
HAL Id: hal-02161784
https://hal.science/hal-02161784

Submitted on 21 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improving Cloud Simulation using the Monte-Carlo
Method

Luke Bertot, Stéphane Genaud, Julien Gossa

To cite this version:
Luke Bertot, Stéphane Genaud, Julien Gossa. Improving Cloud Simulation using the Monte-Carlo
Method. Euro-Par 2018: Parallel Processing, 11014, pp.404-416, 2018. �hal-02161784�

https://hal.science/hal-02161784
https://hal.archives-ouvertes.fr

Improving Cloud Simulation using the
Monte-Carlo Method

Luke Bertot, Stéphane Genaud, and Julien Gossa

Icube-ICPS — UMR 7357, Univeristé de Strasbourg, CNRS
Pôle API, 300 Blvd S. Brant, 67400 Illkirch

lbertot@unistra.fr, genaud@unistra.fr, gossa@unistra.fr

Abstract. In the cloud computing model, cloud providers invoice clients
for resource consumption. Hence, tools helping the client to budget the
cost of running his application are of pre-eminent importance. However,
the opaque and multi-tenant nature of clouds make task runtimes vari-
able and hard to predict, and hamper the creation of reliable simulation
tools. In this paper, we propose an improved simulation framework that
takes into account this variability using the Monte-Carlo method.
We consider the execution of batch jobs on an actual platform, scheduled
using typical heuristics based on the user estimates of task runtimes. We
model the observed variability through simple random variables to use as
inputs to the Monte-Carlo simulation. Based on this stochastic process,
predictions are expressed as interval-based makespan and cost. We show
that, our method can capture over 90% of the empirical observations of
makespan while keeping the capture interval size below 5% of the average
makespan.

1 Introduction

Over the last decade, the advancement of virtualization techniques has led to the
emergence of new economic and exploitation approaches of computer resources
in Infrastructure as a Service (IaaS), one form of cloud computing. In this model,
all computing resources are made available on demand by third-party operators
and paid based on usage. The ability to provision resources on demand is mainly
used in two ways. First, it can serve for scaling purposes where new machines
are brought online to face higher workloads and allows for a lower baseline cost.
Second, it is useful for parallelizing tasks to achieve a shorter makespan (i.e. the
time between the submission of the first task and the completion of the last task)
at equal cost, this approach being often used for scientific and industrial work-
loads when runtime is heavily dependent on computing power. This approach
is made possible by the pricing model of cloud infrastructures, as popularized
by Amazon Web Services, in which payment for computing power provided as
Virtual Machines (VMs), happens in increments of arbitrary lengths of time,
billing time unit (BTU), usually of one hour. This model offers the client an al-
most complete freedom to start or stop new servers as long as it can be afforded.
However, for distributed applications, it quickly becomes difficult to manually

provision the resources in an efficient way. The use of a scheduler becomes un-
avoidable for such workloads. In this paper, we are interested in predicting the
execution time and cost of such workloads, in which the scheduling plays an
important role.

Independently of scheduling decisions, the accurate prediction of complex
workload execution is hampered by the inherent variability of clouds, explained
by multiple factors. Firstly IaaS operates in an opaque fashion: the exact nature
of the underlying platforms is unknown, and their hardware are subject to evolu-
tion. Secondly cloud systems are multi-tenant by nature. This adds uncertainty
due to contention on network and memory accesses. This variability, reported
by a number of practitionners who evaluate parallel application performance on
clouds (e.g. [1], who report an average 5%-6% variability on AWS cluster com-
pute instances), has also been measured by one of the most comprehensive and
recent surveys by Leitner et al. [2]. We will see in this paper that our obser-
vations fit with the figures presented in this survey. This variability increases
the difficulty of modeling task execution times. In this regard, the prediction is
highly dependent on the underlying simulator of the system and on the phenom-
ena it can capture. In our work, we rely on the SimGrid [3] simulation toolkit,
enabling us to build discrete event simulators of distributed systems such as
Grids, Clouds, or HPC systems. SimGrid has been chosen for its well-studied
accuracy against reality (e.g. [4, 5]). In particular, given a precise description of
the hardware platform, its network model takes into account network contention
in presence of multiple communication flows.

However, we may not be able to provide a fully accurate platform description,
or be unable to estimate the network cross-traffic, yielding a distortion between
simulation and reality. To deal with this problem, the standard approach is to
consider task runtimes to be stochastic. Every task can be modeled by a random
variable (RV) that models the whole spectrum of possible runtimes. These RVs
are the basis required for a stochastic simulation. Such simulations output RVs
of the observed phenomenon (makespan or BTU) which in turn can be used to
create intervals of possible results with their assorted confidence. In this paper,
we propose a stochastic method to enrich the classical prediction based on the
discrete-event simulator SimGrid, and we study the conditions needed for this
approach to be relevant. This study is carried out in a real setting, described in
section 3, where the applications , and the scheduler are presented. The stochastic
framework we propose is then presented in section 4 and is evaluated in section 5.
We discuss the limits of this approach in section 6.

2 Related Work

Simulation. Most cloud simulators are based on discrete event simulation (DES).
In discrete event simulations the simulation is a serie of events changing the state
of the simulated system. For instance, events can be the start (or end) of com-
putations or communications. The simulator will jump from one event to the
next, updating the times of upcoming events to reflect the state change in the

simulation. Such DES-based simulators require at least a platform specification
and an application description. The available cloud DESs can be divided in two
categories. In the first category are the simulators dedicated to study the clouds
from the provider point-of-view, whose purpose is to help evaluating the design
decisions of the datacenter. Examples of such simulators are MDCSim [6], which
offers specific and precise models for low-level components including network
(e.g InfiniBand or Gigabit ethernet), operating system kernel and disks. It also
offers a model for energy consumption. However, the cloud client activity that
can be modeled is restricted to web-servers, application-servers, or data-base
applications. GreenCloud [7] follows the same purpose with a strong focus on
energy consumption of cloud’s network apparatus using a packet-level simulation
for network communications (NS2). In the second category (which we focus on)
are the simulators targeting the whole cloud ecosystem including client activity.
In this category, CloudSim [8] is the most broadly used simulator in academic
research. It offers simplified models regarding network communications, CPU,
or disks. However, it is easily extensible and serves as the underlying simulation
engine in a number of projects. Simgrid [3] is the other long-standing project,
which when used in conjunction with the SchIaaS cloud interface provides similar
functionnalities as CloudSim. Among the other related projects is iCanCloud [9]
proposed to address scalability issues encountered with CloudSim (written in
Java) for the simulation of large use-cases. Most recently, PICS [10] has been
proposed to evaluate specifically the simulation of public clouds. The configura-
tion of the simulator uses only parameters that can be measured by the cloud
client, namely inbound and outbound network bandwidths, average CPU power,
VM boot times, and scale-in/scale-out policies. The data center is therefore seen
as a black box, for which no detailed description of the hardware setting is re-
quired. The validation study of PICS under a variety of use-cases has nonetheless
shown accurate predictions.

However, when the simulated system is subject to variability, it is difficult to
establish the validity of simulation results formally. Indeed, given some defined
inputs, a DES outputs a single deterministic result, while a real system will
output slightly different results at each repeated execution. Hence, in practice
the simulation is informally regarded as valid if its results are “close” to one or
some of the real observations.

Stochastic Simulation and Monte-Carlo Method. For more comprehensive pre-
dictions in such variable environments, the simulation must be stochastic. In
stochastic simulations inputs become random variables (RVs) representing the
distribution of possible values for the parameters. The result of one such simu-
lation is itself an RV representing the distribution of the results.

Extensive work has been done on numerical methods for solving stochas-
tic simulations of directed acyclic graph (DAG) [11, 12]. In a DAG model the
vertices represent the tasks comprising the application, and the edges represent
the dependencies between those tasks. The numerical approach presented in [11,
12] shows that, when tasks’ runtimes are independent, the makespan distribu-
tion of two successive tasks is the convolution product of the tasks’ probability

density functions, while the makespan of two parallel tasks joining is the prod-
uct of the tasks’ cumulative distribution functions. This makes the numerical
approach computationally intensive and its core constraint, the tasks RVs inde-
pendence, can not be guaranteed in all cases. Moreover this DAG-based approach
implies fixed scheduling, since the scheduling creates implicit dependencies be-
tween tasks scheduled one after another. In a cloud context where resources can
be provisioned on the fly, dynamic scheduling is much more common.

Instead of numerically computing the resulting RV, a Monte-Carlo simula-
tion (MCS) samples the possible results by testing multiple realizations in a
deterministic fashion. A realization is obtained by drawing a runtime that fol-
lows their task’s respective RV for every task in the application. This allows
one to simulate each realization using traditional methods like DES. Eventually,
given enough realizations, the distribution of the simulation results will tend to-
wards the distribution of the equivalent stochastic simulation. Statistical fitting
techniques can then be used to characterize this makespan RV. MCS’s permits
non-independent RV and dynamic scheduling. This approach was first suggested
in [13] for stochastic PERT graphs. Later, in the context of grids, where the
number of resources is fixed during one execution, Tang et al. [14] proposed, a
modification of the well-known scheduling heuristic HEFT to compute a schedule
yielding the shortest makespan given randomly variable task durations. Canon
and Jeannot [15] have used MCS to evaluate the robustness of DAG schedules
when task durations vary, and similarly, Zheng et al. [16] evaluated the impact
of this variability on the makespan. More recently, ElasticSim [17] has been pro-
posed as a simulator extending Cloudsim to integrate resource auto-scaling and
stochastic task durations. Similarly to our work, ElasticSim computes a schedule
whose objective is to minimize rental cost while meeting deadline constraints. For
several generated workflows, the study compares the simulation results regard-
ing rental cost and makespan, when varying the variability of task duration and
deadline with arbitrary values. By contrast, our work focuses on how the MCS
method, under some given variability assumptions, captures actual observations.

3 Work Context

The study conducted in this paper is built upon a real comparison between
experiments run in actual environments and experimental results obtained by
simulation. To strengthen the validity of the comparison, the experimental condi-
tions for the real setup and the simulation should share as many commonalities
as possible, as advocated in [18]. Our experimental setup described hereafter
consists of two test applications which, on one hand, are run on a real platform
with our scheduler Schlouder, and on the other hand are simulated with our
simulator SimSchlouder based on SimGrid.

Test Applications We carried out multiple executions of two broadly used sci-
entific applications to evaluate Schlouder performance. The execution traces for
those runs were collected in an archive. This backlog of real executions is the

benchmark against which our simulation performance will be evaluated. Those
applications are:

– Montage[19], the Montage Astronomical Image Mosaic Engine, is designed
to splice astronomical images. This application is a data intensive fork-join
type workflow with a communication-to-computation ratio greater than 90%.

– OMSSA[20], the Open Mass-Spectrometry Search Algorithm, is used to an-
alyze mass-spectrometer results. The application is a computation intensive
set of independent parallel tasks with a communication-to-computation ratio
lower than 20%.

Real Execution Setup Schlouder [21] is a client-side cloud broker for IaaS capable
of executing the user’s batch jobs, sets of independent tasks and workflows alike.
The broker’s main role is to schedule the tasks onto a set of cloud resources, which
the broker can scale up or down. Technically, the broker connects to the cloud
management system (for instance, OpenStack) to instruct how the infrastructure
should be provisioned. It then assigns the tasks to the resources using the Slurm
job management system. As in most batch scheduler systems, the task descrip-
tion includes its runtime estimation by the user called user estimate. In case of
a workflow, the task dependencies are also provided. Schlouder uses just-in-time
scheduling where tasks are assigned to VMs as soon as all their dependencies
are satisfied. A task’s real runtime, called effective runtime, usually differs from
estimated runtimes, but this does not change previous scheduling decisions. The
schedulig problem in IaaS clouds is a bi-ojective optimization problem, taking
into account the rental cost of resources and the execution makespan. Schlouder’s
requests users to choose a strategy that favors one objective or the other. The
scheduling and provisioning decisions are then controlled accordingly by specific
heuristics. In this paper, we used the two following heuristics:

– ASAP (as soon as possible) schedules each task onto an idle VM if one is
available, or provisions a new VM otherwise. This heuristic minimizes the
makespan.

– AFAP (as full as possible) schedules each task onto one VM if it does not
increase the rental cost (i.e. the number of BTU), or provisions a new VM
otherwise. This heuristic minimizes cost by minimizing the BTU count.

Simulated Execution Setup. As a follow-up to our work on Schlouder we devel-
oped SimSchlouder, a simulator mimicking the behaviour of Schlouder. It has
the same interfaces and implements the same scheduling heuristics as Schlouder.
It uses SimGrid as its core simulation engine. In practice, SimSchlouder is in-
cluded as a plugin into Schlouder to allow the user to request an estimate of
the makespan and cost before choosing an heuristic for a real run. SimSchlouder
shares with Schlouder a common subset of inputs, including the same tasks de-
scription and heuristic. Whereas Schlouder operates on a real cloud controller,
SimSchlouder provisions simulated VMs through SimGrid’s cloud interface called
SchIaaS. Additionally SimSchlouder requires a platform specification, which de-
scribe the physical nature of the cloud as well as the management rules, and the

Task
RVs

{T1, . . . , Tn}

Realizations
{t1, . . . , tn}1

...
{t1, . . . , tn}500

Sim

Sim

...

Samples
m1

m500

...

Makespan
RV

M

realization
draw

distribution
aggregation

Fig. 1. Overview of a 500-iteration Monte-Carlo simulation.

effective runtime of each task, that are used by the simulator to compute the
tasks’ end dates. Together, they allow the simulation to be accurately represen-
tative of reality.

4 Proposal: an Enriched Simulation Framework

To address the limited trustworthiness of DES in variable environments such as
clouds, we propose a framework implementing the Monte-Carlo method using
SimSchlouder as simulation engine. This solution combines the extensive results
provided by stochastic simulations with correctness of scheduling and provision-
ing provided by SimSchlouder.

4.1 Simulation Process.

The whole extended simulation process is referred to as MCS. For an application
composed of n tasks (as depicted Fig. 1), MCS consists in applying successive
MCS-iterations. Assuming we can provide a runtime distribution Tj for every
task j, a MCS-iteration k consists in :

– drawing a runtime value, tj , for each task from the associated RV, Tj ;
– proceed to a simulation using all runtimes tj to obtain a makespan mk.

With enough makespans mk, we can compute a statistical distribution of the
makespan as a final RV noted M . We extend our simulation to two output
variables: we will not only observe the makespan computed at every iteration
but also the cost for each execution in number of BTU.

4.2 Real Observations

Using Schlouder (cf. Section 3), we performed numerous executions of the appli-
cation of OMSSA and Montage. These executions were performed on a 96 cores
Openstack cloud system set up on 4 identical dual 2.67GHz Intel Xeon X5650
servers. We used the KVM hypervisor and Openstack version 2012.1 and 2014.4.

Heuristic afap asap

0.000

0.001

0.002

0.003

12800 13200 13600 14000
makespan (s)

de
ns

ity

OMSSA

0

25

50

75

100

34 36 38 40
BTU

%
 r

un
s

OMSSA

0.000

0.005

0.010

0.015

0.020

1500 2000 2500
makespan (s)

de
ns

ity

Montage

0

25

50

75

100

1 5 10
BTU

%
 r

un
s

Montage

Fig. 2. Empirical observations for makespan distributions and #BTU.

The traces obtained from these experiments contain several useful metrics in-
cluding, but not limited to, the VM start dates, boot time, shutdown times,
and assigned tasks, as well as the task start date and effective runtimes. They
were initially used all along the development of Schlouder and then to properly
tune SimSchlouder in order to make the simulation as accurate as possible. As a
result, for the execution used in this paper, simulations done with SimSchlouder
are precise to the second on the makespan and systematically exact on the BTU
count. Regarding variability, we find our platform variability to stand between
3% and 6% using the metrics described in the study [2] based on relative stan-
dard deviation of tasks runtimes. This variability is within the range reported
in the study for platforms like Amazon’s EC2 or Google Cloud Engine, with the
exception of shared CPU instances.

In this paper these execution traces are used to generate our MCS input RVs
using the method we will describe in Section 4.3 and we compare the makespan
and BTU distributions of the MCS to the distribution observed in the corre-
sponding traces. For this purpose, traces from comparable runs are grouped by
application and heuristic. Fig. 2 presents the distribution of resulting makespans
and BTU counts. For OMSSA, ASAP yields a makespan variation in the range
[12811s;13488s] (variability ≈5%) with a constant BTU count of 40, and AFAP
yields [13564s;14172s] (4%) with a BTU count ranging [33;36]. For Montage, the
makespans are in the range [1478s;1554s] (≈ 4%) with 10 BTUs for ASAP and
[2833s;2837s] (0.1%) with 1 BTU for AFAP.

4.3 Input Modeling

Using a MCS we can account for this variability and provide the user with a
range of possible makespans. The MCS requires a runtime RV for every task
in the application. These RVs form the input model. Although precise models
will yield more exact results, creating such models would not be possible in
more common use-cases where a backlog of real observations is not available. In
this section we propose a simple model to represent the variability of the whole
system using a single factor parameter to create a small range around every
estimated runtime. We test this model against our backlog of real runs. The key

finding detailed hereafter is that this simple model can be precise enough for the
MCS to predict over 90% of real runs.

This model for the runtimes RV uses a single expected runtime per task and
a global perturbation level for all tasks. This model uses uniform distributions
(U). These RVs are centered on the expected runtime of the task they represent.
The relative spread of these distributions is defined by the perturbation level P ,
which is the same for every task. If we assume P can summarize the variability of
the whole system, a central question is how should P and the expected runtimes
be chosen to assess the validity of the MCS. To this end, we assume a good guess
for an expected runtime is the average of all effective runtimes, r̄j for a given
task j. As such the runtime distribution’s RV Tj for task j is:

Tj = U [r̄j × (1− P), r̄j × (1 + P)] (1)

Since the global perturbation level P establishes the limit for the worst devi-
ations from the estimated runtimes, the relative standard deviation metric used
in [2] is not well suited. Instead we choose to build P using the average of the
worst observed deviation for every task in the application. With rnj the nth
runtime observation for task j, P is set to :

P = mean
j

(
max
n

(|rnj − r̄j |
r̄j

))
(2)

For OMSSA, the perturbation level given by this model is P ≈ 10% for
both heuristics. For Montage our calculated perturbation level is P ≈ 20% for
ASAP and P ≈ 5% for AFAP. Using a similar metric, [10] also observed most
deviations to be within 10% of the average runtime when working on Amazon
EC2 instances with dedicated CPUs.

Simulation execution. The execution of an MCS is implemented through a se-
ries of scripts created to automate large numbers of simulations. The simula-
tion driver first passes an application template, including dependencies and task
expected runtimes, to a generator script. The generator creates the necessary
number of simulation input files, with task runtimes randomised following the
input model. The driver script can then execute an instance of SimSchlouder
for every input file, sequentially or concurrently. Once all the instances of Sim-
Schlouder have been executed, the result are aggregated in the MCS output file.
This process is supple enough to accommodate other simulator and models as
long as the user can provide a command to generate input files and another to
parse simulation outputs.

5 Evaluation

We ran a 500-iteration MCS for every heuristic × application group using the
task model described in the previous section. The resulting distributions are
shown in Fig. 3. The makespan density graphs show the simulation result distri-
bution as filled curves. The real observed executions, as in Fig. 2, are shown as

Type/Heuristic real/afap real/asap sim/afap sim/asap

0.000

0.001

0.002

0.003

0.004

13000 13500 14000 14500
makespan (s)

de
ns

ity

OMSSA

0

25

50

75

100

34 36 38 40
BTU

%
 r

un
s

OMSSA

0.000

0.005

0.010

0.015

0.020

1500 2000 2500
makespan (s)

de
ns

ity

Montage

0

25

50

75

100

1 5 10
BTU

%
 r

un
s

Montage

Fig. 3. Makespan and #BTU distributions for MCS compared to reality for P = 10%.

non-filled curves. On the BTU count graphs, the left bar represents the empiri-
cal data, and the right bar the results from the simulation. These graphs show
the simulation results cover the same ranges as the real observation, but do not
present the same distribution within those ranges. We quantify our simulation
results correctness using statistical confidence intervals. Since the makespan is
in essence the sum of the tasks’ runtimes in the execution critical path and tasks
are all distributed using the uniform distribution which has a finite variance,
we consider the Central Limit Theorem applicable. Fitting to a normal distri-
bution gives us an average makespan µ, and a standard deviation σ. These can
be used to build confidence intervals (CIs). For the normal distribution the 95%
CI, defined as [µ − 2σ, µ + 2σ] and the 99% CI, [µ − 3σ, µ + 3σ]. The capture
rate expresses the number of observed real makespans that fall within a given
CI relative to the total number of real observations. Table 1 presents the cap-
ture rate obtained by each interval computed after normal fitting. Additionally
we provide for each interval its size relative to the average makespan. Regard-
ing OMSSA, the MCS captures at least 90% of real observed makespans. The
divergence between the capture rate and the CI expected capture rate is due
to the fact that the empirical makespan distribution does not follow a perfect
normal distribution. Using a 99% CI improves the capture rate up to 98%, hence
very close to the theoretical expectation. Regarding Montage the MCS achieves
a capture rate of 100% for any CI.

Our MCS and a simple task model can capture 90% of reality all the while
producing makespan intervals of limited size, a 3% relative size representing 7

Table 1. Makespan and BTU capture rate depending on CI for P=10%.

Application Heuristic Makespan (Size of CI) BTU
CI 95% CI 99%

OMSSA ASAP 90% (3%) 98% (5%) 100%
AFAP 92% (4%) 100% (6%) 100%

Montage ASAP 100% (2%) 100% (4%) 100%
AFAP 100% (1%) 100% (2%) 100%

Heuristic afap asap

OMSSA
asap 40%

OMSSA
asap real

OMSSA
asap 10%

13000 13500 14000
makespan (s)

OMSSA

10%
40%

34 36 38 40

0
100
200
300
400
500

0
100
200
300
400
500

BTU

co
un

t

OMSSA

Montage
asap 40%

Montage
asap real

Montage
asap 10%

1400 1500 1600 1700 1800
makespan (s)

Montage

10%
40%

1 5 10

0
100
200
300
400
500

0
100
200
300
400
500

BTU

co
un

t

Montage

Fig. 4. Makespan intervals and #BTU distributions for OMSSA and Montage at dif-
ferent perturbation levels. In the makespan interval graph the boxes represent the 95%
CI resulting from the normal fit of the MCS’s results, and the bar the results of a single
unperturbed simulation.

minutes on a 3h 45m long makespan. We consider this result a satisfactory trade-
off between the simplicity of the input model and the accuracy with regards to
the theoretical CI.

6 Perspectives

Outside of the realm of reproduction or predictions, we believe that MCS can
have other more research oriented applications. In this section we will illustrate
one such application. Then we will discuss limitations we have encountered in
our work with MCS.

High perturbation simulations. We have so far set the perturbation level to a
value that was relevant to the real system observed (see Section 4.3). A sub-
sequent question is how does the prediction change when increasing this per-
turbation level. In this section we will focus on simulation of makespans using
the ASAP heuristic. Fig. 4 presents the 95% CIs obtained through the normal
distribution fitting of simulations with both P =10% and P =40%. Notice that a
40% perturbation level may be experienced in current cloud provider offers when
renting shared instances ([2]). On the makespan interval graphs (first and third
subfigures from left to right) the boxes represent the span of the CI interval.
The mean simulated makespan (µ) is represented by the vertical bar inside the
interval. The middle row shows the interval of real observed makespans. Simu-
lation of OMSSA using P = 40% exhibits a clear drift upward of the ranges of
simulated makespans and BTU. This drift is significant compared to the growth
of the capture interval to the point that the capture rate of the simulation with
P = 40% is of only 83% when the P = 10% simulation had a 90% capture rate.
Montage simulations exhibit the upwards drift but not to the extent that it
affects the simulation’s capture rate. These results have two interesting implica-
tions. Firstly, the perturbation level can not be used as a trade-off variable to
augment capture rate at the expense of CI compactness. The lower capture rate
at P = 40% is a strong indication that our real platform exhibits a variability

closer to 10% than to 40%. Misestimation of the perturbation level will have the
same implication for the MCS as a wrong effective runtime given to DES. Users
for whom higher capture rates are more important than interval compactness
should use statistical methods to build higher rate CIs, like the 99% normal
distribution CI used in section 5. Secondly, this result shows that MCSs can be
used to exhibit heuristic behaviours. This upwards shift of the CI shows that
ASAP, an heuristic geared towards reducing the makespan regardless of cost, is
not as effective when scheduling bag-of-tasks with task runtimes that might vary
widely. However, the same observation on Montage shows that when scheduling
workflows ASAP remains capable of low makespans. This can be explained by
the scheduler’s behaviour and the workflow’s nature. In workflows the makespan
depends only on execution of tasks in the critical path, and remains unaffected
by variability of tasks outside the path. This is compounded by the just-in-time
scheduling used in Schlouder, later scheduling decisions take into account the
tasks’ deviation from their expected runtimes. This kind of analysis can be used
to gain insight in the strengths and weaknesses of any heuristic, regardless of
complexity.

Limitations of the enriched simulation. In this paper all the MCS presented
used 500 iterations. Such an MCS requires in average 15 minutes of CPU time,
and iterations can be parallelized. We determined that this was enough in the
context of our simulation as additional simulations did not change the results
and only marginally increased the confidence of the fitting process. The number
of simulations necessary in an MCS depends on the number of input variables
and the distribution of these variables. A MCS works by sampling the possible
scenarios to get a distribution of possible outcomes, hence when more scenarios
are possible then more samples are required. The relative quick convergence
(as compared to other scientific fields where MCS is used) is explained by the
relatively low number of input variables found in batch job scheduling. In our
case, there are respectively 223 and 184 tasks for OMSSA and Montage. As the
perturbation level influences the input variable distribution, we are currently
studying its relationship with the number of required MCS-iterations.

7 Conclusion

Predicting the execution behaviour of complex workloads in the cloud is an
important challenge. While a number of works have proposed model-driven sim-
ulators, much remains to be done for their adoption in production-grade cloud
settings. As advocated by Puchert et al. [18], the trust we can put in the predic-
tion demands certainty and precision that only comes from validating simulation
against empirical observation. This paper contributes to this effort in two ways.
First, we propose a Monte-Carlo simulation extension to a discrete event sim-
ulator based on SimGrid. This extension provides stochastic predictions which
are more informative than single values of billing cost and makespan produced
by traditional discrete event simulators. The Monte-Carlo simulation must be

parameterized to draw random values from relevant value spaces. In this work
we show that the variability we seek to account for can be modeled by a single
parameter, called perturbation level and applied to all task runtimes. Second,
we apply our model in a real setting, on two different applications, for which we
have collected execution traces. At the light of these empirical observations, our
study shows that the proposed model could capture over 90% of the observed
makespans for all combinations of application and scheduling heuristics given
an appropriate perturbation level. We now aim to test our simulator on more
use-cases and platforms. In particular as a number of studies on public clouds
have reported variability levels similar to our platform ([2, 10]), we intend to
reproduce these results on public clouds.

References

1. Mehrotra, P., Djomehri, M.J., Heistand, S., Hood, R., Jin, H., Lazanoff, A., Saini,
S., Biswas, R.: Performance evaluation of amazon elastic compute cloud for NASA
high-performance computing applications. Concurrency and Computation: Prac-
tice and Experience 28(4) (2016) 1041–1055

2. Leitner, P., Cito, J.: Patterns in the chaos - A study of performance variation
and predictability in public iaas clouds. ACM Trans. Internet Techn. 16(3) (2016)
15:1–15:23

3. Casanova, H., Giersch, A., Legrand, A., Quinson, M., Suter, F.: Versatile, scalable,
and accurate simulation of distributed applications and platforms. J. Parallel
Distrib. Comput. 74(10) (2014) 2899–2917

4. Stanisic, L., Thibault, S., Legrand, A., Videau, B., Méhaut, J.: Faithful perfor-
mance prediction of a dynamic task-based runtime system for heterogeneous multi-
core architectures. Concurrency and Computation: Practice and Experience 27(16)
(2015) 4075–4090

5. Velho, P., Schnorr, L.M., Casanova, H., Legrand, A.: On the validity of flow-level
tcp network models for grid and cloud simulations. ACM Trans. Model. Comput.
Simul. 23(4) (2013) 23:1–23:26

6. Lim, S., Sharma, B., Nam, G., Kim, E., Das, C.R.: Mdcsim: A multi-tier data center
simulation, platform. In: Proceedings of the 2009 IEEE International Conference
on Cluster Computing, August 31 - September 4, 2009, New Orleans, Louisiana,
USA, IEEE Computer Society (2009) 1–9

7. Kliazovich, D., Bouvry, P., Khan, S.U.: Greencloud: a packet-level simulator of
energy-aware cloud computing data centers. The Journal of Supercomputing 62(3)
(2012) 1263–1283

8. Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A., Buyya, R.: Cloudsim:
a toolkit for modeling and simulation of cloud computing environments and evalu-
ation of resource provisioning algorithms. Software: Practice and experience 41(1)
(2011) 23–50

9. Nuñez, A., Vázquez-Poletti, J.L., Caminero, A.C., Castañé, G.G., Carretero, J.,
Llorente, I.M.: icancloud: A flexible and scalable cloud infrastructure simulator.
J. Grid Comput. 10(1) (2012) 185–209

10. Kim, I.K., Wang, W., Humphrey, M.: PICS: A public iaas cloud simulator. In Pu,
C., Mohindra, A., eds.: 8th IEEE International Conference on Cloud Computing,
CLOUD 2015, New York City, NY, USA, June 27 - July 2, 2015, IEEE Computer
Society (2015) 211–220

11. Li, Y.A., Antonio, J.K.: Estimating the execution time distribution for a task graph
in a heterogeneous computing system. In: 6th Heterogeneous Computing Work-
shop, HCW 1997, Geneva, Switzerland, April 1, 1997, IEEE Computer Society
(1997) 172–184

12. Ludwig, A., Möhring, R.H., Stork, F.: A computational study on bounding the
makespan distribution in stochastic project networks. Annals OR 102(1-4) (2001)
49–64

13. van Slyke, R.M.: Monte carlo methods and the pert problem. Operations Research
11(5) (1963) 839–860

14. Tang, X., Li, K., Liao, G., Fang, K., Wu, F.: A stochastic scheduling algorithm
for precedence constrained tasks on grid. Future Generation Comp. Syst. 27(8)
(2011) 1083–1091

15. Canon, L., Jeannot, E.: Evaluation and optimization of the robustness of DAG
schedules in heterogeneous environments. IEEE Trans. Parallel Distrib. Syst. 21(4)
(2010) 532–546

16. Zheng, W., Sakellariou, R.: Stochastic DAG scheduling using a monte carlo ap-
proach. J. Parallel Distrib. Comput. 73(12) (2013) 1673–1689

17. Cai, Z., Li, Q., Li, X.: Elasticsim: A toolkit for simulating workflows with cloud
resource runtime auto-scaling and stochastic task execution times. J. Grid Comput.
15(2) (2017) 257–272

18. Pucher, A., Gul, E., Wolski, R., Krintz, C.: Using trustworthy simulation to en-
gineer cloud schedulers. In: 2015 IEEE International Conference on Cloud Engi-
neering, IC2E 2015, Tempe, AZ, USA, March 9-13, 2015. (2015) 256–265

19. Jacob, J.C., Katz, D.S., Berriman, G.B., Good, J.C., Laity, A., Deelman, E., Kessel-
man, C., Singh, G., Su, M.H., Prince, T., et al.: Montage: a grid portal and software
toolkit for science-grade astronomical image mosaicking. International Journal of
Computational Science and Engineering 4(2) (2009) 73–87

20. Geer, L.Y., Markey, S.P., Kowalak, J.A., Wagner, L., Maynard, M.X.D.M., Yang,
X., Shi, W., Bryant, S.H.: Open mass spectrometry search algorithm. J Proteome
Res. 3(5) (Sep-Oct 2004) 958–964

21. Michon, E., Gossa, J., Genaud, S., Unbekandt, L., Kherbache, V.: Schlouder: A
broker for iaas clouds. Future Generation Comp. Syst. 69 (2017) 11–23

