in the framework of ergodic theory started in [2]. We construct
a Besicovitch-Morse function map which preserves the Lebesgue measure.
We also show that the set of Besicovitch functions is of first category in the
set of continuous functions which preserve the Lebesgue measure.

1. Introduction

In 1925 Besicovitch constructed a continuous function, f : [0, 1] → [0, 1], for
which unilateral derivatives, finite or infinite, do not exists at any point [1]. A
few years later, Pepper gave a more geometric proof of the same result [5]. Saks
has shown that such functions form a set of first category in the space of all
continuous functions [6]. After this, Morse constructed a continuous function
with a stronger conclusion [4], not only do unilateral derivates not exist, but
additionally

max{|D+f(t)|, |D+f(t)|} = max{|D−f(t)|, |D−f(t)|} = ∞, t ∈ [0, 1].

See [3] for a more detailed historical development.

We are interested in whether such non-differentiable maps can occur in the
framework of ergodic theory, more precisely whether such nowhere differen-
tiable functions can exist for a continuous map of [0, 1] which preserves the
Lebesgue measure. Our main result is the existence of a Besicovitch-Morse
function in the space of continuous functions preserving the Lebesgue measure
(Theorem 4), improving an earlier result of Bobok who showed the existence
of a Besicovitch function in this space [2]. Furthermore, in analogy to Saks’
classical theorem [6], we show that the set of Besicovitch functions is of first cat-
egory in the set of continuous functions which preserve the Lebesgue measure
(Corollary 3). Our construction of the Besicovitch-Morse function is inspired
by Pepper’s construction.
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2. Nowhere differentiable maps in C(λ)

Let I := [0, 1]. Let λ denote the Lebesgue measure on I and B the Borel sets
in I. Let C(λ) consist of all continuous λ-preserving functions from I onto I,
i.e.,

C(λ) = {f : I → I : ∀A ∈ B, λ(A) = λ(f−1(A))}.

We define the upper, lower, left and right Dini derivatives of f at t:

D+f(t) := lim sup
x→t+
x∈I

f(x)− f(t)

x− t
D+f(t) := lim inf

x→t+
x∈I

f(x)− f(t)

x− t

D−f(t) := lim sup
x→t−
x∈I

f(x)− f(t)

x− t
D−f(t) := lim inf

x→t−
x∈I

f(x)− f(t)

x− t
.

We say that a finite one sided derivative exists at t if D+f(t) = D+f(t) ∈ R or
D−f(t) = D−f(t) ∈ R, and that a finite or infinite one sided derivative exists
at t if D+f(t) = D+f(t) ∈ R ∪ {±∞} or D−f(t) = D−f(t) ∈ R ∪ {±∞}. We
introduce the following classes of continuous nowhere differentiable functions

A Besicovitch function is an f ∈ C(I,R) such that for every t ∈ I, there is
neither a finite or infinite right nor a finite or infinite left derivative at t.

A Morse functions, is an f ∈ C(I,R) such that

max{|D+f(t)|, |D+f(t)|} = max{|D−f(t)|, |D−f(t)|} = ∞, t ∈ I;

we skip the left, resp. right term of the max{} if t is the right, resp. left
endpoint of the interval I.

We endow C(λ) with the uniform metric ρ(f, g) := supx∈I |f(x)− g(x)|.

Proposition 1. C(λ), endowed by the uniform metric ρ, is a complete metric

space.

We leave the standard proof of this result to the reader.

Recall that a knot point of function f is a point x where D+f(x) = D−f(x) =
∞ and D+f(x) = D−f(x) = −∞. The following theorem states a consequence
of more general result proved in [2].

Theorem 2. The C(λ)-typical function has a knot point at λ-almost every

point.

The next result generalizes a classical result result of Saks [6].

Corollary 3. The set of Besicovitch functions is a meager set in C(λ).
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Proof. We use the following well known result (see [7, Theorem 7.3]): if

D+f(x) > 0 for a.e. x ∈ I and D+f(x) > −∞ for every x ∈ I, then f
is non-decreasing.

By Theorem 2 there is a residual set K ⊂ C(λ) such that each element of K
has a knot point at λ almost every point of I. Fix f ∈ K, we have D+f(x) =
+∞ > 0 a.e., and f can not be non-decreasing. Applying the above result, we
conclude that D+(x0) = −∞ for at least one point x0 ∈ I; in particular f is
not a Besicovitch function. �

Now we state our main result.

Theorem 4. There is a Besicovitch-Morse function in C(λ).

Proof. We begin by a sketch of our construction. The first step is to construct
an irregular Cantor staircase f0 : [0, 1/2] → R then to extend by symmetry
to a tent-like devils’ staircase map (see Figure 1). Next we modify this map
by replacing each flat segment by an affinely rescaled copy of f0 pointing
downwards, producing the map f1. At each stage we will have a modify the
resulting map by replacing the flat segments by affinely rescaled copies of the
original map, the scaling becoming more skewed at each step, and the direction
alternates between tent maps pointing up and down.

Given a σ positive integer we construct a discontinuum Eσ ⊂
[

0, 1
2

]

:

Eσ =

[

0,
1

2

]

\ Lσ, where Lσ =

∞
⋃

m=1

2m−1
⋃

p=1

rm,p,

the open intervals rm,p = (am,p, bm,p) are chosen as follows:
(m = 1) d1,1 =

[

0, 1
2

]

, r1,1 ⊂ d1,1,

(K1,σ) b1,1 is the center of d1,1,
λ(r1,1)

λ(d1,1)
= 1

2
− 1

21+σ ;

(m > 1, m even), if dm,1 · · · dm,2m−1 are (from left to right) the intervals of

the set
[

0, 1
2

]

\
⋃m−1

q=1

⋃2q−1

p=1 rq,p, then rm,p ⊂ dm,p, and for a suitable increasing

sequence (kσ(m))m>2, even of positive integers (to be determined later)

(Keven
m ) am,p = min dm,p +

λ(dm,p)

2kσ(m) , bm,p = max dm,p −
λ(dm,p)

2kσ(m) ;

(m > 1, m odd), if dm,1 · · · dm,2m−1 are (from left to right) the intervals of the

set
[

0, 1
2

]

\
⋃m−1

q=1

⋃2q−1

p=1 rq,p, then rm,p ⊂ dm,p,

(Kodd
m,σ) bm,p is the center of dm,p (we refer to this as the center property),

λ(rm,p)

λ(dm,p)
= 1

2
− 1

2m+σ .
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0 1/2 1

Figure 1. The map f0,σ

Given a map f : I → I and x, y ∈ I, x 6= y, define

R(f, x, y) :=
f(x)− f(y)

x− y
.

We consider a continuous nondecreasing function f0,σ : [0, 1/2] → I satisfying
f0,σ(0) = 0, f0,σ(1/2) = 1, f0,σ constant on every interval rm,p and satisfying
for each dm,p := [c, d], bm,p

(1) R(f0,σ, bm,p, c) = R(f0,σ, d, c).

Notice that this number is at least 2 for every dm,p. The function f0,σ is a
Cantor steplike function.

Next let

kσ(m) := 1 + log2

(

1/2 + max
p

λ(f0,σ(dm,p))

λ(dm,p)

)

;

this definition implies that for all even m and dm,p = [c, d] we have

(2) kσ(m) > 2 and 0 < R(f0,σ, d, am,p) 6 1/2.

We extend f0,σ to the interval I by setting

f0,σ(x) := f0,σ(1− x), x ∈ [1/2, 1] .

The function f0,σ and the interval I form the basic (σ = 1)-step triangle of our
construction. The set {(x, f0,σ(x)); x ∈ [0, 1/2]} is the left side of the triangle,
analogously the set {(x, f0,σ(x)); x ∈ [1/2, 1]} is the right side of the triangle.
Now, we construct the desired function f as follows:

(c0) Start with the basic (σ = 1)-step triangle with the base I and height 1;
the sides of the basic (σ = 1)-step triangle are the graph of f0 (see Figure
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1). All E1-contiguous intervals, i.e., the holes in the Cantor set E1, and their
counterparts in [1/2, 1] will be called 0th L-segments - the set of all 0th L-
segments will be denoted by L0.

(c1) The flat segment corresponding to an interval (a, b) ⊂ r ∈ L0 (and f0) is
the set

{(x, f0(a)) : x ∈ [a, b]};

m odd: for every element rm,p of L0 construct affinely rescaled (σ = 1+m)-step
triangle whose base is the flat segment corresponding to rm,p;

m even: for every element rm,p = (a, b) of L0 construct two affinely rescaled
(σ = 1+m)-step triangles whose bases are the flat segments corresponding to

(3)

(

a, b−
1

2k1(m) − 2
(b− a)

)

,

(

b−
1

2k1(m) − 2
(b− a), b

)

;

constructed step triangles are placed inwards the basic step triangle, the height
of step triangle with the base corresponding to rm,p = (a, b) ⊂ dm,p = [c, d] is
equal to

(4) f0(a)− f0(c).

The union of sides of all so far constructed step triangles defines the function f1.
All new contiguous intervals (subintervals of some previous 0th L-segments)
will be called 1st L-segments - the set of all 1st L-segments will be denoted
by L1.
(cn) Consider an element rn−1

mn−1,·
= (a, b) from Ln−1 satisfying

r0m0,·
⊃ r1m1,·

⊃ · · · ⊃ rn−1
mn−1,·

, rimi,·
∈ Li;

mn−1 odd: construct affinely rescaled (σ = 1+m0 + · · ·+mn−1)-step triangle
whose base is the flat segment corresponding to rn−1

mn−1,·
and fn−1;

mn−1 even: construct two affinely rescaled (σ = 1 + m0 + · · · + mn−1)-step
triangles whose bases are the flat segments corresponding to fn−1 and (3) with
k1+m0+···+mn−2(mn−1); the constructed step triangles are placed inwards the
bigger step triangle on whose side has its base, the height of the step triangle
corresponding to rn−1

mn−1,·
= (a, b) ⊂ dn−1

mn−1,·
= [c, d] is equal to

|fn−1(a)− fn−1(c)|.

Realizing the construction described above for all elements from Ln−1, the
union of sides of all so far constructed step triangles define the function fn. All
new contiguous intervals (subintervals of some previous (n− 1)st L-segments)
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will be called nth L-segments - the set of all nth L-segments will be denoted
by Ln.

Finally, put f = limn→∞ fn (obviously ρ(fn−1, fn) 6
1

2n/2 ). In what follows we
will repeatedly use the following easy consequence of our construction:

(5) ∀n ∈ N ∪ {0} ∀x ∈ [0, 1] \
⋃

L∈Ln

: f(x) = fn(x).

In order to verify that the function f is a Besicovitch-Morse function we dis-
tinguish several cases.

I. First, we assume that x ∈ [0, 1] is not a point of any 0th L-segment. Because
of symmetry we only consider points from [0, 1/2].

I(+) Assume that x ∈ [0, 1/2) is not the left endpoint of any 0th L-segment.
We show that f ′

+(x) does not exist and at least one of the right Dini derivatives
of f at x is infinite.

Fix h > 0 arbitrarily small, then there is an odd m such that for some p, the
0th L-segment rm,p = (a, b) ⊂ dm,p = [c, d] is contained in (x, x + h). We
choose p so that it is the left most such segment, thus any 0th L-segment rm′,p′

between x and a satisfies m′ > m. If x < c, then since x is not a point of any
0th L-segment, we would have another L-segment rm′,p′ between x and a with
m′ 6 m, thus

c 6 x < a <
a+ b

2
.

Since by (5) f(t) = f0(t) for t ∈ {c, x, a}, since m is odd we obtain from (4)

(6) f

(

a+ b

2

)

= f(c).

Furthermore, since f0 is monotone on E, again using (5)

(7) f(c) 6 f(x) < f(a).

The number h was chosen arbitrarily small, so (6) and (7) imply

D+f(x) 6 0 6 D+f(x).

Let us evaluate max{|D+f(x)|, |D+f(x)|}. Define εm ∈ (0, 1] by

(8) f(a)− f(x) = εm[f(a)− f(c)]

Using the fact that m is odd, and b is in the middle of [c, d], (Kodd
m,1) implies

that a− c = λ(dm,p)/2
m+1, thus from (8) we have

(9)
f(a)− f(x)

a− x
=

εm[f(a)− f(c)]

a− x
>

εm[f(a)− f(c)]

a− c
=

εm[f(a)− f(c)]
λ(dm,p)

2m+1

.
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Furthermore combining (1) with the fact that b is in the middle of [c, d], and
then the fact that R(f0, d, c) is at least 2, yields

(10)
εm[f(a)− f(c)]

λ(dm,p)
2m+1

=
εm

λ(f0(dm,p))
2

λ(dm,p)
2m+1

>
εm

2λ(dm,p)
2

λ(dm,p)
2m+1

= εm2
m+1.

So if εm > ε for some positive ε and a sequence of odd m’s, we immediately
have D+f(x) = ∞.

To the contrary assume that the sequence (εm)m-odd converges to zero. In this

case we will show D+f(x) = −∞. Let us denote d
(1)
1,1 := [c(1), d(1)] := [a, a+b

2
]

and r
(1)
1,1 = (a(1), b(1)) ∈ L1, r

(1)
1,1 ⊂ d

(1)
1,1. Using (c1) for the intervals d

(1)
1,1, r

(1)
1,1,

and the center property we obtain

a(1) − a =
λ(d

(1)
1,1)

2
− λ(r

(1)
1,1) =

λ(d
(1)
1,1)

21+m
.

Using (Kodd
m,1) and the inequalities λ(d

(1)
1,1) =

λ(rm,p)
2

< λ(dm,p)
22

(which both follow
from the center property) we obtain

λ(d
(1)
1,1)

21+m
<

1

22
λ(dm,p)

2m+1
=

a− c

22
.

Thus

a(1) − x = a(1) − a+ a− x <
a− c

22
+ a− c < 2(a− c).

By construction, the center property implies f(a(1)) = (f(a) + f(c))/2, hence
from (8) we obtain

−R(f, x, a(1)) =
(1/2− εm)[f(a)− f(c)]

a(1) − x
> (1/2− εm)

R(f, a, c)

2

But, (9) and (10) imply R(f, a, c) > 2m, and we conclude

(11) −R(f, x, a(1)) > − (1/2− εm) · 2
m−1.

By our assumption εm converge to zero, so (11) implies

−D+f(x) = ∞ = max{|D+f(x)|, |D+f(x)|}.

We have already seen that D+f(x) 6 0 6 D+f(x), i.e., f ′
+(x) does not exist.

I(-) Assume that x ∈ (0, 1/2] is not the right endpoint of any 0th L-segment.
We show that f ′

−(x) does not exist and D−f(x) = ∞.

Fix h > 0 arbitrarily small, let rm,p = (a, b) ⊂ dm,p = [c, d] be the 0th L-
segment contained in (x − h, x). W.l.o.g. we can assume that m is even and
that any 0th L-segment between x and b is labeled by an m′ > m. Then

b < x 6 d
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and similarly as in (6) and (7), denoting by e := e(m) := b − b−a
2k1(m)+1−22

the

middle of the interval (b− 1
2k1(m)−2

(b− a), b), from (3)

f(e) = f(c) < f(b) < f(x) 6 f(d).

Using (Keven
m ), (2) and (5) we obtain for each even m

0 < R(f, x, a) 6
f(d)− f(a)

x− a
= R(f, d, a)

d− a

x− a
< 1/2

d− a

x− a

But for even m we have

d− a

x− a
<

d− a

b− a
=

2k1(m) − 1

2k1(m) − 2
,

thus

(12) 0 < R(f, x, a) < 1.

Using f(e) = f(c), f(x) > f(b) and the definition of k1(m) yields the first
inequality

R(f, x, e) >
f(b)− f(c)

2 d−c
2k1(m)

=
(2k1(m) − 1)2k1(m)−1

2k1(m)
R(f, d, c) > 2k1(m) − 2;(13)

while the equality follows from (1) and the last inequality follows from the fact

that by our construction λ(f(dm,p))

λ(dm,p)
> 2 for each even m and each p.

When h approaches 0, the integer m tends to +∞ and thus, (12) and (13)
imply D−f(x) 6 1 < D−f(x) = ∞.

II. Second, we assume that for some positive integer n, x ∈ I is a point of
some n− 1st L-segment and does not belong to any nth L segment. Then the
point (x, f(x)) lies on the side of a step triangle which is an affinely rescaled
version of the basic (σ = 1 + m0 + · · · + mn−1)-step triangle; the facts that
neither finite nor infinite f ′

+(x), f
′
−(x) exist and

max{|D+f(x)|, |D+f(x)|} = max{|D−f(x)|, |D−f(x)|} = ∞

can be proven analogously as in I.

III. Finally suppose that x ∈ I belong to L-segments of all orders, i.e.,
{x} =

⋂∞
n=1 smn,pn, where smn,pn = (an, bn) equals to rmn,pn for mn odd, resp.

smn,pn ⊂ rmn,pn for mn even and rmn,pn denotes the (n − 1)st L-segment the
point x belongs to. The function fn and the flat segment on the graph of fn−1

corresponding to the interval (an, bn) form a rescaled step triangle ∆n which
we use to estimate the derivatives D+f , D+f , D

−f , D−f at the point x. From
the construction it follows that

i) ∆n is oriented upwards for n even, and downwards for n odd and
f((an, bn)) ⊃ f((an+1, bn+1)) for each n.
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Denote ℓn, resp. hn the length of the base, resp. height of ∆n. In our construc-
tion at each step on the flat segment of fn−1 we build a “tent” consisting of
two sides of ∆n in such a way that

R(f, an, γn) > 2R(f, an−1, γn−1) for each n,

(here γn := an + (bn − an)/2), hence

ii) limn→∞ hn/ℓn = ∞.

It follows from i) that D+(x) > 0 > D+(x) and D−(x) > 0 > D−(x). Thus if
f ′
+(x) exists then it equals 0, but this is impossible if f ∈ C(λ) (and similarly
for f ′

−(x)). We will prove that f ∈ C(λ) below, and thus f can not be a
Besicovitch function.

The set {(t, fn(t)); t ∈ (an, γn)} is the left side of ∆n. By symmetry, we can
suppose without loss of generality, that the point x corresponds to the left side
of the step triangles for infinitely many n.

an γn bn

A B

CD

an γn bn

A B

CD

Figure 2. ∆n oriented upwards (left) and downwards (right)

Consider Figure 2, the horizontal dotted line cuts the step triangle ∆n in the
middle (in height). The point (x, f(x)) must be in one of the sets A,B,C or
D. For convenience we take A,B open, and C,D closed.

III1. From ii) we deduce that if for infinitely many n

(1) the step triangle ∆n is oriented upwards, resp. downwards and (x, f(x)) ∈
A∪B, then D+f(x) = −∞ and D−f(x) = ∞, resp. D+f(x) = ∞ and
D−f(x) = −∞,

(2) the step triangle ∆n is oriented upwards, resp. downwards and (x, f(x)) ∈
C ∪D, then D+f(x) = ∞, resp. D+f(x) = −∞.
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III2. The argument for D−f(x) and D−f(x) when (x, f(x)) ∈ C ∪D is more
complicated. First of all notice that the above argument works without change
if we replace the dashed line in the middle of the figure with a line at any fixed
percentage of the height. Thus the remain case is when this percentage tends
to zero.

Denote the percentage of the height of ∆n corresponding to the position of

(x, f(x)) by αn = |f(x)−f(an)|
hn

∈ (0, 1). Our assumption is

lim
n→∞

αn = 0.

Let n be even and sufficiently large to satisfy αm ∈ (0, 1/2) for each m > n.
By our construction and the definition of αn, αn+1 (see Figure 3)

(14) f(an+1)− αn+1hn+1 = f(an) + αnhn, αnhn > (1− αn+1)hn+1.

αn+1hn+1

αnhn − (1 − αn+1)hn+1
αnhn

an γn

Figure 3. The upper left endpoint of the small triangle has
coordinates (an+1, f(an+1)).

Assume that

f(an+1) > f(an) + 2αnhn;

using (14) we get

(15) f(an+1)− f(an) = αn+1hn+1 + αnhn > 2αnhn

hence again from (14)

αn+1hn+1 > αnhn > (1− αn+1)hn+1

and αn+1 > 1/2, a contradiction with our choice of αn+1. It shows that

f(an+1) 6 f(an) + 2αnhn.
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Choose κ(n) ∈ N such that αn ∈ [1/2κ(n)+2, 1/2κ(n)+1); this implies

(16) f(an+1) 6 f(an) +
hn

2κ(n)
.

In our basic construction for each fixed m there are finitely many 0th L-

segments r
(0)
m,p and (see Figure 1)

f0(0) +
1

2m
=

1

2m
6 f0(r

(0)
m,1) < f0(r

(0)
m,2) < · · · < f0(r

(0)
m,2m−1),

hence analogously for each n, for fn on (an, bn) and for each fixed m we have

(17) fn(an) +
hn

2m
6 fn(r

(n)
m,1) < fn(r

(n)
m,2) < · · · < fn(r

(n)

m,2m−1),

where r
(n)
m,p are nth L-segments corresponding to the flat segments on the left

side of ∆n.

Since f(an) = fn(an) and f(an+1) = fn(an+1) = fn(smn+1,pn+1) ⊂ fn(r
(n)
mn+1,pn+1),

choosing m = mn+1 in (17) and combining with (16) yields

(18) mn+1 > κ(n).

This enables us to estimate the length ℓn+1. By our construction, for each

m = 2j or m = 2j + 1, the leftmost segment r
(0)
m,1 of the 0th category satisfies

λ(r
(0)
2j+1,1) 6

1

22+j2+j+
∑j

i=1 k(2i)
6

1

22j+1
, j > 0,(19)

λ(r
(0)
2j,1) 6

1

21+j2+j+
∑j−1

i=1 k(2i)
6

1

22j
, j > 1.(20)

Moreover, all segments from L0 placed to the left of r
(0)
m,1 are shorter than r

(0)
m,1.

Since ∆n and ∆n+1 are affinely rescaled version of the basic σ-step triangle
with large σ, we conclude from (18), (19) and (20) that

(21) λ(smn+1,pn+1) = ℓn+1 6 λ(r
(n)
κ(n),1) 6

ℓn
2κ(n)

.

With the help of (15) we can write

R(f, x, an) >
f(an+1)− αn+1hn+1 − f(an)

an+1+bn+1

2
− an

=
αnhn

bn+1−an+1

2
+ an+1 − an

=(22)

=
αnhn

ℓn+1

2
+ an+1 − an

=
hn

ℓn
·

ℓn
ℓn+1

·
αn

1
2
+ an+1−an

ℓn+1

.

IIIb2 . If an+1−an
ℓn+1

is bounded, since an+1 > an we conclude that 1
1
2
+

an+1−an
ℓn+1

is

positive and bounded by a constant C. Thus using (21) and (22), ii) and the



12 JOZEF BOBOK AND SERGE TROUBETZKOY

definition of κ(n) yields

R(f, x, an) >
hn

ℓn
2κ(n)αnC > C

hn

4ℓn
→ ∞.

We conclude that D−f(x) = +∞ and finishes the proof of the fact that f is
Besicovitch-Morse when this ratio is bounded.

IIIu2 . Finally assume that the ratio an+1−an
ℓn+1

is not bounded. If the liminf of

these ratios over n even is finite, we can use the corresponding subsequence
and conclude in the same way. Thus we can assume that the limit over even
n is infinite. Then

R(f, x, an) =
f(x)− f(an+1) + f(an+1)− f(an)

x− an+1 + an+1 − an

= R(f, an+1, an)
1 + f(x)−f(an+1)

f(an+1)−f(an)

1 + x−an+1

an+1−an

.

But ℓn+1/2 > x− an+1 > 0, so

R(f, x, an) > R(f, an+1, an)
1 + f(x)−f(an+1)

f(an+1)−f(an)

1 + ℓn+1

2(an+1−an)

.

From the definiton of αn we have

0 <
f(an+1)− f(x)

f(an+1)− f(an)
6

f(an+1)− f(x)

hn+1
= αn+1,

by our assumption on the unboundedness of the ratios we have

ℓn+1

2(an+1 − an)
→ 0,

and by our construction

R(f, an+1, an) >
2hn

ℓn
.

Combining the last four equations we conclude D−f(x) = ∞, and our proof
that f is Besicovitch-Morse is finished.

In order to finish our proof let us show that the function f preserves the
Lebesgue measure. To this end let us define a new sequence (gn)n>0 of functions
from C(λ) for which limn→∞ gn = f .

We define g0 as the full tent map, i.e., the function g0(x) = 1−|1−2x|, x ∈ I.
To define the function gn we put

gn := fn on I \
⋃

L∗
n−1,
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0 1/2 1 0 1/2 1 0 1/2 1

Figure 4. i) g
(0)
1 and f0, ii) g

(1)
1 (the segment r1,1 is drawn for

comparison), iii) g
(2)
1 (the segment r2,1 is drawn for comparison)

where L∗
n−1 denotes the set of all (n− 1)st L-segments and their counterparts

in [1/2, 1]. On each element of L∗
n−1 instead of rescaled step triangle we use a

rescaled tent map of the same base, height and orientation. Then

lim
n

gn = lim
n

fn = f,

so it is sufficient to show that each gn ∈ C(λ). It is true for g0. Let g
(0)
1 := g0

and using the lexicographical order on (m, p) (first m, then p) we consider

the jth-interval rm,p and its counterpart in [1/2, 1] to modify g
(j−1)
1 to a map

g
(j)
1 as in the sequence of pictures. Property (1) implies that each of these

modifications is in C(λ), then Proposition 1 implies g1 := limj→∞ g
(j)
1 ∈ C(λ).

In order to verify that gn ∈ C(λ) we put g
(0)
n = gn−1 and define the sequence

g
(j)
n , j > 1, in an analogous way to (Figure 4) on each element of L∗

n−1. �
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