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Introduction Motivation

Maintenance optimization

Equipments
» with several components

» subject to random degradation and failures

Maintenance optimization problem: find some optimal balance
between

> repairing/changing components too often

» do nothing and wait for the total failure of the system
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Introduction Motivation

Maintenance optimization

Equipments
» with several components

» subject to random degradation and failures

Maintenance optimization problem: find some optimal balance
between

> repairing/changing components too often

» do nothing and wait for the total failure of the system

Optimize some criterion

» minimize a cost: repair, maintenance, unavailability penalty,
failure penalty, ...

» maximize a reward: availability, production, ...
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Introduction Motivation

Impulse control problem

Impulse control

Select
> intervention dates
> new starting point for the process at interventions

to minimize a cost function

Piecewise deterministic Markov processes

General class of non-diffusion dynamic stochastic hybrid models:
deterministic motion punctuated by random jumps.
[CD 89], [Davis 93], [dSDZ 14], ...
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Introduction Piecewise deterministic Markov processes

Piecewise deterministic Markov processes

Starting point
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Introduction Piecewise deterministic Markov processes

Piecewise deterministic Markov processes

X; follows the deterministic flow until the first jump time 71 = 5

Xe= (M, om(x,t)),  Pimx(T1>t)=e J3 2 (0n(x.9)) s
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Introduction Piecewise deterministic Markov processes

Piecewise deterministic Markov processes

Post-jump location (my, xT,) selected by the Markov kernel

Qm (¢m(X7 Tl), )
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Introduction Piecewise deterministic Markov processes

Piecewise deterministic Markov processes

X; follows the flow until the next jump time To = T1 + 5

XT1+t = (ml, (j")m1 (XTI, t)), t< 52
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Introduction Piecewise deterministic Markov processes

Piecewise deterministic Markov processes

Post-jump location (my, xT,) selected by Markov kernel

le (¢m1 (XT17 52)7 ) cee
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Introduction Piecewise deterministic Markov processes

Embedded Markov chain

{X:} strong Markov process [Davis 93|

Natural embedded Markov chain
» Zp starting point, S50 =0, 51 =T1

» Z, new mode and location after n-th jump, S, = T, — Tp_1,
time between two jumps

Proposition

(Z,,5,) is a discrete-time Markov chain
Only source of randomness of the PDMP
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Impulse control for PDMPs Dynamic programming

Mathematical definition of impulse control

Strategy S = (Th, Rn)n>1
» T, intervention times

> R, new positions after intervention

Value function

jS(X) = E;(S [/ e “*f(Ys)ds + Z e (Ve Yir)
0 1

i=1

V(x) = inf T5(x)

» f, ¢ cost functions, « discount factor

> Y: controlled process, S set of admissible strategies
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Impulse control for PDMPs Dynamic programming

Dynamic programming

Costa, Davis, 1988

For any function g > cost of the no-impulse strategy
> wW=g
> vy = I—(Vn—l)
Vn(x) —— V(x)

dS, Dufour, Geeraert, 2017

Construction of e-optimal strategies based on the dynamic
programming operator
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Impulse control for PDMPs Dynamic programming

Dynamic programming

Jump-or-intervention operator

vo(Zs) = L(Mvpi1, vit1)(Zn)

= ( inf E[F(th)+e_asn’lVn+1(Zn+1)1{5n+1<t/\t*(zn)}

t<t*(Z,)
+e N My, 1 (2o t A E(Z,))) Lis, s ene(2)) | Z])
NE[F(Z,, £(Z)) 4™ i (Zonn) | 2]
with
Fot) = [ N s e (5, 5)) s

Mv,i1(x) = yir;{j{c(X,y)Jrvnﬂ(Y)}
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Impulse control for PDMPs Discretization schemes

Approximation scheme - Value function

Based on time-dependent discretizations of the state space of (Z,, Sp)

n(y') = g(Z)
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Impulse control for PDMPs Discretization schemes

Approximation scheme - Value function

Based on time-dependent discretizations of the state space of (Z,, Sp)

n(y') = g(Z)

uZ) = () — 1L

SIAM-CT19-Chengdu 19/06/2019 10/23



Impulse control for PDMPs Discretization schemes

Approximation scheme - Value function

Based on time-dependent discretizations of the state space of (Z,, Sp)

n(y') = g(Z)

oz = g( W)
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Impulse control for PDMPs Discretization schemes

Approximation scheme - Value function

Based on time-dependent discretizations of the state space of (Z,, Sp)

n(y') = g(Z)

¥(Zi) = g(Z}) - "(Z)) n-a(y)
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Impulse control for PDMPs Discretization schemes

Approximation scheme - Value function

Based on time-dependent discretizations of the state space of (Z,, Sp)

n(y') = g(Z)

n-1(y')

n-a(y")

‘7(2/\/72) = 5(2;;/72) Z’l (")
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Impulse control for PDMPs Discretization schemes

Approximation scheme - Value function

Based on time-dependent discretizations of the state space of (Z,, Sp)

in(y') = g(Z})
Un-1(y')
n-2(y")
na(y")
Zjy1) = e(Zjy) = L u2}) i u(y’)
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Impulse control for PDMPs

Discretization schemes

Approximation scheme - Value function

Based on time-dependent discretizations of the state space of (Z,, Sp)

n(y') = g(Z)

i (Zn) = g(Zn)

n-1(y')

n-a(y")

n(y’)

[l

u(Z)

0(x0)
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Impulse control for PDMPs Discretization schemes

Approximation scheme - e-optimal strategy

Based on time-dependent discretizations of the state space of (Z,, Sp)

0(x0)
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Impulse control for PDMPs Discretization schemes

Approximation scheme - e-optimal strategy

Based on time-dependent discretizations of the state space of (Z,, Sp)

n(21) 7o(x0)
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Impulse control for PDMPs Discretization schemes

Approximation scheme - e-optimal strategy

Based on time-dependent discretizations of the state space of (Z,, Sp)

n(y’)

ozl >>.—> u(y')

L 0(x0)
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Impulse control for PDMPs Discretization schemes

Approximation scheme - e-optimal strategy

Based on time-dependent discretizations of the state space of (Z,, Sp)

L

L 0(x0)
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Impulse control for PDMPs Discretization schemes

Approximation scheme - e-optimal strategy

Based on time-dependent discretizations of the state space of (Z,, Sp)

Lys 1 n(y’)

L 0(x0)
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Impulse control for PDMPs Discretization schemes

Approximation scheme - e-optimal strategy

Based on time-dependent discretizations of the state space of (Z,, Sp)

n-1(y')

[ wa(y')

L 0(x0)
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Impulse control for PDMPs Discretization schemes

Approximation scheme - e-optimal strategy

Based on time-dependent discretizations of the state space of (Z,, Sp)

n(y') = g(Z)

“z) = g( (s

[ wa(y')

L 0(x0)
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Impulse control for PDMPs Discretization schemes

Approximation scheme - e-optimal strategy

Based on time-dependent discretizations of the state space of (Z,, Sp)

uZ)) = e(Z)) I = valy)

[ wa(y')

L 0(x0)
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Numerical implementation Use case

Equipment model
Typical model with 4 components

E tial .
» Component 1: 2 states — stable PO failed

Weibull .
» Component 2: 2 states — stable ——— failed

» Components 3 and 4: 3 states

Weibull Exponential .
stable ———» failed

F——_———— e . ——— 1
| |
| Component 2 |
| |
I stable—2 3 failed I
| Component 1 Component 4 |
| Wb Exp |
| stable-EXB > failed Component 3 stable—> —> failed ||
|

| Wb Exp :
| stable—>» —>» failed |
| |
e o o e o o e — — — — — — — — — — — — — — — — ——— — — — —— — — — — —
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Numerical implementation Use case

Maintenance operations

Possible maintenance operations

» All components, all states: do nothing

» Components 1 and 2, all states: change

» Components 3 and 4: change in all states, repair only in

stable or states

[ o e e e — — — — — — — — — — ——— 1
| i |
| Component 2 |
| |
| stablew—b)failed |
| Component 1 Component 4 |
| Wb Exp |
| stableEXB> failed Component 3 stable—> —> failed ||
|

| Wb Exp :
| stable—>» —>» failed |
| |
e o o o o ——————— ——————————— —— —— —— —— —— — — —
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Numerical implementation Use case

Criterion to optimize

Minimize the maintenance + unavailability costs
» unavailability cost proportional to time spend in failed state

» fixed cost for going to the workshop + repair < change costs
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Numerical implementation Use case

PDMP model of the equipment

» Euclidean variables: 5 time variables

» functioning time of components 2, 3 and 4
» calendar time
> time spent in the workshop

» Discrete variables: 225 modes
» state of the components / maintenance operations
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Numerical implementation Use case

Parameters to tune

» Number of points in the control grid (underlying continuous
model)

» Number of point in the quantization grids for (Z,, Sp)

» Approximation horizon N such that vy(x) — V(x) small
enough ~ allowed number of jumps + interventions

» bounding function g

» Time discretization step for inf

SIAM-CT19-Chengdu 19/06,/2019 16/23



Numerical implementation Use case

Step 1: Exact simulation of the PDMP

Implementation of an exact simulator for reference strategies to
serve as benchmark
» Strategy 1: do nothing

» Strategy 2: send equipment to workshop 1 day after failure,
change all degraded components, change all failed ones

» Strategy 3: send equipment to workshop 1 day after
, change all degraded components, change all
failed ones
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Numerical implementation Use case

Step 1: Exact simulation of the PDMP

Implementation of an exact simulator for reference strategies to
serve as benchmark

» Strategy 1: do nothing

» Strategy 2: send equipment to workshop 1 day after failure,
change all degraded components, change all failed ones

» Strategy 3: send equipment to workshop 1 day after
, change all degraded components, change all
failed ones

Strategy 1 2 3
Mean cost | 19952 11389 8477
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Numerical implementation Use case

Step 2 and 3: Discretisation of the control set U and te

embedded Markov chain

Tests on strategy 3

Finite control set U

— discretize the functioning times
at interventions

= project the real times on the
grid feasibly

Compromise between precision and
computation time

SIAM-CT19-Chengdu 19/06,/2019

Number relative

Grid | of points error
3x3x3x5 246 | 0.10344
4x4x4x5 331 0.0241
5x5x5x5 592 0.0062
3x3x3x11 615 0.0341
4x4x4x11 923 0.0819
5x5x5x11 1855 0.0186
6x6x6x11 2110 0.0066
TXTx7x11 2617 0.0071
8x8x8x11 3359 0.0066
3x3x3x21 1230 0.0034
4 x4x4x21 1899 0.0170
5x5x5x21 2960 0.0095
6x6x6x21 4220 0.0065
TXTxT7x21 5536 0.0059
8x8x8x21 7111 0.0047
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Numerical implementation Use case

Step 4: Calibrating N the number of allowed jumps +

interventions

Horizon N (number of iterations)
> 5 for Strategy 1
> up to 30 for Strategy 2 (mean 6)
> up to 25 for Strategy 3 (mean 6)

9000

8500

8000

7500

7000

6 8 10 12 14 16 18 20
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Numerical implementation Use case

Step 5: Approximation of the value function

Strategy Strategy Strategy Approx.
1 2 3 | Value function
19952 11389 8477 7076

» relative gain of 19.8% vs Strategy 5
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Numerical implementation Use case

Step 6: Optimally controlled trajectories

Strategy Strategy Strategy Approx. Optimally
1 2 3 | Value function | controlled traj.
19952 11389 8477 7076 6733

» numerical validation of the algorithm with various starting
points: consistent results
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Conclusion

Conclusion

Numerical method to derive a feasible e-optimal strategy
» rigorously validated [dSD 12, dSDG 17|

» with general error bounds for the approximation of the value
function

» numerically demanding but viable in low dimensional examples
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Conclusion
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