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Abstract  19 

Reliable models predicting soil organic carbon (SOC) evolution are required to better manage 20 

cropping systems with the objectives of mitigating climate change and improving soil quality. 21 

In this study, data from 60 selected long-term field trials conducted in arable systems in France 22 

were used to evaluate a revised version of AMG model integrating a new mineralization 23 

submodel. The drivers of SOC evolution identified using Random Forest analysis were 24 

consistent with those considered in AMG. The model with its default parameterization 25 

simulated accurately the changes in SOC stocks over time, the relative model error (RRMSE 26 

= 5.3%) being comparable to the measurement error (CV = 4.3%). Model performance was 27 

little affected by the choice of plant C input estimation method, but was improved by a site 28 

specific optimization of SOC pool partitioning. AMG shows a good potential for predicting SOC 29 

evolution in scenarios varying in climate, soil properties and crop management. 30 

Highlights: 31 

• SOC evolution in 60 long-term French trials was analyzed and simulated 32 

• On average, SOC stocks declined between 1970 and 2015 at a rate of -0.20 t C/ha/yr  33 

• Drivers of SOC evolution were similar in Random Forest analysis and AMG model 34 

• Implementing a new mineralization module in AMG improved SOC evolution predictions 35 

• Optimizing site-specific stable C pool could further improve model performance 36 

Keywords: soil organic carbon; mineralization; soil carbon storage; carbon inputs; AMG model 37 



1. Introduction 38 

Soils are fundamental to many provisioning and regulating ecosystem services, the prediction 39 

of which requires improving our understanding of soil processes and their modeling (Smith et 40 

al., 2015; Vereecken et al., 2016). In agricultural systems, soil organic matter (SOM) plays a 41 

crucial role in soil structure, quality and fertility for crop production (Tiessen et al., 1994; 42 

Reeves, 1997). SOM also constitutes an important reservoir of carbon (C) whose dynamics 43 

can significantly impact the global C cycle (Heimann and Reichstein, 2008). Soil organic 44 

carbon (SOC) can act as a sink or source of atmospheric C and has therefore the potential of 45 

mitigating climate change by increasing C storage in agricultural soils (Paustian et al., 1997, 46 

2016), leading to the recent “4 per mille” initiative (www.4p1000.org). Croplands, which are 47 

depleted in SOC compared to grasslands and forests (Smith, 2008; Poeplau et al., 2011), have 48 

a great potential for C sequestration (Lal and Bruce, 1999; Smith, 2004). 49 

SOC dynamics in arable systems is mainly driven by i) C inputs into soils from crop residues 50 

and organic amendments generating newly-formed SOM (Kuzyakov and Domanski, 2000; 51 

Mandal et al., 2007; Maillard and Angers, 2014) and ii) C outputs due to SOM decomposition 52 

and erosion. The unbalance between these two opposite fluxes determines soil C decline or 53 

accumulation. An accurate estimation of C inputs and the consideration of the relevant drivers 54 

of SOM mineralization and stabilization are therefore needed to better predict SOC stock 55 

evolutions, which are primarily under the influence of pedoclimatic conditions and agricultural 56 

practices (Stockmann et al., 2013; Dignac et al., 2017). SOC turns over slowly and variations 57 

in SOC stocks can only be reliably detected on the mid or long-term in most cases. There is 58 

consequently a need for long-term experiments (LTEs) to calibrate and validate mathematical 59 

models able to reproduce accurately SOC dynamics and reliably predict future SOC 60 

evolutions. 61 

Numerous and various soil biogeochemical models featuring different levels of complexity 62 

have been designed to simulate SOC dynamics (Falloon and Smith, 2000; Manzoni and 63 

Porporato, 2009; Campbell and Paustian, 2015). These models can be used to predict SOC 64 



stock evolution, better understand their driving factors and test methods and hypotheses 65 

regarding i) estimates of plant C inputs into soils (Taghizadeh-Toosi et al., 2016; Keel et al., 66 

2017), and ii) mineralization of SOM and its partitioning into functional C pools (Zimmermann 67 

et al., 2007; Herbst et al., 2018). Among the diversity of soil C models, simple process-oriented 68 

models may have some advantages compared to more complex ones or organism-oriented 69 

models (Stockmann et al., 2013). They require a lower number of input variables and have 70 

been designed to simulate SOC evolutions with a reduced set of functions and parameters 71 

reflecting the main processes driving SOC dynamics. They can be applied to a larger number 72 

of experiments and/or over longer time and spatial scales. When correctly calibrated, they may 73 

represent a good compromise between complexity and reliability for general applications and 74 

could be used as decision support tools to help managing SOC in arable systems. 75 

The aim of this study was to enhance the reliability of AMG, a simple model simulating soil C 76 

at annual time steps (Andriulo et al., 1999), in predicting SOC stock evolution in topsoils from 77 

arable cropping systems. AMG was previously shown to satisfactorily simulate the effects of 78 

straw residue export on SOC in various cropping systems and pedoclimatic conditions (Saffih-79 

Hdadi and Mary, 2008) and the effects of alternative arable systems (Autret et al., 2016). It 80 

was also used as a tool for designing innovative cropping systems (Colnenne-David and Doré, 81 

2015; Dufossé et al., 2016). In this work, we evaluated a revised version of AMG, in which was 82 

implemented a new model of SOM mineralization calibrated for the prediction of N 83 

mineralization in arable soils (Clivot et al., 2017). We hypothesized that the main identified 84 

driving factors of soil organic N mineralization could apply for the prediction of SOC 85 

mineralization due to a tight soil C and N coupling (Zaehle, 2013) and could also improve the 86 

modeling of SOC dynamics. We analyzed the impact of two major sources of uncertainty in 87 

SOC modeling using several methods related to i) estimation of aboveground (AG) and 88 

belowground (BG) plant C inputs and ii) partitioning of total SOC between active and stable 89 

pools, and the relevance of these methods for AMG model. 90 

2. Material and methods 91 



2.1. Experimental sites 92 

In a first step, we compiled all the available LTEs carried out in arable cropping systems in 93 

France by research teams or extension services since 1970, in which SOC had been measured 94 

at several dates. They represented 455 treatments spread over 53 sites. We then selected the 95 

most reliable experiments by applying the following criteria: number of replicates ≥ 3; number 96 

of measurement dates ≥ 3; experiment duration ≥ 8 years; mean coefficient of variation of SOC 97 

measurements ≤ 10%; rock fragment content nil or measured. The selection leads to a reduced 98 

dataset of 60 treatments located in 20 sites (Figure 1), covering however a large diversity of 99 

pedoclimatic conditions (Table S1), crop rotation types and practices (Table S2) representative 100 

of most French arable systems. 101 

The field experiments were carried out between 1970 and 2015, lasting between 8 and 41 102 

years (median value of 22 years) (Table 1). The mean annual temperature observed during 103 

the field trials ranged from 9.9 to 13.5°C (median value of 11.0°C). The annual precipitation 104 

ranged from 637 to 1285 mm (median 753 mm) and potential evapotranspiration from 637 to 105 

947 mm (median 721 mm). The field trials exhibited contrasting soil physicochemical 106 

parameters. The clay content ranged from 43 to 308 g kg-1 (median 214 g kg-1), silt content 107 

from 95 to 781 g kg-1 (median 528 g kg-1), sand content from 12 to 791 g kg-1 (median 140 g 108 

kg-1) and CaCO3 content of soils varied from 0 to 781 g kg-1 (median 0 g kg-1). Soil pH varied 109 

between 5.6 and 8.3 (median 6.8). Bulk density ranged from 1.20 to 1.52 g cm-3 (median 1.40 110 

g cm-3). Initial soil organic C (SOC) stocks in the topsoils (ploughed layer, 0-20 to 0-30 cm) 111 

varied widely, from 25 to 105 t C ha-1 (median 44 t C ha-1). 112 

Cropping systems encountered in the 60 treatments were cereal-based rotations with legumes 113 

and/or oilseed crops (32% of the cropping systems), grain maize/winter wheat rotations (27%), 114 

rotations with silage maize (23%, including 3 out of 14 treatments in monoculture), grain maize 115 

monocultures (10%), cereals/sugarbeet rotations with legumes and/or rapeseed (7%) and 1 116 

treatment was a bare fallow soil. Winter cover crops were occasionally grown in 10 treatments 117 

(17%) on 3 different sites. Straw residues were regularly exported in 38% of the treatments 118 



and returned to soil in 62% of them. Exogenous organic matters (EOM) were applied as 119 

manure or slurry in 11 treatments (18%) from 5 different sites. Crops were grown with 120 

conventional N rate applications providing a positive N balance in most situations. Seven sites 121 

included variations in P or K fertilization rate but they did not reveal major effects on yield or 122 

aboveground plant biomass production. Conventional tillage with full inversion ploughing was 123 

conducted in all treatments except 6 treatments from the BOIG-site where soils were 124 

maintained under no-till. Past land use of the investigated sites was cropland except the 5 125 

treatments from the KERB-site which were previously under sown grassland. Details on 126 

cropping systems can be found in Table S2. 127 

2.2. Soil physicochemical analyses 128 

For each field trial, top soil layers were sampled in 3 to 4 replicates on several occasions to 129 

determine soil physicochemical characteristics and SOC stocks. The sampling depth varied 130 

between 20 and 30 cm (median 28 cm), and was equal or greater than the greatest ploughing 131 

depth recorded during the study. For each soil characterization, several soil cores were 132 

collected and mixed together to obtain a representative composite sample. Particle-size 133 

distribution was determined on non-decarbonated soil samples using the pipette method 134 

according to NF ISO 11277. Soil CaCO3 content was quantified by a volumetric method 135 

following NF ISO 10693 and soil pH was measured at a 1:5 soil/water ratio (NF ISO 10390). 136 

Soil bulk density (BD) was determined either by the cylinder method or the gamma radiation 137 

method (Blake, 1965) or estimated according to the soil pedological class. The determination 138 

of soil organic C (SOC) was performed by colorimetry after sulfochromic oxidation (NF ISO 139 

14235). Soil organic N (SON) was quantified following NF ISO 11261, by using the Kjeldahl 140 

method after sulfuric acid digestion. In the later years, the dry combustion method was used 141 

to determine total C and N at some sites. The two different methods were shown to produce 142 

very close estimates of SOC and SON concentrations (Dimassi et al., 2014) and were therefore 143 

not distinguished later. 144 



The SOC stock (QC, expressed in t C ha-1) at the considered soil depth z (m) was calculated 145 

as follows (Poeplau et al., 2017): 146 

����� = � ∙ � ∙ �	 ∙ �1 − �� ∙ 10 (1)

where C is the SOC content (g C kg-1), BD is the bulk density of fine earth (g cm-3) and Rf the 147 

volumetric fraction of rock fragments (> 2 mm) unaccounted for in the analysis. 148 

2.3. Climatic data 149 

For each experimental site, mean annual air temperature (°C) and annual cumulative 150 

precipitation (mm) and potential evapotranspiration (PET in mm, Penman, 1948) were 151 

calculated using daily data obtained from the closest weather station (the distance between 152 

the experimental sites and the weather stations varied from 0 to 55 km, on average 11 km). 153 

2.4. AMG model 154 

2.4.1. Model description 155 

AMG is a model designed to simulate soil C dynamics at an annual time step (Andriulo et al., 156 

1999; Saffih-Hdadi and Mary, 2008). The model considers three organic matter (OM) 157 

compartments: fresh OM (FOM) coming from crop residues or organic amendments which can 158 

be decomposed or humified, and SOM which is divided into active (CA) and stable C pools 159 

(CS). Humified FOM is allocated to CA, which is affected by the mineralization process. CS is 160 

considered completely recalcitrant to mineralization during the prediction time (< 100 yrs). 161 

AMG can be described by this set of equations: 162 

�� = ��� + ��� (2)

����
�� = � ��ℎ��

− ���� (3)

where QC is the total SOC stock (t ha-1), QCA and QCS are the C stocks of the active and 163 

stable C pools (t ha-1) respectively, mi is the annual C input from organic residue i (t ha-1 yr-1), 164 

h is its humification coefficient (the fraction of C inputs which is incorporated in SOM after 1 165 

year) and k is the mineralization rate constant of the active C pool (yr-1). The model allows 166 



simulating separately the C originating from C3 or C4 crops using 13C natural isotopic 167 

abundance measurements (Appendix A). 168 

2.4.2. SOC pool partitioning 169 

In the default parameterization, the initial proportion of the stable pool (CS/C0) was set at 65% 170 

of total C for conditions of land use with a long-term arable history (Saffih-Hdadi and Mary, 171 

2008). In the case of arable soils with a long-term grassland history, CS/C0 was assumed to be 172 

lower as suggested by Huggins et al. (1998) and was set by default at 40% of initial SOC 173 

content, this value corresponding to the lower limit of optimum values found earlier for 174 

simulating SOC evolutions with AMG (Saffih-Hdadi and Mary, 2008). 175 

2.4.3. Environmental functions 176 

In AMGv1, the mineralization rate k of the active C pool depends on climatic conditions and 177 

soil characteristics and is calculated using environmental functions as follows: 178 

������ =  �� ∙ �� � ∙ ��!� ∙ ��"� ∙ ���#�$%� (4)

where k0 is the potential mineralization rate (yr-1), f(T) is a function of mean annual air 179 

temperature (°C) and f(H) is a function used as a proxy to describe the effects of soil moisture. 180 

f(H) is a function of the annual water inputs (precipitation and irrigation water) and PET. f(A) 181 

and f(CaCO3) are reduction rate functions of clay and CaCO3 contents on SOM mineralization, 182 

respectively. 183 

In AMGv2, we implemented the model of SOM mineralization recently developed for the 184 

prediction of N mineralization in arable soils (Clivot et al., 2017), so that the mineralization rate 185 

k is calculated in this modified version following this equation: 186 

�����& =  �� ∙ �� � ∙ ��!� ∙ ��"� ∙ ���#�$%� ∙ ��'!� ∙ ���/)� (5)

where f(T), f(H), f(A) and f(CaCO3) are the same functions than in AMGv1, the parameter 187 

values of f(A) and f(CaCO3) differing slightly between the two versions. In AMGv2, the 188 

additional functions f(pH) and f(C/N) describe the effects of soil pH (increasing function) and 189 

C:N ratio (Gaussian function) on SOM mineralization. The soil functions f(A) and f(CaCO3) and 190 

their associated parameters in AMGv1 are similar to those used in the v8.5 and earlier version 191 



of the STICS model (Coucheney et al., 2015), while those in AMGv2 are corresponding to the 192 

mineralization model developed in Clivot et al. (2017), except the parameterization off(CaCO3), 193 

which has been optimized independently using mineralized N data in chalky soils (unpublished 194 

data). The potential mineralization rate k0 was the only parameter optimized with AMG for the 195 

calibration of each version of the model. All the functions and parameters are detailed in 196 

supplementary material (Appendix A). 197 

2.4.4. Calculation of carbon inputs 198 

We adapted to French experimental data the approach described in Bolinder et al. (2007) to 199 

calculate relative annual C allocation coefficients in the different plant parts in order to estimate 200 

aboveground (AG) and belowground (BG) C inputs from crops residues. Plant aboveground C 201 

was calculated according to measured dry matter yield (YP expressed in t ha-1 yr-1) and mean 202 

harvest index (HI, grain to aerial biomass (including grain) ratio) obtained from a compilation 203 

of data from French experiments. Plant C in straw and stubble (CS) was calculated using a C 204 

content of 0.44 g g-1 in the aboveground plant material (Redin et al., 2014): 205 

�� =  *+  ∙ 1 − !,
!, ∙ 0.44 (6)

Aboveground C inputs (CAG) depend on the fraction of CS (PS) that is returned to the soil: 206 

��� =  /� ∙ �� (7)

PS value being equal to1 when all crop residues are left in the field or lower than 1 when a part 207 

of CS is exported. PS values were determined for the different crops in case of straw residues 208 

export (PSE) and correspond to the fraction of CS, represented by stubble and chaff, that is left 209 

to the soil. PSE values for the different crops are reported in Table S3. 210 

For BG input estimates, two C pools were calculated: 1) plant C in roots (CR) and 2) plant C in 211 

extra-root material (CE) which corresponds to organic matter deriving from root-turnover and 212 

root exudates. CR for the different crops were calculated using shoot-to-root ratios (SR) 213 

compiled in Bolinder et al. (2007) and completed by French experimental data, assuming a C 214 

content of 0.40 g g-1 in the BG plant material (Boiffin et al., 1986), lower than in AG crop 215 

residues (Buyanovsky and Wagner, 1986): 216 



�0 =  *+
1� ∙ !, ∙ 0.40 (8)

Extra-root C inputs were calculated following the assumption made by Bolinder et al. (2007): 217 

�2 =  0.65 ∙ �0 (9)

In order to estimate BG inputs, we used the asymptotic equation of Gale and Grigal (1987) to 218 

determine the cumulative BG input fraction (BGF) from the soil surface to a considered depth 219 

(cm): 220 

�56789:;< = 1 − =89:;< (10)

where β is a crop-specific parameter determined using the root distributions for temperate 221 

agricultural crops reported in Fan et al. (2016). Calculated β values are reported in Table S3. 222 

The depth was set at 30 cm to calculate BG inputs (CBG): 223 

�>� =  �567%� ∙ ��0 + �2� (11)

Calculated BG inputs, expressed in t C ha-1, were further corrected for site-specific considered 224 

depth (20 to 30 cm in this study) by the AMG model. Relative annual C allocation coefficients 225 

obtained for the crops encountered in our experiments are reported in Table S3. C inputs from 226 

exogenous organic matter (EOM) were calculated according to the amount of organic 227 

amendment applied and to measured C content conversion coefficients and were expressed 228 

in t C ha-1. 229 

2.4.5. Humification coefficients 230 

Humification coefficients of AG crop residues were calculated as in the STICS model 231 

(Coucheney et al., 2015) using their specific average C/N ratio (Machet et al., 2017) and the 232 

functions and parameterization described in Justes et al. (2009), low C/N ratio of crop residues 233 

promoting humification. The calculated humification coefficients, ranging from 0.22 (for a C/N 234 

ratio of 82) to 0.31 (for a C/N ratio of 22) for the different crops, are reported in Table S3. 235 

We assumed that root derived C contributed more to stored SOC than the same amount of C 236 

derived from AG crop residues (Balesdent and Balabane, 1996; Ghafoor et al., 2017; Kätterer 237 

et al., 2011). We calculated a value of 0.39 for the humification coefficient of BG inputs, both 238 

using the data of Balesdent and Balabane (1996) and Kristiansen et al. (2005) with 13C tracing 239 



and root incubation experiments described in Justes et al. (2009). It corresponds to a relative 240 

contribution of BG material to humified C 26% to 77% greater than that of AG residues. This 241 

range is in accordance with the data compiled by Rasse et al. (2005) who found an average 242 

of 30% increase of humification coefficient for root compared to shoot material in incubation 243 

studies. 244 

Humification coefficients of diverse EOMs were determined by soil incubations and inverse 245 

modeling in AMG simulations performed on field-experiments. They were used for the 246 

parameterization of EOMs applied into soils of this study. Humification coefficients used were 247 

0.52 and 0.53 for bovine and pig manure respectively, and 0.50 and 0.15 for bovine and pig 248 

slurry, respectively (Bouthier et al., 2014). 249 

2.5. Model simulations 250 

2.5.1. Modeling steps 251 

Prior to simulations of SOC stock evolutions with AMG model, we first used Random Forest 252 

(RF) regression analysis as a mean to identify relevant variables (Hapfelmeier and Ulm, 2013) 253 

driving SOC stock change rates in our experiments. SOC stock change rate, as the response 254 

variable, was calculated as the slope of the linear regression of SOC stocks against time in 255 

each trial. Selected input variables for the RF analysis were related to climatic conditions 256 

(mean annual temperature, cumulative precipitation and PET), soil characteristics (initial SOC 257 

stock, soil pH, C:N ratio, clay, silt, sand and CaCO3 contents) and agricultural practices 258 

(frequencies in the rotation of straw residue export, bare fallow or winter cover crops and mean 259 

annual EOM applications). RF was run in R Software version 3.3.0 (R Core Team, 2016) using 260 

the randomForest package (Liaw and Wiener, 2002), the number of trees being set to ntree = 261 

100,000 to ensure convergence, while the other parameters were set to their default values. 262 

The performance in predicting SOC stock change rates by RF was compared with that 263 

obtained with the two model versions (AMGv1 and AMGv2) against the database. After this 264 

first step in which we analyzed SOC stock change rates, we focused on the simulations of soil 265 

C stocks with AMG model. The quality of prediction of AMGv1 and AMGv2 was compared to 266 



the SOC evolution measured in the 60 field trials. Using AMGv2, we evaluated the effects of 267 

alternative methods for estimating plant C inputs (2.5.2) and for setting the initial stable C pool 268 

proportion (2.5.3). We also performed a sensitivity analysis of AMGv2 outputs to the different 269 

input variables (see part 2.6.2). 270 

2.5.2. Assessment of plant C inputs 271 

Using AMGv2, we evaluated the effects of alternative methods for estimating plant C inputs. 272 

Keel et al. (2017) have pointed out the importance of the method of calculation of C inputs in 273 

modeling performance. We compared three methods for estimating aboveground plant C 274 

inputs (R, A1 and A2) and three methods for calculating belowground crop residues (B1-B3). 275 

In the reference method R (detailed in part 2.4.4), fixed HI values were used to calculate 276 

aboveground C inputs (CAG) regardless of crop yields. In method A1, harvest index was 277 

calculated as a function of crop yield using coefficients from Fan et al. (2017) who found linear 278 

correlations between HI and crop yields and suggested that these relationships should improve 279 

estimations of crop residue inputs in cold continental climates. Method A2 was similar to A1, 280 

but used “local coefficients” for four major crops (wheat, winter barley, maize and pea) derived 281 

from French experimental data. The Bolinder approach was used for crop species which were 282 

not referenced by Fan et al. (2017). All coefficients are reported in Table S4. 283 

Recent studies suggested that belowground inputs (CBG) should be estimated regardless of 284 

crop yield or aboveground biomass using crop specific fixed values and/or dependent on 285 

farming systems (Taghizadeh-Toosi et al., 2016; Hirte et al., 2017; Hu et al., 2018). In the three 286 

methods B, aboveground inputs (CAG) were calculated using the reference approach while BG 287 

input estimates (CBG) were fixed for each crop species. In method B1, CBG was calculated for 288 

each crop as the average of all CBG estimates obtained for this crop in our database with the 289 

reference approach. Method B2 was similar but CBG was decreased by 50% whereas it was 290 

increased by 50% in method B3, in order to account for uncertainties on the shoot:root ratio 291 

estimates which show a coefficient of variation close to 50% (Bolinder et al., 2007). In all three 292 

methods, the belowground estimates included the dead root material (CR) and the extra-root 293 



material (CE), the latter being assumed to represent 65% of root material, as proposed by 294 

Bolinder et al. (2007). The potential mineralization rate k0 was re-optimized for each method. 295 

2.5.3. Assessment of the size of the stable C pool 296 

Using AMGv2, we compared three methods (M1-M3) of parameterization of the initial stable 297 

pool fraction (CS/C0). In method M1, fixed values of CS/C0 were compared with those often 298 

recommended in other models as previously performed in Saffih-Hdadi and Mary (2008): we 299 

compared three values covering the range of usually reported values: 65%, 40% and 10% for 300 

soils with a long-term arable history. The proportion was reduced by 40% in soils with a long-301 

term grassland history. For each parameter set, the potential mineralization rate k0 was 302 

optimized giving three different k0 values. 303 

In method M2, we tested the hypothesis that CS/C0 is not constant but rather a decreasing 304 

function of SOC stock, suggesting that the active C pool could be proportionally higher in soils 305 

with high SOC content. We evaluated this hypothesis using the following empirical function: 306 

��
��

=  /� ∙ ?7:∙@AB (12)

where QC0 is the initial SOC stock (t C ha-1). The parameter p was set at one of three values 307 

(0.001, 0.005 and 0.010) and the parameter PS (the proportion of CS/C0 for very low SOC 308 

stocks) was optimized each time, while k0 was fixed at its default value. 309 

In method M3, CS/C0 was optimized separately in each of the 20 sites, assuming that all 310 

treatments of the same site had a similar stable C pool, using each of the three values of 311 

parameter k0 determined in method M1. 312 

2.6. Model evaluation 313 

2.6.1. Statistical criteria 314 

Statistical measurements of agreement between observed SOC stock change rates and 315 

predictions made by the RF and AMG models were performed by calculating the mean 316 

difference (MD, simulated minus observed value), the modeling efficiency (EF), the index of 317 

agreement (d1), the root mean squared error (RMSE) and the relative root mean squared error 318 



(RRMSE) (Smith et al., 1996; Wallach, 2006; Willmott et al., 1985). The average values of MD 319 

and RMSE obtained in each experiment were used to calibrate the potential mineralization rate 320 

k0, which has to be optimized for each version of the model. A trial-and-error method was 321 

applied to determine the k0 value that allowed to minimize both criteria. The same procedure 322 

was performed to determine the best values of parameters that were optimized when 323 

assessing the different C input calculation methods and when optimizing the C pool 324 

partitioning. 325 

The predictive quality of AMGv1 and AMGv2 models was assessed by calculating the root 326 

mean squared error of prediction (RMSEP) using leave-one-out cross-validation (Stone, 1974). 327 

The evaluation was carried out each time on one site excluded from the calibration of k0, which 328 

was optimized using the data of the 19 remaining sites. The mean RMSEP of the 20 situations 329 

was computed to compare the predictive quality of AMGv1 et AMGv2. 330 

The coefficient of variation (CV) of measured SOC stocks was used to compare the 331 

measurement error with the relative model error (RRMSE). 332 

2.6.2. Sensitivity analysis to input variables 333 

We adapted the method conducted by Poeplau (2016) for the sensitivity analysis of RothC 334 

model. We analyzed the sensitivity of AMGv2 outputs to a 20% increase in several variables 335 

related to C inputs (crop yields, aboveground and belowground C inputs) and SOM 336 

mineralization (rainfall, PET, initial size of the active C pool, soil C:N ratio, clay and CaCO3 337 

contents), except for temperature and pH which were increased by 2°C and 1 unit, respectively. 338 

To this end, we simulated the SOC stock evolutions of reference scenarios for all 60 treatments 339 

over an extended period of 100 years. We calculated for each treatment the difference in SOC 340 

stocks at the end of the simulation (steady state) between a modified scenario (increase of a 341 

variable) and the reference one and analyzed the variations observed for the 60 treatments on 342 

model outputs. 343 

3. Results 344 



3.1. Drivers and prediction of SOC stock change rates 345 

For the 60 treatments, measured SOC stock changes ranged from -24.0 to +7.1 t C ha-1 346 

between the start and the end of experiments (Table 1). Annual SOC stock change rates varied 347 

from -1.01 to +0.45 t C ha-1 yr-1; the median and mean rates were -0.08 and -0.20 t C ha-1 yr-1, 348 

respectively. The linear regression made to calculate these rates is meaningful, since the 349 

RMSE was small (1.2 t C ha-1) compared to the mean standard deviation of measurements 350 

(2.3 t C ha-1), indicating that the general evolution of SOC was more or less linear over time. 351 

The distribution of SOC change rates was skewed towards negative values (Figure 2). The 352 

interval [-0.1, 0.1] t C ha-1 yr-1 corresponds to the mean standard deviation of measurements 353 

and can be considered as a SOC stock stability range. It represented 42% of situations. SOC 354 

declined in 49% of situations and SOC increase occurred in the remaining 10% of situations. 355 

The Random Forest (RF) analysis revealed that the initial C stock was the most important 356 

variable in predicting SOC stock change rate (Figure 3A); indeed, the two variables are 357 

negatively correlated (Pearson r = -0.59, p < 0.001). The variables related to climate 358 

(precipitation, PET and temperature) were the second most important factor followed by the 359 

management of crop residues and soil parameters (clay, pH and C/N). The remaining input 360 

variables had less importance in the RF model applied on our dataset. Significant correlations 361 

were found between SOC stock change rate and precipitation (r = -0.44, p < 0.001) and PET 362 

(r = 0.37, p < 0.01) but no clear relationship was found with the other variables. 363 

Measured rates of SOC stock change were compared with predicted rates either by the RF 364 

model (Figure 3B) or by simulations performed by AMG models: AMGv1 (Figure 3C) and 365 

AMGv2 (Figure 3D). The closeness of fit to the 1:1 line shows that there was no marked bias 366 

in the predictions made by the three models, MD varying between 0.00 and -0.05 t C ha-1 yr-1. 367 

The range of predicted rates was narrower for RF than for measured values. Overall, the 368 

statistical criteria revealed that AMGv2 performed better in predicting SOC stock change rates 369 

than RF and AMGv1 showing a higher modeling efficiency (EF) and index of agreement (d1), 370 

and a lower modeling error (RMSE). 371 



3.2. Modeling SOC stock dynamics with AMG model  372 

An example of SOC stock evolution and simulation performed by AMGv2 on one experiment 373 

at the Boigneville site is illustrated in Figure 4. The model reproduced well the dynamics of 374 

total SOC stocks, accounting for the effects of straw residue export which led to a slight 375 

decrease in C stock between 1982 and 1994 and the change in crop rotation which occurred 376 

in 1998. It also simulated satisfactorily the evolution of C stocks originating from C3 and C4 377 

crops, particularly the decrease in C4 stock after changing the 2-year wheat-maize rotation to 378 

a 4-year rotation without C4 crops. 379 

The ability of AMGv1 and AMGv2 to predict SOC stock evolution was evaluated in the 60 field 380 

treatments (Figure 5). Figures 5A and B show the absence of marked bias in the simulation of 381 

total SOC stock with both model versions. Figures 5C and 5D show that there was no increase 382 

in model error over time for the different C stocks simulated by both AMG versions. The mean 383 

modeling error was lower for AMGv2 than for AMGv1, RMSE being respectively 2.6 and 3.2 t 384 

C ha-1 for total SOC stocks. The mean modeling error for C3 stocks was also smaller for AMGv2 385 

(MD = -0.5 and RMSE = 2.9 t C ha-1) than for AMGv1 (MD = -1.1 and RMSE = 3.9 t C ha-1). 386 

The predictive quality of AMGv2 was better than that of AMGv1, RMSEP being respectively 387 

2.7 and 3.5 t C ha-1 for total SOC stocks, when estimated using a cross-validation method. 388 

Compared to AMGv1, the modified version AMGv2, including the new mineralization function 389 

established on a completely independent dataset, was found to improve the prediction of SOC 390 

evolutions on long-term experiments. 391 

AMGv2 was also tested on the database reported by Saffih-Hdadi and Mary (2008). We 392 

obtained a similar quality of fit than that found by these authors with the previous AMG version 393 

(mean RMSE of 1.6 t C ha-1 for both versions). All results validated the reliability of this new 394 

version, which was therefore used in the following analyses. 395 

3.3. Sensitivity analysis of AMGv2 model 396 

The sensitivity analysis of AMGv2 was conducted on steady state situations. The reference 397 

scenario simulating the 60 treatments over a 100-year period predicted that the proportion of 398 



active pool C would reach an asymptotic value close to the initial value (35% of total C) for 399 

situations either with no export of straw biomass or with straw removal but receiving EOM 400 

applications (Figure S1). The proportion of active C would, on average, stabilize around 20% 401 

of SOC for situations with systematic straw residue removal. 402 

The final SOC stocks simulated for this reference scenario were compared with those obtained 403 

in alternative scenarios in which one variable related to C input or SOM mineralization 404 

(depending on climate and soil properties) was increased. The mean SOC difference at steady 405 

state between the alternative and reference scenarios ranged from -4.1 to +2.7 t C ha-1, 406 

depending on the input variable modified (Figure 6). Variations in crop yield had a rather 407 

marked effect on SOC stocks (mean +2.7 t C ha-1), and corresponded to the sum of 408 

aboveground and belowground C effects. The model was particularly sensitive to changes in 409 

temperature, soil pH and C/N ratio, whereas changes in precipitation and PET affected very 410 

little the SOC stocks. The largest variability between sites in model response concerned soil 411 

pH. The initial size of the active C pool was also an important factor determining SOC stock at 412 

steady state. This emphasizes the importance of the variables with the largest uncertainty, i.e. 413 

plant C inputs calculated from crop yields and the initial SOC pool partitioning. 414 

3.4. Impact of alternative methods for estimating plant C inputs 415 

We evaluated the effect of alternative methods for estimating AG and BG plant C inputs on 416 

SOC modeling with AMGv2, compared to the reference R(Table 2). Method A1, which 417 

considered variable harvest indexes depending on crop yields, increased slightly model error 418 

for the simulation of soil C stocks, RMSE being of 2.6 vs 2.8 t C ha-1 for R and A1 methods, 419 

respectively. Method A2, which used local coefficients for calculating harvest indexes, 420 

produced slightly better simulations (RMSE = 2.7 t C ha-1) than A1 but did not improve SOC 421 

simulation compared to the reference. The alternative method of calculation of belowground 422 

inputs, in which root biomass was assumed to be only species dependent, did not affect much 423 

the quality of fit, as can be seen with method B1. However, when root biomass was reduced 424 

by 50% (method B2), SOC stock predictions were slightly improved for total SOC (RMSE = 425 



2.5 t C ha-1) and particularly for C4 stocks for which the bias observed in the reference method 426 

disappeared. Conversely, a 50% increase in root C input (method B3) resulted in a poor quality 427 

of fit, both for total SOC and C4 stocks. It must be noticed that the reduction of root input in 428 

method B2 is accompanied by a reduction in the potential mineralization rate k0 which drops 429 

from 0.29 to 0.24 yr-1. 430 

3.5. Impact of alternative methods for initializing the stable SOC pool 431 

Three alternative methods (M1-M3) were assessed using AMGv2 for setting the size of the 432 

initial stable SOC pool (Table 3). Method M1 compares the effects of three values for the initial 433 

stable pool proportion (CS/C0). Results show that decreasing CS/C0 from the default value of 434 

0.65 (for sites with long-term arable history) to 0.40 or 0.10 decreased the quality of fit for the 435 

simulations of total SOC, particularly for C3 and C4 stocks, increasing both the bias and the 436 

RMSE. The mineralization rates k0, optimized for each initial CS/C0 value (0.65, 0.40 and 0.10), 437 

dropped from 0.29 to 0.17 and 0.11 yr-1, respectively. 438 

In method M2, we tested the hypothesis that CS/C0 could be a decreasing (exponential) 439 

function of SOC stock. One parameter of this function (p) was fixed and the other (PS) was 440 

optimized. This hypothesis proved to be inappropriate since model performance declined 441 

compared to the reference whatever the value of parameter p. The quality of fit decreased 442 

gradually as the slope of the exponential function increased. 443 

In method M3, the size of the stable C pool was supposed to be site specific. The optimized 444 

mineralization rates k0 obtained in method M1 were used as fixed parameters whereas CS/C0 445 

was optimized for each site. This assumption resulted in a decreased model error for the 446 

simulations of total SOC stocks compared to the reference approach, whatever the k0 value. 447 

The RMSE obtained with the default k0 value of 0.29 yr-1 was 1.8 t C ha-1, lower than those 448 

obtained for k0 values of 0.17 and 0.11 yr-1 (RMSE = 2.0 and 2.4 t C ha-1, respectively). In 449 

addition, these alternative k0 values (corresponding to low values of CS/C0) did not allow to 450 

simulate C3 and C4 stocks and generated an important bias on each stock (up to 3.5 t C ha-1). 451 

The variability of CS/C0 values optimized on each site for each k0 value is shown in Figure 7. 452 



The median CS/C0 values obtained for the 20 sites (0.63, 0.37 and 0.08) were close to the 453 

single values initially applied to all sites (0.65, 0.40 and 0.10). The variability of CS/C0 between 454 

sites was much lower for the default value of k0 (0.29 yr-1) than for the two other settings. 455 

4. Discussion 456 

4.1. Observed SOC evolution in arable cropping systems 457 

The dataset considered in this study covers a period ranging from 1970 to 2015, the average 458 

being a 24-year period (1980-2003). It covers the diversity of arable cropping systems 459 

practiced in France during these years, with regard to crop rotations, tillage practices, crop 460 

residue management, N fertilization and crop yields. During the more recent years, an 461 

evolution towards a higher frequency of catch crop cultivation and a slight reduction in tillage 462 

operations and intensity was observed. Our results showed on average a slight decrease in 463 

SOC stocks (mean rate of change = -0.20 t C ha-1 yr-1). This decrease could be attributed to 464 

the legacy effect of conversion from grass to arable land over the past 25 years with 465 

comparatively lower organic matter restitution levels. In many regions, the areas devoted to 466 

permanent meadows have declined regularly as exemplified in the Seine-Normandie Basin 467 

between 1971 and 2013 in North of France (Beaudoin et al., 2018). Steinmann et al. (2016) 468 

observed a drastic decline under arable crops in Germany between 1989 and 2015, which was 469 

also mainly attributed to grassland conversion to cropland. This is consistent with other results 470 

obtained on conventional arable systems under temperate climate. For example, Saffih-Hdadi 471 

and Mary (2007) gathered a set of 391 agricultural fields monitored several times in Picardie 472 

(Northern France) during the 1970-1997 period and found a mean decrease rate of -0.08 t C 473 

ha-1 yr-1. In Belgium, Goidts and van Wesemael, (2007) reported a decrease of -0.11 t C ha-1 474 

yr-1 in arable crops during 50 years (1955-2005) confirmed by Meersmans et al. (2011) who 475 

observed a mean decrease of -0.09 t C ha-1 yr-1 from 1960 to 2006.  476 

4.2. Drivers of SOC dynamics  477 



The main drivers of SOC dynamics identified by RF were the soil characteristics (initial SOC 478 

stock, texture, ...), the agricultural practices (residue management, cover crops, EOM) and the 479 

climate (precipitation, temperature). The initial SOC stock was a main factor as shown by the 480 

RF analysis and the negative correlation between SOC change rates and the initial SOC stock. 481 

Such a strong negative relationship was already pointed out by Goidts and van Wesemael, 482 

(2007), Zhao et al. (2013) and Luo et al. (2017). It suggests that soils with the highest SOC 483 

contents, with past grassland or having received important amounts of EOM, were not yet at 484 

equilibrium and are still declining. This is consistent with Oberholzer et al. (2014) who found 485 

that SOC content was still declining even 60 years after the conversion of grassland to 486 

cropland. Post et al. (2008) have pointed out the importance of an accurate determination of 487 

initial SOC stock in the propagation of uncertainty in SOM models.  488 

Residue management (straw removal vs retention) was also an important factor identified by 489 

both RF and AMG model. This confirms the results obtained by Saffih and Mary (2008) and 490 

Liu et al. (2014). Reducing residue removal increased SOC in most wheat cropping systems 491 

studied in Australia by Zhao et al. (2013) and Luo et al. (2017). 492 

The impact of climatic factors was more surprising: the temperature effect was consistent 493 

between RF analysis and AMG model, but not precipitation, which was an influent factor in RF 494 

but not in AMG. This apparent contradiction is due to the fact that precipitation was strongly 495 

correlated with initial SOC content (r = 0.59, p < 0.001). In fact, running the RF analysis without 496 

this variable explained as much variance than with it. The small sensitivity of AMG model 497 

reflects the moderate range of water balance (P-PET varied from -290 to 595 mm yr-1) in all 498 

sites, without dry situations such as described by Luo et al. (2017). Indeed, we confirmed the 499 

absence of improvement in model performance when recalibrating this function. Taghizadeh-500 

Toosi et al. (2014) also found that there was no need to account for moisture effects in the C-501 

TOOL model to simulate the data obtained in three LTEs of Northern Europe.  502 

Finally, two other soil characteristics were identified as being influent on SOC evolution: the 503 

C/N ratio and soil pH. Both were identified in this study by the Random Forest analysis and 504 



previously as drivers of organic N mineralization (for more discussion see Clivot et al., 2017), 505 

justifying the implementation of these variables and their effect in AMGv2. 506 

The model could simulate the LTEs without considering nitrogen (N) availability as a possible 507 

driver of SOC evolution, as suggested by the C:N stoichiometry observed in SOM composition 508 

(van Groenigen et al., 2017). This may result from the positive N surplus observed in most of 509 

our experiments, but a possible limitation should be considered in other experiments, 510 

particularly those receiving low N inputs. 511 

4.3. Reliability of AMG model 512 

The new AMG version was found to better predict SOC stock change rates than RF and 513 

AMGv1. The general evolution of SOC was found to be more or less linear over time. However, 514 

on the contrary to AMG, RF is a statistical model which cannot capture subtle changes in SOC 515 

through time since RF, as used in this study, cannot take into account annual variations of 516 

climate and C inputs. In AMGv2, the implementation of two additional variables (soil pH and 517 

C/N ratio), previously identified as drivers of SOM mineralization (Clivot et al., 2017) but not 518 

considered in AMGv1, slightly improved the quality of SOC predictions, since the relative root 519 

mean square error (RRMSE) decreased from 6.1% for AMGv1 to 5.3% for AMGv2. This result 520 

was obtained with a common set of parameters for all sites, without any site-specific 521 

calibration. This model error was only slightly greater than the mean coefficient of variation of 522 

measurements which was 4.3%. Furthermore, the model error did not increase with time, 523 

showing that there was no significant drift over time. The model error is comparable to that 524 

obtained on other LTEs with other models. Smith et al. (1997) compared nine models on 7 525 

LTEs and found a RRMSE varying between 6.5% and 10% for the best 6 models. Falloon and 526 

Smith (2002) simulated 6 LTEs and obtained a mean RRMSE of 6.8% for Century and 9.9% 527 

for RothC. The CCB model (Franko et al., 2011), evaluated on 40 sites in central Europe, 528 

showed a mean RRMSE of 8.5%. Taghizadeh-Toosi et al. (2014) evaluated the C-TOOL model 529 

on 3 LTEs in Northern Europe and obtained a mean RRMSE of 6.1% for topsoils. Using the 530 



Century model, Dimassi et al. (2018) obtained a RRMSE of 13.1% on a subset of our database 531 

with 6 LTEs. 532 

Datasets including 13C natural tracing experiments (with C4 and C3 plants) are essential to 533 

better evaluate SOM models, because they allow to characterize separately the decrease 534 

in «old» SOM and the increase in newly formed SOM (Balesdent, 1996). The AMG model was 535 

shown to simulate well the evolution of C3 and C4 stocks in the experiments which included C4 536 

plants, showing its ability to simulate the two components of SOC change.  537 

4.4. Uncertainties in plant C input estimates 538 

C input estimates in our study are close to those obtained in comparable climatic conditions, 539 

reported by Wiesmeier et al. (2014) in Germany for cereals (3.2 vs 3.1 t C ha-1 yr-1) and for 540 

other crops (2.7 vs 2.3 t C ha-1 yr-1). These inputs, which represent annually 5.3% of SOC on 541 

average, include uncertainties on aboveground inputs, particularly on the harvest index. The 542 

model performance was little sensitive to the method of calculation: the model did not perform 543 

better when using a variable HI calibrated with French references compared to the original 544 

Bolinder method with a fixed HI. Comparing five different methods, Keel et al (2017) also found 545 

that the Bolinder method gave the best predictions of SOC evolution using the C-TOOL model. 546 

However, the greatest uncertainties about C input are those relating to belowground C. For 547 

root biomass estimates, we found little difference in model performance when using allometric 548 

equations (R) or fixed biomass (B1). Taghizadeh-Toosi et al. (2016) made the same 549 

comparison with the C-TOOL model and obtained a better quality of fit when using the fixed 550 

root biomass option. Recent studies suggest that root biomass could be independent of aerial 551 

biomass, questioning the rationale of allometric relationships. Hirte et al. (2018) found that N 552 

fertilization rate affects the below:above ground ratio of wheat and maize but does not modify 553 

the belowground C inputs. Komainda et al. (2018) found no effect of N fertilization on root 554 

biomass and turnover in two cultivars of maize. Hu et al. (2018) even found larger root biomass 555 

of cereals and catch crops in organic farming than in conventional systems, in spite of a lower 556 



aerial biomass. Therefore, using a fixed amount of root biomass depending on crop species 557 

only seems to be a preferable option for simulating SOC evolution. 558 

Concerning the BG inputs, our results show that model performance (including the prediction 559 

of C4 stocks) markedly declined when increasing BG inputs beyond the default fixed root 560 

biomass (method B1). This indicates that the contribution of root and extra root material (65% 561 

of root material, i.e. 40% of BG inputs) to the humified C input is set at its maximum and could 562 

even be overestimated. A similar conclusion on extra root C was drawn by Poeplau (2016) 563 

with the RothC model, while results from a recent field study (Hirte et al., 2018) suggest that 564 

the proportion of rhizodeposition of total BG inputs for maize and wheat should be higher (on 565 

average 55% in the topsoil for net rhizodeposition C) than the widely adopted value of 40%. 566 

However, besides the uncertainty on the amount of extra root material deposited, it should be 567 

noticed that the humification coefficient applied to this fraction in our model is equivalent to that 568 

of roots, whereas root exudates are very labile substances and might contribute less to SOC 569 

formation.  570 

4.5. Initializing the size of the stable SOC pool 571 

The sensitivity analysis indicated that the initial setting of the inert SOC pool had a large impact 572 

on model outputs, confirming previous studies (e.g. Puhlmann et al., 2007). The site-specific 573 

adjustment of SOC pools gave better simulations than default parameterization, since the 574 

RRMSE reduced from 5.3 to 3.7% as previously observed with Century and RothC models 575 

(Falloon and Smith, 2002). However, the lack of information on the past land use (particularly 576 

the grassland history) did not allow us to calculate a more precise initial partitioning of SOC 577 

between pools. 578 

During the calibration phase, the optimization of the size of the recalcitrant C pool (either inert 579 

or having a residence time greater than 1,000 years) is highly dependent on the value of the 580 

potential rate constant of the active C pool, because both are correlated. The strong correlation 581 

between the two parameters may even result in equifinality, i.e. leading to similar model 582 

performance for widely varying paired parameter values (Luo et al., 2016). This was not the 583 



case with our dataset and model, since the model error increased significantly, particularly for 584 

the C4 stocks simulations, when the initial stable pool fraction was reduced from 65% to 10%. 585 

The mean value found in optimizing the site-specific CS/C0 was 60 ±18% for sites with a long-586 

term arable history and was found to be lower (i.e. 47%) for the site with long-term grassland 587 

history. This result confirms the default parameterization established earlier (Saffih-Hdadi and 588 

Mary, 2008). 589 

Chemical methods have been proposed to characterize the more stable SOC fractions with a 590 

limited success (Helfrich et al., 2007; von Lützow et al., 2007). Combining particle size 591 

fractionation and chemical analysis was more successful in separating SOC into fractions with 592 

different turnover rates (Poeplau et al., 2018) and in matching measurable C fractions and 593 

model pools (Zimmermann et al., 2007; Herbst et al., 2018). New methods such as thermal 594 

analysis are also promising: they could allow identifying fractions having a residence time of 595 

about 20 years (Soucémarianadin et al., 2018), these latter corresponding to the residence 596 

time in our experiments (varying from 7 to 26 years). Data from long-term bare fallow 597 

experiments (Barré et al., 2010) can also be combined with thermal analysis to quantify the 598 

size of centennially persistent SOC pool (Cécillon et al., 2018) in order to better calibrate soil 599 

C models. 600 

5. Conclusion 601 

The modified version of AMG model including the new function of SOM mineralization was 602 

found to improve the prediction of SOC evolution compared to the previous version. The model 603 

could simulate SOC stock dynamics in LTEs conducted in French conventional arable systems 604 

with a mean relative model error of 5.3%. The results strengthen the importance of SOC pool 605 

partitioning and therefore the need of methods that would allow to measure functional C 606 

fractions to better initialize soil C model simulations. The model performance appeared to be 607 

little sensitive to the method of plant C input estimation. Considering root C inputs independent 608 

of aerial biomass production as shown by recent studies was found to perform as well as 609 



allometric relationships, suggesting that using a fixed amount of root biomass depending on 610 

crop species should be preferred in the model. AMG demonstrates a good potential for 611 

predicting SOC evolution in scenarios varying in climate, soil properties and management for 612 

conventional arable cropping systems. The next objective will be to improve the ability of AMG 613 

for modeling other systems such as low input or organic systems, cropping systems including 614 

perennial species or permanent grasslands in order to extend the validity domain of the model 615 

to simulate contrasting agricultural systems. 616 
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Figure 1. Location of the 60 field trials distributed among 20 sites in France. The 
correspondence between site numbers and field-experiments is defined in Tables S1 and S2. 
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Figure 2. Distribution histogram of SOC stock change rates over the 60 field trials 
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Figure 3. Variable importance in a random forest (RF) model predicting SOC stock change 
rates for the 60 field trials (A) and observed vs predicted variations obtained with the 

Random Forest (B), AMGv1 (C) and AMGv2 (D) models. SOC: soil organic carbon, EF: 
modeling efficiency, d1: index of agreement, RMSE: root mean squared error of the model. 
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Figure 4. Example of observations (symbols) and simulations performed by AMG (solid lines) 
of SOC stock evolutions in the upper soil layer (29 cm depth) of one treatment of the Boigneville 
long-term experiment (BOIG_A_CM4_L0). Circles represent total SOC stocks, while triangles 
and squares represent C stocks originating from C3 and C4 crops, respectively. Crop 
abbreviations: WW = Winter Wheat, GM = Grain Maize, P = Pea, SB = Spring Barley, S = 
Sugarbeet. Error bars are measured SD. 

  



36 

 

 

 

Figure 5. Measured vs predicted SOC stocks by the AMGv1 (A) and AMGv2 (B) models and 
error (difference between simulated and measured SOC stocks) over time of AMGv1 (C) and 
AMGv2 (D) for all sampling dates of the 60 field-trials. Circles represent total SOC stocks, while 
triangles and squares represent C stocks originating from C3 and C4 crops, respectively. The 
solid line represents the regression line between model error and time for total C, while the red 
and green dotted lines represent the regressions for C originating from C4 and C3 crops, 
respectively. 
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Figure 6. Boxplots showing the sensitivity of the AMGv2 model to 20% increase in different 
variables/parameters related to C inputs and SOM mineralization, excepting temperature and 
pH which were increased by 2°C and 1 pH unit, respectively. Boxplots represent the variations 
of the differences between the modified scenario (increase of the variable) and the reference 
scenario for all 60 trials over an extended period of 100 years. The dotted line represents the 
result for the simulation of final SOC stocks in the reference scenario with unmodified data and 
parameters. Boxplots show median and quartiles, while whiskers represent samples lying 
within 1.5 times the interquartile range. Extreme outliers are not shown. 
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Figure 7. Variability of the initial stable C pool proportion (CS/C0) optimized for each site (n = 
20) for three different values of the potential mineralization rate (k0). Boxplots show median 
and quartiles, while whiskers represent samples lying within 1.5 times the interquartile range. 
Extreme outliers are not shown. 
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Table 1. SOC stock variations, mean climatic conditions and soil physicochemical parameters measured for the 60 field trials. 

  Units Min Max Median Mean SD 

SOC stock variations       

Considered soil depth cm 20 30 28 27 3 

Initial SOC stock  t C ha-1 25.1 115.3 43.8 53.5 21.2 

SOC stock changes (final-initial) t C ha-1 -24.0 7.1 -1.2 -3.6 7.3 

Experiment duration yr 8 41 22 24 12 

Annual SOC stock change rates t C ha-1 yr-1 -1.01 0.45 -0.08 -0.20 0.33 

       

Annual climatic conditions       

Mean temperature °C 9.9 13.5 11.0 11.5 1.1 

Cumulative Precipitation mm 637 1285 753 840 220 

Cumulative PET mm 637 947 721 722 77 

Precipitation-PET mm -290 595 37 117 252 

       

Soil properties       

Clay g kg-1 43 308 214 197 76 

Silt g kg-1 95 781 528 488 176 

Sand g kg-1 12 791 140 233 194 

CaCO3 g kg-1 0 781 0 82 209 

pH  5.6 8.3 6.8 7.0 0.9 

C/N  7.8 13.0 9.1 9.4 1.1 

Initial SOC content g kg-1 7.2 32.9 14.1 15.8 6.8 

Bulk density g cm-3 1.20 1.52 1.40 1.38 0.08 

Rock fragment % 0 39 0 7 10 

PET: potential evapotranspiration, SOC: soil organic carbon 
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Table 2. Evaluation of the quality of fit obtained with AMGv2 using different methods for 
estimating aboveground and belowground C inputs. 

Method for estimating C inputs Harvest Index 

  
Aboveground C 

inputs 
  

 Belowground C 
inputs 

Optimized Total SOC*

k0 value MD 

yr-1 t C ha-1 

            
R. Reference method (Bolinder et al., 
2007) 

HI = f(species) 
CAG = f(species, Y, 

HI) 
CBG = f(species, Y, HI, 

SR) 0.29 -0.1 

A1. HI function of yield (Fan et al, 2017) HI = f(species, Y) 
CAG = f(species, Y, 

HI) 
CBG = f(species, Y, HI, 

SR) 0.32 -0.1 

A2. HI function of yield (local coefficients) HI = f(species, Y) 
CAG = f(species, Y, 

HI) 
CBG = f(species, Y, HI, 

SR) 0.30 0.0 

      

B1. Fixed root biomass HI = f(species) 
CAG = f(species, Y, 

HI) CBG = f(species) 0.29 0.0 

B2. Fixed root biomass - 50% HI = f(species) 
CAG = f(species, Y, 

HI) CBG = 0.5* f(species) 0.24 -0.1 

B3. Fixed root biomass + 50% HI = f(species) 
CAG = f(species, Y, 

HI) CBG = 1.5* f(species) 0.34 0.0 

Y = crop yield; HI = harvest index; SR = shoot:root ratio 

* whole database (60 field trials) 

** subset (27 field trials) 
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Table 3. Evaluation of the quality of fit obtained with AMGv2 using three methods and three 
parameterizations for setting the size of the initial stable pool proportion (CS/C0). 

 

  
Initial stable pool 
fraction (CS/C0) 

 
Fixed 
param

eter 

 
Fixed 

parame
ter 

 

Optimized 
parameter 

 
Total 
SOC 

SOC-C3 SOC-C4 

Met
hod 

    MD 
RM
SE 

MD 
RM
SE 

MD 
RM
SE 

     t C 
ha-1 

t C 
ha-1 

t C 
ha-1 

t C 
ha-1 

t C 
ha-1 

t C 
ha-1 

                   

M1 Consta
nt 

Fixed     
CS/
C0 

0.6
5 * 

 k0 0.290  -0.1 2.6 -0.5 2.9 0.4 2.0 

  Fixed     
CS/
C0 

0.4
0 *  k0 0.170  0.0 2.9 -1.5 2.3 2.3 2.9 

  Fixed     
CS/
C0 

0.1
0 *  k0 0.115  -0.1 3.3 -2.5 3.2 3.5 4.2 

                   

M2 Variabl
e 

CS/C0 = Ps·exp 
(-p.QC0) 

 
k

0 
0.29

0  p 
0.0
01  Ps 0.66  0.0 2.9 0.6 2.1 0.4 2.0 

  
CS/C0 = Ps·exp 

(-p.QC0) 
 

k

0 
0.29

0  p 
0.0
05  Ps 0.83  -0.1 3.4 1.0 2.5 0.4 2.0 

  
CS/C0 = Ps·exp 

(-p.QC0) 
 

k

0 
0.29

0  p 
0.0
10  Ps 1.00  -1.3 4.1 0.1 2.9 0.4 2.0 

                   

M3 Site 
specific Fixed  

k

0 
0.29

0     
CS/
C0 

Site 
specific 

** 
 0.1 1.8 -0.4 2.3 0.4 2.0 

  Fixed  
k

0 
0.17

0     
CS/
C0 

Site 
specific 

** 
 0.1 2.0 -2.3 2.9 2.3 2.9 

   Fixed  
k

0 
0.11

5     
CS/
C0 

Site 
specific 

** 
 0.7 2.4 -2.6 3.3 3.5 4.2 

* Values reduced by 40% in the site with long 
term grassland history              
** The variabilities of CS/C0 values optimized for the 20 
sites are shown in figure 7            
Line in bold corresponds to the 
reference method                

 




