
HAL Id: hal-02161892
https://hal.science/hal-02161892

Submitted on 21 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Implementing a Data Distribution Variant with a
Metamodel, Some Models and a Transformation

Eveline Kabore, Antoine Beugnard

To cite this version:
Eveline Kabore, Antoine Beugnard. Implementing a Data Distribution Variant with a Metamodel,
Some Models and a Transformation. DAIS 2008 : Distributed Applications and Interoperable Systems,
8th IFIP WG 6.1 International Conference, Jun 2008, Oslo, Norway. pp.224 - 237. �hal-02161892�

https://hal.science/hal-02161892
https://hal.archives-ouvertes.fr


Implementing data distribution variant with a

metamodel, some models and a transformation

Eveline Kaboré and Antoine Beugnard

Department of Computer Sciences, TELECOM Bretagne, Technopôle Brest-Iroise
CS 83818– 29238 Brest Cedex 3, France

{eveline.kabore, antoine.beugnard}@enst-bretagne.fr

Abstract. In this paper, we show how models transformations can be
used to implement data distribution features in the software design process
of a component. This approach is based on a single metamodel that de-
fines data distribution abstractions and on the design of alternatives that
are used to implement each data distribution variants. A model transfor-
mation is associated to the metamodel and the component metamodel
we consider as the target. We show that this approach facilitates the
derivation of different implementation strategies from the model of a
component. We illustrate our approach through the example of a distrib-
uted communication component software that implements a centralized
and two peer-to-peer variants and demonstrates the reusability of the
transformation.

1 Introduction and motivation

Models are widely used in sciences and have become an unavoidable tool for
software designers and programmers. Models were used in many development
methods such as SADT, JSD, etc. They allow the description of different aspects
of a system: structural, functional, behavioral, temporal, etc. Models also permit
the description of the system to be developed at different stages with various
levels of details.

The Unied Modelling Language (UML) is the last avatar of a standard mod-
elling notation. The way models are produced and elaborated is mainly beyond
the scope of modelling; it is mainly good-practices, know-how and methods more
or less formalized. One of the last great advances in software engineering was
the introduction of patterns (especially design patterns) as a semi-formalization
of good (or bad) practices.

The formalization and the clarication of the process of elaborating models are
the next challenges. Considering the processes of elaborating and rening models
as an activity that can be described with a dedicated language is in our point of
view, a revolution.

We show in this article how models, metamodels (that can be defined as
model types) and models transformations can be used to automatize the design
and implementation process of a distributed software component.



II

We are working on a specific component model dedicated to communication
[1,2] and the way to derive an implementation thanks to a process based on
models transformations [3,4]. Many models and metamodels have been devel-
oped and a design process (figure 1) has been implemented as a set of models
transformations. The first transformations that were defined introduced the gen-
eral architecture of the implementation. In this paper we want to describe the
way we have automated the design choice related to data placement and distri-
bution.

We argue that if models can describe the product to develop and metamod-
els the abstractions and constrains that are used and reused to define models,
models transformations can be used to describe the process to follow. Hence,
we have analysed the different design choices that are open when implementing
communication components. Among them, we isolated data placement strate-
gies. We have then look for the abstractions required to describe data placement
and elaborated a dedicated metamodel. The validation of this metamodel was
made thanks to the definition of some models of data placement such as “cen-
tralized placement” “peer-to-peer Pastry placement strategy” or “peer-to-peer
Chord placement strategy”.

 
Abstract 

medium model 

Step 1 Manager introduction 

Medium deployment 

abstract model 

Step 2 

Design alternative 

models (distributed 

protocols, data 

structure,...)  

Designer 
Chooses 

Step 3 Merging models 

Centralized 

implementation 

model 

Distributed 

implementation 

model 

Other 

implementation 

models 

Fig. 1. A view of a medium full design process



III

In order to apply these design choices we had to define a model transfor-
mation that was compatible with or target: communication components. The
transformation was hence defined using both metamodels: the communication
component one and the data placement one. This choice guarantees the transfor-
mation to be reusable since applicable to all models that conforms: any commu-
nication component model or any data placement model. Finally, this approach
ensures also extensibility since new data placement models - if conforming -
could be added.

The paper is organized as follows. The next section summarizes the definition
and the deployment target of communication components in order to ensure
a better understanding of metamodels and transformation. Section 3 presents
our approach defining the implementation parts of data distribution issues as
a sequence of transformations in a communication component design process.
Section 4 presents some related works. We conclude the paper in section 5 with
some perspectives of this work.

2 Communication component: medium

Definition. A medium is a special component which implements any level com-
munication protocol or system. A medium can implement, for example, a con-
sensus protocol, a multimedia stream broadcast or a voting system. A medium
includes classical component properties such as explicit interface specification,
reusability or replaceability, but a medium is not a unit of deployment. A com-
munication component is a logical architectural entity built to be distributed. An
application is the result of inter-connecting a set of components and mediums.
This is particularly interesting as it would allow the separation of two concerns:
local concerns described by components and communication concerns described
by mediums.

Example. As an illustration, we reuse the example published in [3] of an airline
company with travel agencies located worldwide. A medium can implement the
reservation system and offer services to initialize information on seats, to reserve
seats and to cancel reservations. A reservation application can then be built
by inter-connecting the reservation medium and components representing the
company and the agencies as illustrated in figure 2

Deployment target In the previous section, we saw that, at the abstract
level, the medium is represented by a single software component. The goal of
the design process is to make the distribution of this abstraction possible. The
single software component which represents the medium at the abstract level
is split into small implementation components called role managers. Each role
manager is locally associated with a local component and the medium becomes
a logical unit composed of all the role managers. From a local point of view, each
role manager implements the services used by its associated component. From



IV

 

 
Reservation 

medium 

Airline 
company 

Agency 1 

Agency 2 

Service: initialize 

Services: reserve or cancel 

Fig. 2. An example of communication component: reservation medium

a global point of view all the role managers communicate through middleware
and cooperate to realize all the medium services.

Thus, at the deployment level the single software communication component
which represents the medium at the abstract level disappears completely and
the medium becomes an aggregation of distributed role managers. The data
manipulated by the medium at the abstract level are distributed between role
managers.

The next section presents our approach to implement data distribution fea-
tures as a sequence of transformations. We note that the definition of technical
details related to elements which are used to ensure data distribution and access
services is out of the scope of this paper.

3 Our approach

3.1 Analysis

Identifying the source and the target of the transformation

Identifying the source. Managers introduction is out of the scope (step 1 in
figure 1) of this paper. Thus, in the context of this paper, the source of the
transformation is a medium deployment abstract model in which: (1) a manager
is associated to each role; (2) each manager implements all the service offered
by the medium to its associated role; (3) each role is separate from the other
elements constituting the medium. (4) the medium is defined by the aggregation
of managers as illustrated in figure 3 for the reservation medium.

Identifying the target. The target of the transformation is a medium implemen-
tation model in which: (1) a manager is associated to each role; (2) each manager
implements all the service offered by the medium to its associated role; (3) the
entity representing the medium in the source specification is deleted; (4) the
medium is defined by the aggregation of managers; (5) each data managed by
the medium in the source specification is distributed between managers. The
description of the target does not provide design alternatives that will be used
to implement data distribution features. It just specifies the set of constraints
that each final implementation model of the medium should satisfy. Both source
and target descriptions are detailed in [5].



V

 

Fig. 3. Structure of the reservation medium after manager introduction

Identifying and separating design alternatives. We decompose the prob-
lem of implementing data distribution issues in three design alternatives for the
moment. Others design alternatives related to data distribution such as synchro-
nization or context adaptation aspects can be added in future works.

First design alternative: data distribution topology choice. It consists in specify-
ing the set of managers that can participate to the distribution of each data and
those that can only access to it.

Second design alternative: distributed protocol choice. It specifies the distributed
protocol (Chord [6], Pastry [7], ...) that will be used to implement the distribu-
tion strategy of each data.

Third design alternative: distributed protocol implementation algorithm. The last
step is the choice of the algorithm that will be used to implement each distrib-
uted protocol services. As an illustration, in the case of the Chord protocol, the
designer can choose the algorithm proposed by the MIT [8] or the algorithm
proposed the MACEDON [9] framework to implement the protocol.

3.2 Automation

In this section, we sketch out metamodels and transformations that we use to
describe and automate the introduction of design alternatives identified in the
previous section in the medium deployment abstract model.

Metamodelling We define a different metamodel for the source, the target and
distributed protocols in order to ensure a better understanding of metamodels.
Each metamodel is specified with to elements: a UML class diagram describing
the generic structure of the concept and a set of OCL specifications describing
the properties of the concept which cannot be expressed in the class diagram.
In sake of brevity, we only show the generic structure of each metamodel in this
paper. The full definition of all the metamodels is available in [10].



VI

Medium deployment specification metamodel. Figure 5 shows the generic struc-
ture of a medium during the deployment. A manager (</RoleName>Manager)
is associated to each role (</RoleName>). Each manager implements the in-
terface of service offered by the medium (I<RoleName>MediumServices) to its
associated role and the medium (<MediumName>Medium) is defined by the
aggregation of managers.

Fig. 4. Generic structure of a medium at the deployment level

Medium implementation specification metamodel. Figure 5 shows the generic
structure of a medium during the implementation. The medium class disap-
pears completely and the medium data are distributed between managers. The
gray color delimits our metamodel of a distributed data. Each distributed data
is represented by two elements. The first element (DataManager) ensures the
data distribution services and the second (DataObject) element ensures the data
access services.

Fig. 5. Generic structure of a medium at the implementation level



VII

Distributed protocol metamodel. We define a distributed protocol by a set of
objects called ProtocolObject (figure 6). A ProtocolObject is an object that can
execute the behaviour of a distributed protocol. Each ProtocolObject is imple-
mented by a specific algorithm (ProtocolObjectAlgorithm). The main goal of the
distributed protocol metamodel consists in defining a common interface for all
distributed protocols that will be used in the context of mediums. Such inter-
faces are proposed in [11,9,7]. The interface IProtocolObjectServices exported by
the distributed protocol definition metamodel is similar to the interface defined
in [11]. This interface defines services for three main distributed application ab-
stractions: the DHT (Distributed Hash Tables), DOLR (Decentralized Object
Location and Routing) and the CAST (group anycast/multicast). The interface
IProtocolObjectServices offers the following services: route (to route a message),
forward (to forward a message), deliver (to deliver a message), join (to join the
distributed application) and leave ( to leave the distributed protocol).

 

Fig. 6. A view of the distributed protocol specification metamodel

A definition of a distributed protocol model which conforms to the distributed
protocol metamodel consists in: (1) the description of each ProtocolObject and
at least one of its implementation algorithms and (2) the implementation of each
service offered by the IProtocolObjectServices. We illustrate the definition of a
Chord protocol model in [12].

3.3 Model transformation

Principle. The entry point of the transformation is a well defined medium de-
ployment abstract model ( figure 3) in this paper. In the full design process
of the medium, we perform a first transformation in order to transform this
model into an abstract implementation model in which all the UML associa-
tions between the medium class and the medium data classes are replaced by
the appropriate abstract types specified by the designer [13]. In the case of the
reservation medium for example, the available reservation identifiers (available



VIII

property in figure 3) can be represented by a list. Since we haven’t discuss ab-
stract types choice in this paper, this transformation will not be described in
this section. After the introduction of abstract types, we perform five successive
transformations in order to introduce data distribution topologies, distributed
protocols and distributed protocol algorithms in the abstract implementation
model of the medium. These transformations leads to a generic implementation
model implementing the actual data distribution variant. The designer completes
this generic implementation model by defining each offered service actual imple-
mentation algorithm to produce the final implementation model of the medium.
The following example describes a data distribution variant that will be used to
illustrate transformations in remain of this section.

An example of data distribution variant. We will use the reservation medium to
illustrate transformations in this section. We suppose that the available reser-
vation identifiers (available property) are represented by a list. The goal is
to distributed this list between managers associated to agencies (ReserverMan-
ager) using the Chord protocol. The manager associated to the airline company
(SourceManager) can only access to the list. The Chord protocol will be im-
plemented by the MIT algorithm. These information are defined in a medium
decision model in the full implementation process in order to allow the automate
the execution of transformations [13].

T1. Introducing each data distribution topology in the abstract implementation
model of the medium. The input model of this step is the medium abstract
implementation model obtained after abstract types introduction. We aim at
introducing each data distribution topology in this model. We define a transfor-
mation based on the medium deployment and implementation metamodels and
the distributed data metamodel for this purpose. This transformation leads to
an abstract implementation model of the medium in which : (1) a DataManager
is associated to each manager participating to each data distribution and (2)
a DataObject is associated to each manager accessing to each distributed data.
Here is an informal summarize of its main operations.

Preconditions:

1.Verify if each distribution node is defined in the medium model.

Actions:

for each data managed by the medium class:

1.Create and associate a generic DataManager object to each manager

participating to data distribution.

2.Create and associate a generic DataAccess object to each manager

using the data

Postcondition:

Verify if a DataManage and/or a DataObject is associated to each

manager according to the implementation variant.

As an illustration, in the example of the reservation medium, the transfor-
mation associates a ListDataManagerto ReserverManager and a ListObject to
both SourceManager and ReserverManager (figure 7).



IX

 

Fig. 7. A view of the reservation medium after T1, T2 and T3

T2. Introducing distributed protocol in the abstract implementation model of the
medium In this step we define another transformation based on the same meta-
models as T1 to introduce the distributed protocol that will be used to ensure
each data distribution strategy in the abstract implementation model generate
by T1. Its operations can be summarize as follows.

Preconditions:

Verify if the model of each distributed protocol conforms to

the distributed protocol metamodel

Actions:

1. Create and associate a generic ProtocolObject to each DataManager

according to the distribution variant.

Postcondition:

Verify if a generic ProtocolObject is associated to each DataManager

according to the distribution variant.

T3. Introducing distributed protocol algorithms in the abstract implementation
model of the medium This transformation perform the following operations in
order to introduce the implementation algorithm of each distributed protocol
object in the model generated by T2 as illustrated in figure 7.

Preconditions:

Verify if each distributed ProtocolObject implementation algorithm is

well defined according to distributed protocol metamodel.

Actions:

Create and associate a generic ProtocolObjectAlgorithm to



X

each protocol object according to the distribution variant.

Postcondition:

Verify if a generic ProtocolObjectAlgorithm is associated

to each ProtocolObject according to the distribution variant.

T4. Generating abstract methods implementation algorithms in the abstract im-
plementation model of the medium In this step, we define a transformation to
generate a default algorithm in order to implement each abstract method con-
tained in the abstract implementation model produced by T3. Here is an example
of piece of code generated by this transformation in order to implement the add
primitive of the list for the reservation medium example.

class ListObject inherits IListServices

{ ...

method get (index : Integer ): Object from IListServices is do

if (self.dataProxy != void) then

then result := self.dataProxy.get(id) end

end end // suite du code}

class ListDataProxy inherits IListServices

{ ...

method get (index : Integer ): Object from IListServices is do

var dataManager : ListDataManager init getListDataManager()

if (dataManager != void) then

then result := dataManager.get(id) end

end end

//other instructions }

T5. Configurating the medium The previous step leads to an abstract imple-
mentation model of the medium in which all the generic elements needed to
provide each data distribution and access services are well defined. In this step,
we define a last transformation based on the same metamodels as the previous
transformation in order to instantiate and associate the appropriate value to
each generic element. Four generic operations named managerConnection, man-
agerDisconnection, initialization and termination are defined in [5] in order to
associate a specific behaviour to a manager during its connection, disconnection,
initialization and termination. The last transformation redefine these operations
in order to reach its goal. Here are an informal summery of the main opera-
tions performed by the last transformation an example of generated code for the
reservation medium.

Precondition:

Verify if all abstract methods are implemented in the input model.

Actions:

1.Redefine the managerConnection, managerDisconnection, initialization

and termination operations in each Manager class.

2.for each distributed data:

2.1.Generate instructions in managerConnection operations to

instantiate the appropriate protocol objects and protocol object



XI

algorithms according to the design choice

2.2.Set the data manager and the data object values

2.1.Generate instructions in managerDisconnection operations to

disconnect protocol objects

2.1.Generate instructions in initialization operations to init protocol

objects

2.1.Generate instructions in termination operations to terminate protocol

objects.

Postcondition:

Verify if the output is a well medium implementation specification model

according to the medium decision model and the medium implementation

specification metamodel

class ReserverManager inherits IReserverMediumServices

{....operation managerConnection() is do ....

available := ListObject.new

available.dataProxy := ListDataProxy.new

availableProtocolObject := ChordProtocolObject.new

availableProtocolObject.protocolObjectAlgorithm := MITAlgorithm.new

availableDataManager := ListDataManager.new

availableDataManager.protocolObject := availableProtocolObject

availableDataManager.listDefaultAlgorithm := ListDefaultAlgorithm.new

// other instructions end }

Transformation definitions platform. Transformations are implemented, testing
and executed in Kermeta [14] platform. Each metamodel is implemented by
two Kermeta files. The first file implements all the structural aspects of the
metamodel. The second file implements all the properties of the metamodel.
It is then possible to check if a specific model is conform to the metamodel
in which it is defined. Each transformation is implemented by three Kermeta
files. The first file implements the preconditions, the second file implements the
operations and last file implements the postconditions of the transformation. A
full definition of metamodels and transformations in Kermeta is available in [10]

4 Related works

Most methodologies are informally described. They suggest a process which, in
the most formalized cases, rely on contracts [15] or mathematical refinements
like the B-method [16]. B defines a language and a refinement methodology. It is
an algebraic specification language that is supported by tools that help refining
specification safely. Each step of the process generates proof requirement the
developer has to demonstrate, either manually or automatically. Some critical
systems were developed in B (in 1998 the control system of line 14 of the Parisian
subway was fully developed and proved in B). Our approach is more empirical
and uses the so-called ”semi formal” approach. It may be easier to learn and
may tackle different kind of design problems such as distribution. We do not try
to prove design steps, but just to automatize them and give enough confidence
in the transformations thanks to pre and post-conditions.



XII

In a recent paper, H. Sneed [17] criticizes the model driven approach. He
argues that model-driven tools (1) magnify the mistakes made in the problem
definition, (2) create an additional semantic level to be maintained, (3) dis-
tort the image of what the program is really like, (4) complicate the mainte-
nance process by creating redundant descriptions which have to be maintained
in parallel,(5) are designed for top-down development that creates well-known
maintenance problems. These drawbacks are mainly associated with tools. All
these criticisms have already been raised when assembly was replaced by high
level programming languages. We agree tools are not mature. Our experiment
shows that transformations may help make explicit the process and simplify the
maintenance, if models are defined well enough.

Other experiments [18] tend to prove that model composition (hence a bottom-
up approach) is possible. This compositional approach looks like Aspect Oriented
Modelling [19]. This approach recommends to separate concerns and offers an
operation of weaving that composes/weaves each concern with the functional
specification. Our approach differs since the ”weaving” operation we use is a
transformation that is adapted to the kind of concern composed. Instead of us-
ing a universal weaving operation we propose a more flexible approach (but less
re-usable) were a balance may be found between the metamodel definition of the
concern and its composition operation implemented as a transformation.

Model transformations are widely used on UML models. Most of them cover
a small part of the development life cycle. Some transformations are dedicated
to code generation. They usually produce the skeleton (structural part) of the
source code that has to be completed manually. Another current use is applying
design patterns [20]. Once again, the structural part is rather well implemented1,
but the collaboration one is still research in progress.

5 Conclusion

This paper shows how models transformations can be used to describe the im-
plementation process of data distribution issues in a distributed software compo-
nent. To do this we have defined metamodels that capture the required concepts
of data distribution. We also have realized a sequence of models transforma-
tions that weave a variant of data distribution design choice into the model of a
distributed component.

The transformations describe the process of introducing actual design al-
ternatives models in the specification of the component. The approach makes
explicit the data distribution implementation process. We argue it is very inter-
esting in the sense that it facilitates the traceability (the sequence of transfor-
mations), the reuse (applicability of transformations on many different models)
and the evolution of the full process (adding more variant models).

1 Patterns purists would say that patterns are not dedicated to be automatically
applied. In the absolute, we agree, but why not consider applying patterns in well
defined contexts?



XIII

As an illustration, we have applied our approach to implement data distri-
bution in the context of mediums. We have described a set of transformations
and metamodels that can be used to introduce distributed protocols.

But the concern of data distribution is only one step in a larger design process.
We have described an approach based on the definition of a sequence of design
concerns. As an example we have selected the choice of an abstract type for
collection of data, the choice of distribution strategies (described in this paper)
and the choice of data representation format.

Transformations are implemented, tested and executed with the Kermeta
platform. The implementation of the full design process relies on 6 metamodels
and 5 main transformations. Each metamodel is implemented by two Kermeta
files. The first file implements all the structural aspects of the metamodel. The
second file implements all the properties of the metamodel. It is then possi-
ble to check if a specific model is conformed to the metamodel in which it is
defined. Each transformation is implemented by three Kermeta files. The first
file implements the preconditions, the second the operations and the last file
the transformation postconditions. We also provide a library containing some
abstract type (list, set, bag, . . . ), distributed protocol (chord, pastry, . . . ) and
data representation format models (hashtable, array, matrix, . . . ).

Transformations can be used to implement any abstract type, distributed
protocol and data representation format models which conforms to our meta-
models in any well defined medium initial specification model. As an illustra-
tion, we have used transformations to automatically derive various centralized
and distributed implementation variants of the reservation medium presented in
this paper and two other mediums: a voting medium and a message broadcast
medium.

The actual generated implementation models of mediums are not fully ex-
ecutable in the sense that they to not provide a full executable code of dis-
tributed protocols. They just call protocol APIs to ensure that all distributed
feature are well implemented. Thus, in short time, our main perspective is to
build a middleware in order to allow the execution of the generate models in
conjunction with existing executable distributed protocol frameworks such as
MACEDON. We also aim at defining other design concerns metamodels and
models to enrich our library. After that, we aim at extending transformations
to define auto-adaptable mediums that embed many variants and that could
change there internal deployed structures according to environment evolutions.

References

1. Cariou, E., Beugnard, A.: The specification of UML collaboration as interaction
component. In J.M. Jézéquel, H. Hussmann, S. Cook, ed.: ¡¡UML¿¿ 2002 – The
Unified Modeling Language. Volume 2640 of LNCS., Dresden, Germany, Springer
Verlag (September 30 - October 4, 2002) 352 – 367

2. Matougui, S., Beugnard, A.: Two ways of implementing software connections
among distributed components. In: International Symposium on Distributed Ob-
jects and Applications, Agia Napa, Cyprus (2005)



XIV

3. Cariou, E., Beugnard, A., Jézéquel, J.M.: An archictecture and a process for
implementing distributed collaborations. In: The 6th IEEE International Enter-
prise Distributed Object Computing Conference (EDOC 2002), Ecole Polytech-
nique Fédérale de Lausanne (EPFL), Switzerland (2002)

4. Kabore, E., Beugnard, A.: Conception de composants répartis par transformations
de modèle. In: Journées de l’Ingénierie Dirigée par les Modèles, Toulouse, France
(2007) 117–131

5. Cariou, E.: contribution un processus de rification d’abstraction de communica-
tion. Thse de doctorat, Universit de Rennes 1 (2003)

6. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A
scalable peer-to-peer lookup service for internet applications. In: ACM SIGCOMM
Conference, San Diego (2001)

7. Rowstron, A., Drusche, P.: Pastry: Scalable, distributed object location and routing
for large-scale peer-to-peer systems. In: IFIP/ACM Middleware. (2001)

8. Massachusetts Institute of Technology: lsd. http://www.pdos.lcs.mit.edu/chord/
(2004)

9. Rodriguez, A., Killian, C., Bhat, S., Kostic, D., Vahdat, A.: Macedon: Method-
ology for automatically creating, evaluating, and designing overlay networks. In:
USENIX/ACM Symposium on Networked Systems Design and Implementation
(NSDI 2004). (2004)

10. Kaboré, E.: Metamodel definitions. http://stockage.univ-brest.fr/ kabore/ (2008)
11. Dabek, F., Zhao, B., Drushcel, P., Kubiatowicz, J., Stoica, I.: Towards a common

api for structured peer-to-peer overlays. In: 2nd International Workshop on Peer-
to-peer Systems (IPTPS’03). (2003)

12. Kabor, E., Beugnard, A.: On the benefits of using model transformations to
describe components design process. In: Twelfth International Workshop on
Component-Oriented Programming (WCOP’2007), at ECOOP’2007, Berlin, Ger-
many (Juillet 2007)

13. Kaboré, E., Beugnard, A.: Automatisation dun processus de conception par trans-
formations de modles. L’Objet (2008) to appear.

14. Muller, P.A., Fleurey, F., Jzquel, J.M.: Weaving executability into object-oriented
meta-languages. In Briand, S.K.L., ed.: Proceedings of MODELS/UML’2005.
LNCS, Montego Bay, Jamaica, Springer (2005)

15. D’Souza, D., Wills, A.C.: Objects, Components and Framework with UML: The
Catalysis Approach. Addison-Wesley (1998)

16. Abrial, J.R.: The B-Book, Assigning Programs to Meanings. Number ISBN
0521496195. Cambridge University Press (1996)

17. Sneed, H.M.: The drawbacks of model-driven software evolution. In: Workshop
on Model-Driven Software Evolution, IEEE - CSMR 2007 11th European Confer-
ence on Software Maintenance and Reengineering ”Software Evolution in Complex
Software Intensive Systems”, Amsterdam, the Netherlands (2007)

18. Muller, A., Caron, O., Carré, B., Vanwormhoudt, G.: On some properties of para-
metrized model application. In: First European Conference on Model Driven Ar-
chitecture - Fondations and Applications (ECMA-FA’05). Volume 3748 of LNCS.,
Springer (2005) 130–140

19. Mens, K., Lopes, C., Tekinerdogan, B., Kiczales, G.: Aspect-oriented programming.
Lecture Notes in Computer Science 1357 (1998)

20. Sunyé, G., Guennec, A.L., Jézéquel, J.M.: Design pattern application in UML.
In Bertino, E., ed.: ECOOP’2000 proceedings. Volume 1850 of Lecture Notes in
Computer Science., Springer Verlag (2000) 44–62


