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Data Informativity for the Identication of MISO FIR Systems with Filtered White Noise Excitation

For Prediction Error Identication, there are two main ingredients to get a consistent estimate: one of them is the data informativity with respect to (w.r.t.) the considered model structure. One common criterion used for the informativity is the positive deniteness of the input density spectral power (DSP) matrix at all frequencies. This criterion is not appropriate for multisine excitation but can be used for ltered white noise excitation for many identication problems. However, this criterion is not necessary and its application for some identication problems might not be possible. In this paper, we propose a necessary and sucient condition for the data informativity in the case of multiple-inputs single-output (MISO) nite impulse response (FIR) model structure in open-loop.

Introduction

When identifying a system with the Prediction Error Method, there are two properties to respect in order to guarantee a consistent estimation: global identiability of the model structure and data informativity w.r.t. this model structure [START_REF] Ljung | System Identication: Theory for the User[END_REF] [START_REF] Soderstrom | System Identication[END_REF]. In this paper, we focus on the data informativity criterion in the open-loop conguration. This data informativity criterion has been extensively studied in the case of SISO systems [START_REF] Ljung | System Identication: Theory for the User[END_REF] [2] [START_REF] Gevers | Identication and the information matrix: How to get just suciently rich[END_REF].

However, even if one could have expected that this study had also been carried out for the multivariate case and in particular for the MISO systems, this is surprisingly not the case, up to our knowledge. In the literature, we only nd the condition that the power spectrum matrix of the input vector must be strictly positive denite at each frequency [2] [3]. This condition is sucient, but not necessary for data informativity as e.g. shown in [START_REF] Colin | Informativity: how to get just suciently rich for the Identication of MISO FIR Systems with Multisine Excitation?[END_REF] where we derive conditions for data informativity in the MISO case when multisine excitation are used. In this paper, we continue the analysis of the data informativity of MISO systems by considering the case of an input vector where each element is a stochastic process. In other words, we consider the case where each input is generated as a ltered version of a number of white noise processes and we derive necessary and sucient condition under which the data informativity is guaranteed.

From this condition, we will, e.g., observe that input vectors that have a power spectrum matrix with a zero determinant at each frequency can lead to informative data.

It is to be noted that the latter case will be quite unusual if the user can freely choose the input vector (one would then generally go for independent input processes leading to positive denite power spectrum matrix at each frequency). However, if the input vector is not chosen but given, it is important to know precisely in which situation we will have informative data and in which cases not. Such a situation is e.g. encountered when the two stage approach is used for dynamic network identication [START_REF] Hof | Identication of dynamic models in complex networks with prediction error methodsbasic methods for consistent module estimates[END_REF].

In the case of the identication of MISO FIR systems in open loop, the informativity condition is equivalent to the condition that the input regressor is persistently exciting (PE), equivalent to the linear independence in the signal space [START_REF] Cariolaro | Unied signal theory[END_REF] of the signals in this regressor. By choosing an appropriate formulation of the input expression, we nd a simpler necessary and sucient condition which is the right-invertibility of a certain matrix containing the coecients of the lter generating the inputs. We also develop additional conditions to guide the user in its lter choice to guarantee the data informativity. A numerical example is provided to illustrate the developed results.

Notations. For all matrix A, A T denotes its transpose, A * its conjugate transpose and A 0 means that A is strictly positive denite. The notation 0 n×m refers to the matrix of size n × m full of zeros. For all integers m and p such that m ≤ p, the set m, p is the set of consecutive integers between m and p. We denote j the complex number such that j 2 = -1. The symbol ⊗ denotes the Kronecker product and denotes the convolution product. For a polynomial P in the variable X, we denote p (n) the coecient of the monomial X n . For quasistationary signals x [START_REF] Ljung | System Identication: Theory for the User[END_REF], we dene the operator Ē[x(t)] = lim

N →+∞ 1 N N t=1 E[x(t)
] where E is the expectation operator.

2 Prediction error of MISO FIR system and problem considered Consider a linear system S with p inputs and one output [START_REF] Ljung | System Identication: Theory for the User[END_REF] [2]:

S : y(t) = G 0 (z)u(t) + e 0 (t) (2.1)
where z is the forward-shift operator, G 0

(z) = G 0 1 (z), • • • , G 0p (z) is a stable transfer function matrix, u(t) = (u 1 (t) • • • u p (t)
) T is the input vector, y(t) is the scalar output and e 0 (t) is a white noise with variance σ 2 0 . For the sake of simplicity, all G 0 i (z) are FIR systems with the same order and are given by

G 0 i (z) = β i1 z -1 + • • • + β im z -m (2.2)
where all β ik are the true parameters to estimate.

The system S in (2.1) is identied within its full-order parametrized model structure denoted

M (θ) = {G(z, θ) = (G 1 (z, θ) • • • G p (z, θ)) | θ ∈ R pm }
where θ is the parameter vector and such that ∃θ 0 ∈ R pm such that G(z, θ 0 ) = G 0 (z) (full-order). In this case, each G i (z, θ) has the following form:

G i (z, θ) = b i1 z -1 + • • • + b im z -m (2.3)
where all b ik with i ∈ 1, p and k ∈ 1, m are the parameters to identify. We will denote

θ i = (b i 1 • • • b im ) T .
Hence, the parameter vector is given by θ

T = θ T 1 • • • θ T p .
From M (θ), we dene the one-step ahead predictor:

ŷ(t, θ) G(z, θ)u(t) = p i=1 G i (z, θ i )u i (t) (2.4) = p i=1 φ T u i (t)θ i (2.5) where φ T u i (t) = (u i (t -1) • • • u i (t -m)) is a regressor of the scalar input u i (t). Denote φ u (t) =    φ u 1 (t) . . . φ up (t)    = u(t) ⊗    z -1 . . . z -m    (2.6)
the input regressor derived from M (θ). With this notation, (2.5) becomes ŷ(t, θ) = φ T u (t)θ.

Dene the prediction error:

(t, θ) = y(t) -ŷ(t, θ) = y(t) -φ T u (t)θ (2.7) 
Prediction Error identication consists in computing the optimal θ, denoted θN , minimizing a least-squares cost-function on the prediction error by using N input-output data generated from S:

θN = arg min θ V N (θ) (2.8) V N (θ) = 1 N N t=1 (t, θ) 2
(2.9)

If M (θ) is full-order, globally identiable [START_REF] Ljung | System Identication: Theory for the User[END_REF] [3] and the data are informative w.r.t. M (θ) [START_REF] Ljung | System Identication: Theory for the User[END_REF] [2] [3], then θN will be a consistent estimate of θ 0 [START_REF] Ljung | System Identication: Theory for the User[END_REF]. In other words, the asymptotic identication criterion, i.e.

arg min θ Ē[ (t, θ) 2 ]
has unique solution which is equal to θ 0 . The MISO FIR model structure is globally identiable [START_REF] Gevers | Identication and the information matrix: How to get just suciently rich[END_REF]. Hence, we only need to study the data informativity w.r.t. M (θ) to guarantee the consistency of θN .

In open loop, the data informativity w.r.t. the MISO FIR model structure M (θ) is equivalent to the input informativity.

Denition 2.1

The input u(t) is said to be informative w.r.t. the MISO FIR structure M (θ) if, we have:

Ē [G(z, θ ) -G(z, θ )]u(t) 2 = 0 ⇒ θ = θ (2.10)
for any θ and θ in R pm

In the sequel, we will consider that each input u i (t) is generated using r independent zero-mean white noise processes e q (t) with q ∈ 1, r , each of them ltered by a rational and stable lter denoted F iq (z):

u i (t) = r q=1
F iq (z)e q (t)

(2.11)

Each e q (t) is assumed independent of e 0 (t). Regroup the white noises e q (t) in a vector e(t) = e 1 (t) • • • e r (t)

T and construct the input u(t) such that u(t) = F (z)e(t) where F (z) = (F iq ) (i,q)∈ 1,p × 1,r is a rational stable lter matrix. We will assume that there is no zero-column in F (z), i.e. each e q (t) is used at least once for the generation of u(t). The power spectrum matrix of u, denoted Φ u , is given by Φ u (ω) = F (e jω )Λ 0 F * (e jω ) where Ē[e(t)e T (t)] = Λ 0 0.

By using Parseval theorem, the left hand equality of (2.10) is equivalent to

1 2π π -π
∆G(e jω )Φ u (ω)∆G * (e jω )dω = 0

(2.12)

where ∆G(z) = G(z, θ ) -G(z, θ ). Hence, it is straightforward to see that, if the input power matrix Φ u is strictly positive denite at all frequencies, then ∆G(e jω ) = 0 ∀ω, leading to the consistency. However, such property is not necessary and not veried for all u(t) = F (z)e(t) leading to informativity. For instance, with p = 2, consider

F (z) = 1 + 2z -1 z -1 + 3z -2 and Λ 0 = 1 0 0 1 (2.13)
The input power matrix is given for all ω ∈ [-π, π] by Φ u (ω) = 2e -jω + 2e jω + 5 7e jω + 3e j2ω + 2 7e -jω + 3e -j2ω + 2 3e -jω + 3e jω + 10

It has a zero-determinant for all frequencies: we cannot verify the data informativity with the positive deniteness of Φ u in this case. However, we will show that, with this lter and when m = 2, we have data informativity (see Case 4,in Section 4).

The motivation of this paper is to nd a necessary and sucient condition to verify the data informativity for any lter matrix F (z) and for any number r of white noises in e(t). We have this following necessary and sucient condition in the general case:

Theorem 2.1 [START_REF] Gevers | Informative data: How to get just suciently rich?[END_REF] [4] The following propositions are equivalent:

(a) The input vector u(t) is informative w.r.t. M (θ). (b) Ē[φ u (t)φ T u (t)] 0.
(c) The signals in φ u (t) are linearly independent in the signal space, i.e. φ T

u (t)α = 0 ∀t ⇔ α = 0. Proof : • Let us rst prove that (a) ⇔ (b).
As we have

G(z, θ) = φ T u (t)θ, the equality Ē {[G(z, θ ) -G(z, θ )]u(t)} 2 = 0 is equivalent to ∆θ T Ē[φ u (t)φ T u (t)]∆θ = 0 with ∆θ = θ -θ .
Hence, the property (2.10) holds if and only if

Ē[φ u (t)φ T u (t)] 0. • Let us now prove that (b) ⇔ (c). For any α ∈ R pm , Ē[φ u (t)φ T u (t)] 0 is equivalent to Ē[φ u (t) T α] 2 = 0 ⇔ α = 0.
However the quantity Ē[φ u (t) T α] 2 is the power of any signal φ u (t) T α. Therefore, as the power of any signal is equal to 0 if and only if this signal is identically equal to 0, we have Ē[φ u (t) T α] 2 = 0 ⇔ φ u (t) T α = 0 ∀t. Therefore φ u (t) is PE if and only if φ u (t) T α = 0 ∀t which completes the proof.

A quasistationary vector-valued signal regressor φ(t) verifying Ē[φ(t)φ T (t)] 0 is called persistently exciting (PE). Applied to φ u (t), it is a necessary and sucient condition for the data informativity w.r.t. MISO FIR model structure in open-loop (and so is a necessary and sucient condition for the consistency). We are going to apply this condition in the case of ltered white noise excitation for any number of white noises in e(t). Hence, the problem of this paper is the following one: Problem 2.1

Find necessary and sucient conditions on F (z) such that the regressor φ u (t) in (2.6) is PE for any number r of dierent white noise processes in e(t).

3 Input regressor persistency in the case of white noise excitation

Development of a necessary and sucient condition

In this section, we are going to develop a necessary and sucient condition for the persistency of the input regressor φ u (t) when each input u i (t) is given by (2.11).

In the sequel, we will decompose F (z) as follows:

F (z) = L(z) w(z) (3.1)
where the scalar lter w(z) is the obtained denominator after putting all lters in F (z) on the same denominator and L(z) a p × r matrix of FIR lters. We will denote L iq the (i, q)-entry of L(z) and each L iq will be written as follows

L iq (z) = n iq h=0 l (h) iq z -h (3.2) Remark 3.1
One can also think of writing F (z) with the Innite Impulse Response (IIR) of the rational lters, however it seems more complex to develop a necessary and sucient condition which easily answers Problem 2.1. We will show that both ways lead to the same result in one numerical example (see Case 1 in section 4).

By denoting n max the maximal order among all lters L iq (z), we rewrite L(z) as follows

L(z) = nmax h=0 L (h) z -h where L (h) =     l (h) 11 • • • l (h) 1r . . . . . . . . . l (h) p1 • • • l (h) pr     (3.3)
By using (2.6), φ u (t) obeys the following relation:

w(z)φ u (t) =   L(z) ⊗    z -1 . . . z -m       e(t) (3.4) 
Let us rewrite the expression in (3.4). First, we will consider a permuted version φu (t) of φ u (t)

such that it has this following form

w(z) φu (t) =    u(t -1) . . . u(t -m)    =    L(z)e(t -1) . . . L(z)e(t -m)    (3.5) Remark 3.2
It is clear that if Theorem 3.1 holds for φu , it also holds for φ u (and conversely).

Hence, combining (3.3) and (3.5) leads to

w(z) φu (t) = nmax h=0    L (h) e(t -h -1) . . . L (h) e(t -h -m)    equivalent to w(z) φu (t) = F    e(t -1) . . . e(t -m -n max )    v(t) (3.6) 
where

F =        L base 0 p×(m-1)r 0 p×r L base 0 p×(m-2)r 0 p×r 0 p×r L base 0 p×(m-3)r . . . . . . . . . . . . . . . 0 p×r 0 p×r 0 p×r • • • L base        (3.7) L base = L (0) L (1) • • • L (nmax) (3.8)
Note that the matrix F is not diagonal-block, that is why we decided to represent it as in (3.7).

We provide a numerical example to illustrate this point. Consider that w(z) = 1, p = 3, m = 2, r = 2 and: 

L(z) =   1 -z -3 2 + 2z -3 5z -2 0 2z -1 + 3z -2 -4z -3   Hence, n max = 3, L (0) =   1 0 2 0 0 0   L (1) =   0 0 0 0 0 2   L (2) =   0 0 0 5 0 3   L (3) =   0 -1 2 
F =        
1 0 0 0 0 0 0 -1 0 0 2 0 0 0 0 5 2 0 0 0 0 0 0 2 0 3 0 4 0 0 0 0 1 0 0 0 0 0 0 -1 0 0 2 0 0 0 0 5 2 0 0 0 0 0 0 2 0 3 0 4

       
It is clear that it is not block-diagonal.

The matrix F that links v(t) to φu (t) is a matrix of scalars. In this case, we have the following result:

Theorem 3.1

The regressor φu (t) dened above in ( any number of white noises in e(t). It depends explicitly on the lters coecient and is a similar criterion as in the multisine case [START_REF] Colin | Informativity: how to get just suciently rich for the Identication of MISO FIR Systems with Multisine Excitation?[END_REF] (rank verication of a certain matrix of scalars).

For some choices, the matrix F will not be full-row rank. We can deduce some possible reasons to understand why it happens. It is explained in the next paragraph.

Development of additional conditions

One has to be careful in the choice of L(z) to provide the right-invertibility of F. Indeed, the rank verication is an a posteriori condition.

But, rst, one has to remark that, depending on the choice of F (z)e(t), there can be some zero-columns in F. A zero-column column in F means that the corresponding generated white noise element in v(t) is not present in φu (t). To illustrate this remark, let us consider back the example given in Section 3. There are two zero-columns in F. As F multiplies v(t) and from the construction of v(t) in (3.6), these zero-columns mean that the correspond generated white noises e 2 (t -1) and e 1 (t -3) are not present in φ u (t). The generated white noises present in φ u (t) obtained from e 1 (t) are e 1 (t -1), e 1 (t -2), e 1 (t -4) and e 1 (t -5). The ones obtained from e 2 (t) are e 2 (t -2), e 2 (t -3), e 2 (t -4) and e 2 (t -5).

Theorem 3.2

If F dened in (3.7) is full-row rank, then

• (i) the rows of L(z) (or equivalently F (z)) must be linearly independent.

• (ii) the number of generated white noises in v(t) present in φ u (t) is greater than or equal to the number of parameters to be identied.

Proof : (i) From the construction of F, when it is full-row rank, L base must be full-row rank. With the expression of L base in (3.7), it corresponds to the linear independence of the rows of L(z) (or F (z) by dividing L(z) by w(z)).

(ii) To be full-row rank, F must have at least a number of non-zero columns greater than or equal to its row number. There are pm rows in F, corresponding to the number of parameters to be identied. There are m + n max columns, corresponding to the number of generated white noise elements of the form e q (t -k) in v(t). However, some of these columns can be zero-columns. Then, the conclusion follows.

The conditions derived in Theorem 3.2 are necessary but not sucient. This remark will be illustrated with a numerical example (Case 3 in section 4). In the next paragraph, we give an interpretation and a synthesis of the obtained results.

Synthesis of the developed results

In this paper, we have developed a necessary and sucient conditions to verify the data informativity w.r.t. a MISO FIR model structure (and so the consistency) in open-loop excited by ltered white noise with any number of white noise processes: it is given in Theorem 3.1 and corresponds to the rank verication of a matrix depending on the coecients of L(z), on r and m. But, rst, the lter matrix F (z) must be decomposed as in (3.1). Then, Theorem 3.1 can be used on the FIR lter matrix L(z). For both numerical examples in Section 3 and in (2.13) and by considering that m = 2, the rank of F is respectively equal to 4 and 6 which was the number of parameters to be identied in each case. For both cases, we have consistency.

We have also derived conditions to guide better the user in its lter choices, given in Theorem 3.2. If these conditions are not met, the consistency will never be guaranteed. The rst one is the linear independence of the rows of F (z) which can be easily avoided when we do the lter choice. The second one is linked to the number of generated white noise elements through the ltering of e(t) by L(z): it must be at least equal to the number of parameters to be identied. This criterion is directly linked to the number of white noises and the lter orders as follows:

• when the number of white noises in e(t) is greater than the number of inputs, i.e. r ≥ p, then there is at least one generated white noise element from the ltering of each e q (t)1 .

In other words, it means there are at least r ≥ p generated white noise elements of the form e q (t -k) present in u(t), for each q = 1, • • • , r. Hence, there are at least rm ≥ pm generated white noise elements present in φ u (t) (due to the m times regression): condition (ii) of Theorem 3.2 is always guaranteed. However, this does not necessarily mean that the consistency is reached.

• when r < p, one should consider the condition (ii) of Theorem 3.2 to verify that the chosen lter is enough complex to generate the right number of white noise elements present in φ u (t). Indeed, if the lter is not enough complex, the consistency will never be reached regardless of the lter coecients values.

However, these conditions are not sucient: it seems than we cannot avoid the rank verication of Theorem 3.1. But, in the general case, if the number of generated white noises is sucient and the coecient lters are chosen randomly, the consistency will be reached.

Remark 3.3

Note that, when r = p and F (z) is such that det(F (e jω )) = 0 ∀ω, then it is guaranteed that Φ u (ω) > 0 ∀ω and the consistency is also reached.

In the next section, we give other numerical examples.

Numerical example

For the numerical example, as in [START_REF] Colin | Informativity: how to get just suciently rich for the Identication of MISO FIR Systems with Multisine Excitation?[END_REF], we consider the MISO FIR system S described in (2.1) with p = 2 inputs, m = 2 parameters per G 0 i :

G 0 1 (z) = 0.22z -1 -0.63z -2 and G 0 2 (z) = z -1 + 0.95z -2
i.e. the same example as in [START_REF] Colin | Informativity: how to get just suciently rich for the Identication of MISO FIR Systems with Multisine Excitation?[END_REF]. We use ltered white noise excitation

u 1 (t) u 2 (t) = F 11 (z) • • • F 1r (z) F 21 (z) • • • F 2r (z)    e 1 (t) . . . e r (t)   
where r ∈ N * , all F iq (z) are rational stable lters. We are going to propose several input choices to test the conditions developed in this paper. For each choice, we identify G(z, θ) with N inputoutput data and we compute the rank of F in (3.7). From Theorem 3.1, there is data informativity w.r.t. the MISO FIR model structure (and so consistency) if and only if rank(F) = pm = 4.

For FIR systems, the modeling error θN -θ 0 of the computed parameters is normally distributed around 0 [START_REF] Ljung | System Identication: Theory for the User[END_REF]. Thus the relative error ( θN -θ 0 )/θ 0 is normally distributed around 0%. We consider N = 1000 and σ 2 0 = 0.1 for small variance of the relative error to facilitate the consistency verication. The notation err(b ik ) refers to the relative error between the computed parameter b ik and the true parameter β ik . The white noise e(t) is chosen Gaussian such that E[e(t)e(t)] = I r where I r is the identity matrix. 

F (z) = 1 1 1-0.5 -1 = L(z) w(z)
where L(z) = 1 -0.5 -1 1 and w(z) = 1 -0.5z -1 .

With these lters, the dierent generated white noises in φ u are e 1 (t -1), e 1 (t -2) and e 1 (t -3): it is less than the number of parameters to be identied which are pm = 4. Hence, from Theorem 3.2, there is no consistency. This result is veried in simulation, in Table 1, with the high values of relative errors.

One can think of using the IIR of the lters without using the decomposition L(z)/w(z). Indeed, in this case, the number of generated white noises will be innite in u(t) and so in φ u (t) and we would circumvent the problem shown above. In this example, 1/(1 -0.5z -1 ) can rewritten with its IIR. The impulse response of a lter of the form 1/(1 -bz -1 ) with |b| < 1 is given by h k = b k for all k ∈ N and h k = 0 for all k < 0. Hence, u 2 (t) is given by

u 2 (t) = (h e 1 )(t) = +∞ k=0 b k e 1 (t -k) = +∞ k=0 0.5 k e 1 (t -k) (4.1)
The input regressor is given by

φu (t) =     u 1 (t -1) u 2 (t -1) u 1 (t -2) u 2 (t -2)     =     e 1 (t -1) +∞ k=1 0.5 k-1 e 1 (t -k) e 1 (t -2) +∞ k=2 0.5 k-2 e 1 (t -k)     = Fv(t)
where 

F T =           1 
          and v =           e 1 (t -1) e 1 (t -2) e 1 (t -3) . . . e 1 (t -k) . . .           (4.2)
From Theorem 3.1, we will have consistency if and only if F is full-row rank. Both rst columns are linearly independent. But the columns after are all linearly dependent. Hence, we

will not be able to nd pm = 4 linearly independent columns in order to get F full-row rank: the identication will be non-consistent. We meet the same conclusion.

Case 2: We want to excite S with

F (z) = 1 + 0.5z -1 -2+0.5z -2 1-0.5z -1 = L(z) w(z)
where L(z) = 1 -0.25z -2 -2 + 0.5z -2 and w(z) = 1 -0.5z -1 .

The second row of L(z) can be obtained by multiplying the rst one by -2. From Theorem 3.2, we conclude to the non-consistency. This explains the high values of relative errors found in simulation, presented in Table 1.

Case 3: Consider

F (z) = 1-0.5z -1 1-0.5z -1 -4z -1 +2z -2 1-0.5z -1 = 1 w(z) 1 -0.5z -1 -4z -1 + 2z -2
Here, rank(F) = 3 = 4: the identication is again non-consistent, as shown by the simulation in Table 1. However, both necessary conditions of Theorem 3.2 are veried. Indeed, we generate e 1 (t-1), e 1 (t-2), e 1 (t-3) and e 1 (t-4) and the rows of L(z) are linearly independent. But, if we look closer at L(z), we see that -4z -1 L 11 (z) = L 22 (z), resulting in u 1 (t -1) = -0.25u 2 (t -2) ∀t.

As shown in Theorem 2.1, the persistency is equivalent to the linear independence of the signal in φ u (t), which is not the case here. Hence, it is not consistent. This case is interesting as it allows us to insist on the fact that both conditions in Theorem 3.2 are only necessary and not sucient.

Case 4: Consider the example given in (2.13). Here, F (z) = L(z) as w(z) = 1 and both necessary conditions in Theorem 3.2 are veried. We obtain rank(F) = 4: we have consistency, as illustrated by the simulation in Table 1.

4.2 Cases with r > 1 independent white noises First, consider the case where r = p = 2.

Case 5: We take w(z) = 1 and for L(z) the following lters: L 11 (z) = 1 + 2z -1 , L 12 (z) = 2z -1 + 4z -2 , L 21 (z) = 2 + z -1 and L 22 (z) = 4z -1 + 2z -2 . Here, rank(F) = 3: the identication is not consistent, as shown in Table 1. However, it is easy to verify that both conditions of Theorem 3.2 are guaranteed with this lter choice. This example is interesting, because we show that even for the case r = p, there can be some pathological cases where we meet both conditions of Theorem 3.2 but the identication is not consistent. It is to be noted that, in this case, det(F (e jω )) = 0 ∀ω and so the sucient condition of Remark 3.3 is not satised. So this remark is not in contradiction to this observed result.

We consider w(z) = 1 -0.5z -1 for the last two cases.

Case 6: Consider for L(z) the following lters: L 11 (z) = 9, L 12 (z) = 1, L 21 (z) = 2 and L 22 (z) = -4. Here, rank(F) = 4: the identication is consistent, as shown in Table 1.

We can also use more white noises processes than the number of inputs, for instance r = 3.

Case 7: Finally we consider, L 11 (z) = 9, L 12 (z) = 1, L 13 (z) = 4, L 21 (z) = 2, L 22 (z) = -4 and L 23 (z) = -4. Again, rank(F) = 4: we have consistency, as illustrated in Table 1. -0.055% -0.056% 0.048% -0.041%

Conclusion

This paper considers the problem of data informativity for MISO FIR systems in open-loop when this system is excited by ltered white noise. This problem is mainly straightforward when the input power spectrum matrix positive deniteness criterion can be used. When it is not the case, we need to develop a less restrictive condition which is the aim of this paper. The informativity is equivalent to the persistency of the regressor derived from the MISO FIR model structure. As for the multisine case [START_REF] Colin | Informativity: how to get just suciently rich for the Identication of MISO FIR Systems with Multisine Excitation?[END_REF], it is equivalent to the linear independence of the elements in the input regressor derived from this model structure. A necessary and sucient condition depending on the number of considered white noise processes and on the lter coecients. One result is that we can identify such systems with inputs generated with less white noises than the number of inputs.

However, the necessary conditions developed in Theorem 3.2 show that, in this case, there is a needed complexity for the lter orders. A numerical example has been proposed to verify several results developed in this paper. In the future, we want to extend this study in closed-loop and also for other model structures such as Box-Jenkins, ARMAX, ARX and Ouput-Error. We want also to study if it is interesting to consider less white noise processes for experiment design.

4. 1

 1 Cases with r = 1 white noise Case 1: Let us consider

  3.5) is PE if and only if the matrix F in (3.6) is full-row rank.

Proof : Since w(z) is a 1 × 1 stable FIR lter that applies to all elements of φu (t), it is clear that φu (t) is PE if and only if w(z) φu (t) is PE. Let us now prove that φ w (t) = w(z) φu (t) is PE if and only if F is full row-rank. From (3.6), Ē[φ w (t)φ T w (t)] = F Ē[v(t)v T (t)]F T . As Ē[v(t)v T (t)] 0 (due to white noise properties), Ē[φ w (t)φ T w (t)] 0 if and only if F is full-row rank. Theorem 3.1 combined with Remark 3.2 answers Problem 2.1: it is a necessary and sucient condition to get consistency for the identication of MISO FIR model structure in open-loop for

Table 1 :

 1 Parameter relative errors for the 6 cases. err(b 11 ) err(b 12 ) err(b 21 ) err(b 22 )

	Case 1	284.73%	-67.89%	-40.5%	-67.28%
	Case 2	178.12% -101.48% -54.15% -100.12%
	Case 3	-0.012% -55.41% -11.45% -0.003%
	Case 4	0.29%	0.043%	-0.039% -0.028%
	Case 5	280.91%	-49.05%	-30.9%	-65.05%
	Case 6	0.53%	0.084%	-0.041%	0.098%
	Case 7				

It is true as we assumed that there is no zero-column in F (z).