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Abstract—In the cloud computing model, cloud providers
invoice clients for resource consumption. Hence, tools helping
the client to budget the cost of running their application are of
pre-eminent importance. However, the opaque and multi-tenant
nature of clouds, make job runtimes both variable and hard
to predict. In this paper, we propose an improved simulation
framework that takes into account this variability using the
Monte-Carlo method.

We consider the execution of batch jobs on an actual platform,
scheduled using typical heuristics based on the user estimates of
tasks’ runtimes. We model the observed variability through sim-
ple distributions to use as inputs to the Monte-Carlo simulation.
We show that, our method can capture over 90% of the empirical
observations of total execution times.

Index Terms—cloud computing, computer simulation, monte
carlo methods.

I. INTRODUCTION.

A. Simulation

Because they allow one to experiment without having to
build or even use a real platform, simulations are a cornerstone
of the study of distributed systems and clouds. Most cloud
simulators are based on discrete event simulation (DES). Given
a set of inputs a DES produces deterministic output results by
computing the timeline of the events generated by the inputs.
In this paper we simulate task directed acyclic graphs (DAGs),
based on task runtime as input in order get the total execution
time, makespan, and the execution cost.

However, when the simulated system is subject to variabil-
ity, it is difficult to establish the validity of simulation results
formally. Indeed, given some defined inputs, a DES outputs
a single deterministic result, while a real system will output
slightly different results for each repeated execution.

B. Stochastic Simulation and Monte-Carlo Method

For more comprehensive predictions in such variable en-
vironments, the simulation must be stochastic. In stochastic
simulations inputs become distributions of possible runtimes,
provided as random variables (RVs). The result of one such
simulation is itself a distribution of the possible results.

Numerical methods have been proposed for solving stochas-
tic DAGs [1], [2]. However, they are computationally intensive
and their core constraint, the independence of RVs, can not
always be guaranteed.

On the other hand, a Monte-Carlo simulation (MCS), de-
picted in Figure 1, samples the possible outcomes by testing
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Fig. 1. Overview of a Monte-Carlo simulation : 500 realizations are generated
by drawing runtimes (rt) for each of the n tasks provided distributions (Rt);
every realization is then simulated; the resulting makespan samples make up
the final result M.

multiple realizations in a deterministic fashion. Each realiza-
tion is a possible scenario obtained by drawing a runtime from
each task’s respective RV. Realizations are then simulated
using traditional methods like DES. Eventually, given enough
realizations, the distribution of the simulation results will tend
towards the distribution of the equivalent stochastic simulation.

II. WORK CONTEXT

The study conducted in this paper is built upon a genuine
comparison between experiments run in actual environments
and experimental results obtained by simulation.

A. Real Execution Setup

Using the Schlouder [3] cloud batch-scheduler, we carried
out multiple executions of a scientific application, OMSSA [4]
on a private cloud. The application was scheduled 200 times
favoring alternatively low runtimes (ASAP, as soon as possi-
ble) or low cost (AFAP, as full as possible). These executions
were performed on an Openstack 96-core cloud.

B. Simulated Execution Setup

Using the SimGrid [5] simulation framework we built a
simulator capable of simulating our cloud platform, schedul-
ing, and executions. This simulator has been fine-tuned against
the real execution traces, and is precise to the second for
executions performed by Schlouder. This DES outputs the
makespan, in seconds, and the cost, in BTU (billing time unit,
e.g. VM×hour) for the simulated execution.



III. ENRICHED SIMULATION FRAMEWORK

A. Simulation process

As depicted in Figure 1 the MCS consists in repeatedly
drawing runtimes for each task, to form realizations. Each
realization is then simulated independently and the resulting
makespans, the total runtime of the application, are aggregated
in a distribution.

B. Input Modeling

The MCS requires a runtime distribution for every task.
Although more precise input distributions will always yield
more precise results we aim to show that even simple models
will provide sufficiently accurate simulation results. In our
model, the tasks runtimes follow a uniform distribution cen-
tered on the average expected runtime for a given task t (r̄t).
The relative spread of each distribution represents the expected
platform variability and is called the perturbation level (P ). As
such the distribution of possible runtimes for a task t, Rt is
expressed as :

Rt = U(r̄t · (1− P ), r̄t · (1 + P )) (1)

We computed the expected variability of our platform as being
the average across all tasks of the worst-case deviation from
the expected value for each task. The perturbation level given
by this method is P ≈ 10% for both strategies.

IV. EVALUATION

Using this model, we ran a 500-iteration MCS for each
strategy. The resulting distributions are shown in Figure 2.
The makespan density graph shows the simulation result
distribution as filled curves and the real observed executions
as non-filled curves. On the BTU count graph, the left bar
represents the empirical data, and the right bar the prediction
from the simulation.

The distribution of simulated makespans covers fairly well
the ranges of observed makespans, notwithstanding a slight
right skew and shift of the empirical makespan distribution.
Likewise the range of BTU numbers required for an execution
is correct but the simulated distribution differs slightly. The
divergence between the simulated and observed distribution is
due to our simplified model described in section III-B. We
quantify this divergence by fitting the simulated distribution
to a Normal distribution, and producing confidence interval
(CI). The 95%CI captures 90% of real executions in ASAP
and 92% in AFAP. Using the 99%CI yields capture rates of
98% and 100% respectively.

V. CONCLUSION

In this paper, we propose a Monte-Carlo simulation ex-
tension to a discrete event simulator based on SimGrid.
This extension provides stochastic predictions which are more
informative than single values produced by traditional discrete
event simulators. In this work we show that the variability we
seek to account for can be modeled by a single parameter,
called the perturbation level and applied to all task runtimes.
We apply our method in a real setting, for which we have
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Fig. 2. Makespan and BTU count distribution for OMSSA Monte Carlo
Simulation compared to reality at 10% perturbation level.
Reading example: Simulating AFAP with OMSSA leads to makespans roughly
ranging from 12800 s to 13400 s and BTU counts ranging from 33 to 36.

collected execution traces. In light of these empirical observa-
tions, our study shows that the proposed method could capture
over 90% of the observed makespans given an appropriate
perturbation level.
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