Boris Adamczewski 
email: boris.adamczewski@math.cnrs.fr
  
Yassawi A Reem 
  
O N Note 
  
Theorem 2019 Christol's 
  
Hal 
  
Reem Yassawi 
email: yassawi@math.univ-lyon1.fr
  
A NOTE ON CHRISTOL'S THEOREM

ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

The title of this paper refers to the following classical result of Christol.

Theorem 1.1 (Christol). Let q be a power of a prime number p and let f (x) = ∞ n=0 a n x n ∈ F q [[x]]. Then f (x) is algebraic over F q (x) if and only if the sequence a = (a n ) n≥0 is q-automatic.

Here, an infinite sequence a = (a n ) n≥0 is q-automatic if a n is a finite-state function of the base-q expansion of n. This means that there exists a deterministic finite automaton with output taking the base-q expansion of n as input, and producing the symbol a n as output. For a formal definition, we refer the reader to [START_REF] Allouche | Automatic Sequences: Theory, Applications, Generalizations[END_REF]Chapter 5]. Christol's theorem is easy to prove, but nevertheless deep, in the sense that it provides an intimate connection between two apparently unrelated areas. On the one hand, algebraic power series with coefficients over finite fields are fundamental for arithmetic in positive characteristic while, on the other hand, finite automata are fundamental for computer science. On each side, there is a natural way to measure the complexity of the corresponding objects. The complexity of an algebraic power series f is measured by its degree d and its height h. Here, the degree of f is the degree of the field extension [F q (x)(f (x)) : F q (x)], while the height of f is the minimal degree (in x) of a nonzero polynomial P (x, y) ∈ F q [x, y] such that P (x, f (x)) = 0. With a more geometric flavor, one can also add the genus g of the curve associated with the minimal polynomial of f . The complexity of a q-automatic sequence a, denoted by comp q (a), is measured by the number of states in a minimal finite automaton generating a in reverse reading, by which we mean that the input n is read starting from the least significant digit. In Section 5, we also discuss bounds in direct reading. By a result of Eilenberg [START_REF] Eilenberg | Automata, languages, and machines[END_REF], a sequence a is q-automatic if and only if its q-kernel ker q (a) = {(a q r n+j ) n≥0 : r ≥ 0, 0 ≤ j < q r } is a finite set. By [AS03, Corollary 4.1.9 and Theorem 6.6.2], we have (1) comp q (a) = | ker q (a)|.

Thus we can bound the complexity of a by bounding | ker q (a)|.

We are interested here in the interplay between these two notions of complexity. If a sequence a is generated by a q-automaton with at most m states, it is not difficult to show that the associated power series f has degree at most q m -1 and height at most mq m+1 (see, for instance, [Bri17, Proposition 2.13]). Furthermore, these bounds cannot be significantly improved in general.

Bounds in the other direction are more challenging. If f is algebraic of degree d, the power series f, f q , f q 2 , . . . , f q d are linearly dependent over F q (x) and thus there exist polynomials A 0 (x), . . . , A d (x) ∈ F q [x], not all zero, such that (2)

A 0 (x)f (x) + • • • + A d (x)f (x) q d = 0 .
Furthermore, it is possible to ensure that A 0 (x) = 0. Such a relation is called an Ore relation for f . The standard proof of Christol's theorem, which dates back to [START_REF] Christol | Suites algébriques, automates et substitutions[END_REF], is based on such a relation, and is the proof given in Allouche and Shallit's book [START_REF] Allouche | Automatic Sequences: Theory, Applications, Generalizations[END_REF]. The arguments are effective and not particularly hard to quantify. Explicit bounds for comp q (a) can be easily extracted from [START_REF] Harase | Algebraic elements in formal power series rings[END_REF][START_REF] Harase | Algebraic elements in formal power series rings[END_REF][START_REF] Adamczewski | On vanishing coefficients of algebraic power series over fields of positive characteristic[END_REF], where the authors work in a more general framework (arbitrary base fields of characteristic p and power series in several variables). The authors of [START_REF] Fresnel | Automata and transcendence in positive characteristic[END_REF] also obtain a quantitative version of Christol's theorem using similar techniques. The common feature of all these bounds is that they have a doubly exponential nature 1 , that is, they are of the form q cq k , where c and k are polynomial functions of d and h. For, one can derive from (2) that comp q (a) ≤ q d(2H+1) ,

where H := max{deg A i (x) : 0 ≤ i ≤ d} denotes the height of the Ore relation (2).

The double exponentiation appears because the upper bounds for H are already exponential in q. For instance, the bound H ≤ 2hq d can be derived from [START_REF] Harase | Algebraic elements in formal power series rings[END_REF]; see also [START_REF] Adamczewski | On vanishing coefficients of algebraic power series over fields of positive characteristic[END_REF].

In contrast, when f is a rational function (i.e. d = 1), one can easily obtain the bound q h+1 and thus get rid of the double exponential. This suggests that the previous bounds are artificially large. In a recent paper, Bridy [START_REF] Bridy | Automatic sequences and curves over finite fields[END_REF] drastically improves on these doubly exponential bounds, confirming this guess. More precisely, he obtains the following essentially sharp bound:

(3) comp q (a) ≤ (1 + o(1))q h+d+g-1 , where the o(1) terms tends to 0 for large values of any of q, h, d, or g. By Riemann's inequality, which gives g ≤ (h -1)(d -1), one can deduce that (4) comp q (a) ≤ (1 + o(1))q hd .

1 Sharif and Woodcock [START_REF] Sharif | Algebraic functions over a field of positive characteristic and Hadamard products[END_REF] apparently realise that they can obtain effective bounds, though they do not spell them out, and here again, they would be doubly exponential.

Bridy's approach is based on a new proof of Christol's theorem in the context of algebraic geometry, due to Speyer [Spe]. Speyer's argument is elegant, connecting finite automata with the geometry of curves. Furthermore, Bridy's bound (3) shows that this approach is also very efficient. However, the price to pay is that some classical background from algebraic geometry is needed: the Riemann-Roch theorem, existence and basic properties of the Cartier operator acting on the space of Kähler differentials of the function field associated with f , along with asymptotic bounds for the Landau function.

Here, we come back to Christol's original argument [START_REF] Christol | Ensembles presque periodiques k-reconnaissables[END_REF], which appears slightly before [START_REF] Christol | Suites algébriques, automates et substitutions[END_REF]. It is based on a result of Furstenberg [START_REF] Furstenberg | Algebraic functions over finite fields[END_REF] showing that any algebraic power series in F q [[x]] can be expressed as the diagonal of rational power series in two variables. Using diagonals avoids the use of an Ore relation, which is the culprit behind the double exponentiation. In the end, we obtain simply exponential bounds similar to those of Bridy, though slightly weaker. For instance, we can show that

(5) comp q (a) ≤ (1 + o(1))q (h+1)d+1 ,
where the o(1) terms tends to 0 for large values of any of q, d, or h. Furstenberg's theorem has been studied and applied by a number of authors, for example by Denef and Lipshitz [START_REF] Denef | Algebraic power series and diagonals[END_REF], the first author and Bell [START_REF] Adamczewski | Diagonalization and rationalization of algebraic Laurent series[END_REF], the second author and Rowland [START_REF] Rowland | Automatic congruences for diagonals of rational functions[END_REF] and Bostan, Caruso, Christol, and Dumas in [START_REF] Bostan | Fast coefficient computation for algebraic power series in positive characteristic[END_REF]. The purpose of this note is to publicize that using diagonals to prove Christol's theorem gives us essentially the same bounds as the theoretically more demanding approach using the Riemann Roch theorem. Indeed, diagonals have already been used, by the first author and Bell, to obtain a singly exponential bound [AB13, Theorem 7.1]; here we simply push this technique to optimise the bounds. Also, we point out that the methods that we describe here can also be applied to the study of algebraic functions of several variables, Hadamard products, and reduction modulo prime powers of diagonals of multivariate rational functions, including transcendental ones, with little extra theoretical cost.

Cartier operators and diagonals

We recall here some definitions and basic results about Cartier operators and diagonals.

One

-dimensional Cartier operators. Let f (x) = n≥0 a n x n ∈ F q [[x]].
For every natural number i, 0 ≤ i ≤ q -1, we define Λ i as the F q -linear operator acting on F q [[x]] by:

Λ i (f (x)) = ∞ n=0 a nq+i x n .
We let Ω 1 denote the monoid generated by these operators under composition. In the framework of Christol's theorem, the operators Λ i are usually called Cartier operators (see, for instance, [START_REF] Allouche | Automatic Sequences: Theory, Applications, Generalizations[END_REF]). They are the tools with which one drops down to the elements of ker q (a). Indeed, we can rephrase Equation (1) as

(6) comp q (a) = |Ω 1 (f )|
where Ω 1 (f ) is the orbit of f (x) under the action of Ω 1 . All known proofs of the sufficiency direction of Christol's theorem have the same blueprint. One finds a finite set that contains f (x), and which is invariant under the action of the Cartier operators. Usually, this set is an F q -vector space, say V , and one just has to prove that it is finite dimensional. However, in order to obtain finer quantitative results, it will be convenient to trace the orbit Ω 1 (f ) more closely inside V , and in doing so, we will lose the vector space structure.

Let us briefly recall why the Λ i 's are referred to as the Cartier operators. To make the connection with the real Cartier operator C, which comes from algebraic geometry, we redefine our operators as follows. For every natural number i, 0 ≤ i ≤ p -1, we let Λ i be the F q -linear operator acting on F q [[x]] by:

Λ i ∞ n=0 a n x n = ∞ n=0 a 1/p np+i x n .
If q = p r , we retrieve the operator Λ i as a composition of r operators Λ j . With this notation, Λ p-1 is reminiscent of C. Let f (x) ∈ F q [[x]] be an algebraic power series and let X denote the smooth projective algebraic curve, obtained after the normalization of the projective closure of the affine plane curve defined by the minimal polynomial of f . Let F q (X) denote the function field associated with X, and let Ω Fq(X)/Fq denote the one-dimensional F q (X)-vector space of Kähler differentials of F q (X). Choosing x to be a separating variable, i.e. x ∈ F q (X) p , we can define C as

(7) C(f (x)dx) = Λ p-1 (f (x))dx ,
so that C acts on differentials exactly as Λ p-1 acts on power series. In Speyer's proof of Christol's theorem, a finite dimensional F q -vector space, containing f and invariant under Ω 1 , is obtained first by finding an effective divisor D on X such that Ω(D) := ω ∈ Ω Fq(X)/Fq \ {0} : (ω) + D ≥ 0 ∪ {0} is invariant under C and also the twisted Cartier operators, which play the role of the other operators Λ i , and then by using (7). The fact that Ω(D) has finite dimension over F q is a direct consequence of the Riemann-Roch theorem. Bridy finds the best choice for the divisor D; he also has to trace the orbit of f (x)dx more precisely under C and the twisted Cartier operators inside Ω(D).

2.2. Two-dimensional Cartier operators. The definition of the Cartier operators Λ i naturally extends to power series in an arbitrary number of variables. We recall here the two-dimensional case. Given (i, j) ∈ {0, 1, . . . , q -1} 2 , we let Λ i,j denote the F q -linear operator acting on F q [[x, y]] by:

(8) Λ i,j   n,m≥0 a n,m x n y m   = n,m≥0
a nq+i,mq+j x n y m .

Analogous to the notation in one dimension, we let Ω 2 denote the monoid generated by the two-dimensional Cartier operators under composition. An elementary but fundamental property of these operators is that

(9) Λ i,j (f g q ) = Λ i,j (f )g, for all f, g ∈ F q [[x, y]].
Notice that this useful equality also allows one to uniquely extend Λ i,j to the field of fractions of F q [[x, y]] by setting Λ(f /g) := Λ(f g q-1 )/g. Furthermore, if P ∈ F q [x, y] then (10) deg x Λ i,j (P ) ≤ deg x (P )/q and deg y Λ i,j (P ) ≤ deg y (P )/q.

2.3. Diagonals. The diagonal of a power series f

(x, y) = n,m≥0 a n,m x n y m ∈ F q [[x, y]] is defined by ∆(f )(x) = ∞ n=0 a n,n x n . It is straightforward to check that (11) Λ i (∆(f )) = ∆(Λ i,i (f )) , for all f (x, y) ∈ F q [[x, y]].
Furstenberg [START_REF] Furstenberg | Algebraic functions over finite fields[END_REF] proved that any algebraic power series in F q [[x]] is the diagonal of a bivariate rational power series. His proof is based on the following key formula [Fur67, Proposition 2].

Lemma 2.1 (Furstenberg). Let K be a field and let P (x, y)

∈ K[x, y]. Let f (x) ∈ K[[x]
] be a root of P (x, y). If f (0) = 0 and ∂P ∂y (0, f (0)) = 0, then

f (x) = ∆ y ∂P ∂y (xy, y) y -1 P (xy, y) • (12)
The proof of this lemma is both easy and elementary, though it took Furstenberg's insight to find the rational function in the right hand side of (12). Though the formula is valid over any field, it has its roots firmly planted in residue theory, where we can express an algebraic function as an integral of a certain rational function. Precisely, suppose that P (0, 0) = 0 and that 0 is an isolated root of P (0, y) = 0. These conditions guarantee that there is a unique power series y = f (x) that converges close to the origin, and satisfying both P (x, f (x)) = 0 and f (0) = 0. By Cauchy's generalised residue theorem, one can express (13) f (x) = 1 2πi γ y ∂P ∂y (x, y) P (x, y) dy for γ and |z| sufficiently small. On the other hand, if g(x, y) ∈ C[[x, y]], then ∆(g) is also a residue that can be simply expressed as

(14) ∆(g) = 1 2πi γ g(x/w, w)) dw w •
Now (13) and ( 14) allow us to deduce (12).

The smooth case

In this section, we first describe our strategy in the smooth case and show how it easily leads to simply exponential bounds. By the smooth case, we mean that

f (x) = n≥0 a n x n ∈ xF q [[x]
] is an algebraic power series whose minimal polynomial P (x, y) satisfies Furstenberg's condition: ∂P ∂y (0, 0) = 0. This conditions ensures that the plane algebraic curve associated with P is nonsingular at the origin. By Furstenberg's formula, there exists an explicit rational power series P/Q ∈ F q (x, y) such that f = ∆(P/Q). Let m be an upper bound for the degree in x and y of the polynomials P and Q. Then

W := A/Q : max(deg x (A), deg y (A)) ≤ m
is a F q -vector space of dimension (m + 1) 2 . Furthermore, W is invariant under Ω 2 . Indeed, Λ i,j (A/Q) = Λ i,j (AQ q-1 )/Q and it follows from (10) that deg x (Λ i,j (AQ q-1 )) ≤ m and deg y (Λ i,j (AQ q-1 )) ≤ m .

Thus we deduce from (11) that Ω 1 (f ) ⊂ ∆(W ). Since ∆ is linear, ∆(W ) is an F q -vector space of dimension at most (m + 1) 2 . Furthermore, if f has degree d and height h, Furstenberg's formula shows that we can choose m = h + d. Then we get from Equality (6) that |Ω 1 (f )| ≤ q (h+d+1) 2 , which is already an acceptable simply exponential bound.

In the next theorem, we refine the previous argument to obtain a bound that is only very slightly weaker than the one given by Bridy in (4).

Theorem 3.1. Let f (x) = n≥0 a n x n ∈ xF q [[x]
] be an algebraic power series of degree d and height h, and let P (x, y) ∈ F q [x, y] denote the minimal polynomial of f . If ∂P ∂y (0, 0) = 0, then comp q (a) ≤ 1 + q (h+1)d .

Proof.

Let P (x, y) = d i=0 A i (x)y i .
By assumption, we have A 0 (0) = 0 and A 1 (0)) = 0. This implies that y divides P (xy, y). By Lemma 2.1, we have (15) f (x) = ∆ y ∂P ∂y (xy, y) y -1 P (xy, y) .

Consider the three F q -vector spaces

U := span Fq (xy) i y j : 0 ≤ i ≤ qh, 0 ≤ j ≤ qd -1 , (16) 
V := span Fq (xy) i y j : 0 ≤ i ≤ h, 0 ≤ j ≤ d -1 , W := span Fq (xy) i y j y -1 P (xy, y) : 0 ≤ i ≤ h, 0 ≤ j ≤ d -1 .
Let ∈ {0, . . . , q -1}. For any u ∈ U , note that Λ , (u) ∈ V . We claim that Λ (f ) ∈ ∆(W ). For, using Properties (11) and (9), we have

Λ (f ) = Λ ∆  
y ∂P ∂y (xy, y) y -1 P (xy, y)

q-1 (y -1 P (xy, y))

q   = ∆ Λ , y ∂P ∂y (xy, y) y -1 P (xy, y) q-1 y -1 P (xy, y) •
Now notice that the polynomial y ∂P ∂y (xy, y) y -1 P (xy, y) q-1 is an F q -linear combination of monomials in the set {(xy) i y j : 0 ≤ i ≤ qh, 2 -q ≤ j ≤ (d -1)q + 1}. Notice also that if j ≡ 0 mod q, then Λ , ((xy) i y j ) = 0 for any . This implies that the image of this last set under Λ , is the same as that of U , so Λ , y ∂P ∂y (xy, y) y -1 P (xy, y)

q-1 ∈ Λ , (U ) ⊂ V,
and this proves our claim that Λ (f ) ∈ ∆(W ). The same reasoning shows that ∆(W ) is invariant under Ω 1 . Since Λ (f ) ∈ ∆(W ) for all ∈ {0, . . . , q -1}, it follows that Ω 1 (f ) \ {f } is a subet of ∆(W ) = span Fq ∆ (xy) i y j y -1 P (xy, y)

: 0 ≤ i ≤ h, 0 ≤ i ≤ d -1 ,
which has dimension at most (h + 1)d over F q . The result follows.

The general case

The aim of this section is to remove the assumption needed in Furstenberg's formula, proving the following general bound.

Theorem 4.1. Let f (x) = n≥0 a n x n ∈ F q [[x]
] be an algebraic power series of degree d and height h. Then

comp q (a) ≤ (1 + o(1))q (h+1)d+1 ,
where the o(1) term tends to 0 for large values of any of q, h, or d.

Notation. Throughout this section, we let f (x) = n≥0 a n x n ∈ F q [[x]] denote an algebraic power series of degree d and height h, and we let P (x, y) denote its minimal polynomial. Also we fix r to be the order at 0 of the resultant of P (x, y) and ∂P ∂y (x, y). By the determinantal formula for the resultant, we have

(17) r ≤ h(2d -1).
We define

V r (x) := r n=0 a n x n , f (r) (x) := x -r (f (x) -V r (x)) ∈ xF q [[x]] , (18) 
M r (x, y) := V r (x) + x r y , and

Q r (x, y) := P (x, M r (x, y)) ∈ F q [x; y]. Notice that (19) f (r) (0) = 0 and Q r (x, f (r) (x)) = 0 .
The following elementary argument shows that f (r) is the only power series root of Q r with no constant term. The proof follows the argument given in [AB13, proof of Lemma 6.2]; we include it for the sake of completeness. Lemma 4.2. There exists a nonnegative integer s such that x -s Q r (x, y) is a polynomial satisfying the condition of Furstenberg's formula, that is ∂(x -s Qr) ∂y (0, 0) = 0, so that

f (r) (x) = ∆ y ∂Qr ∂y (xy, y) y -1 Q r (xy, y) • Proof. Let S(x) denote the resultant of P (x, y) = d i=0
A i (x)y i and ∂P ∂y (x, y), so that S(x) = x r T (x) with T (0) = 0. To simplify notation, let V (x) := V r (x), g(x) := f (r) (x), and

Q := Q r . Setting B i (x) := 1 i! ∂ i P ∂y i (x, V (x)) ,
we get that

Q(x, y) = d i=0 B i (x)x ri y i .
Note that

P (x, V (x)) = P (x, V (x)) -P (x, f (x)) = (V (x) -f (x))C(x) = -x r g(x)C(x) , with C(x) = d i=1 A i (x) i-1 k=0 V (x) k f (x) i-k-1 ∈ F q [[x]
]. Thus x r+1 divides P (x, V (x)), as g(0) = 0. On the other hand, since S is the resultant of P and ∂P ∂y , there exist two polynomials A(x, y) and B(x, y) such that x r T (x) = A(x, y)P (x, y) + B(x, y) ∂P ∂y (x, y) .

It follows that

B(x, V (x)) ∂P ∂y (x, V (x)) = x r T (x) -A(x, V (x))P (x, V (x)) ,
which implies that ν ≤ r, where ν denotes the order at 0 of B 1 (x) = ∂P ∂y (x, V (x)). Since the order of B i (x)x ri ≥ 2r for all i such that 2 ≤ i ≤ d, we obtain that the order of B 0 (x) at 0 is at least equal to s :

= ν + r. It follows that x -s Q(x, y) is a polynomial such that ∂(x -s Q) ∂y (x, 0) = B 1 (x)x -ν
and thus ∂(x -s Q) ∂y (0, 0) = 0, as desired. By (19), we can apply Furstenberg's Lemma to f (r) and x -s Q(x, y), which provides the expected formula.

The idea behind proving Theorem 4.1 is to find successively shrinking vector spaces to which most of Ω 1 (f ) belongs. Iterating the following two lemmas will allow us to achieve this shrinkage. In the lemmas that follow we continue with the notation given in (18). Lemma 4.3. Let ∈ {0, . . . , q -1}, let α be a rational number with 0 ≤ α ≤ r, and let

(20) V r,α := span Fq (xy) i M r (xy, y) j y -1 Q r (xy, y) : r -α ≤ i ≤ r + h, 0 ≤ j ≤ d -1 .
Then we have

(i) Λ , (V r,α ) ⊂ V r, α q +1-1 q , (ii) V r,α = V r,0 if α < 1, and (iiii) Λ , (V r,0 ) ⊂ V r,0 . Furthermore, if ≤ q -2 then Λ , (V r,1 ) ⊂ V r,0 .
Proof. Note that (i) and (ii) implies (iii), while (ii) is trivial, so we just have to prove (i). Let i and j be two integers with

(21) r -α ≤ i ≤ r + h and 0 ≤ j ≤ d -1 , so that (xy) i M r (xy, y) j y -1 Q r (xy, y) ∈ V r,α .
Similarly, in the general case, Cases (b) and (c) correspond to r+1 infinite orbits, all of whose size could be bounded by Bridy's arguments. This should lead to

Ω 1 (f ) = |∆(V r , 0 + )| + o(q hd ) = (1 + o(1))q hd ,
which is precisely Bridy's bound (4). This would have identified (a) as containing the bulk of f 's kernel. However it is not clear how to bound the contributions from (b) and (c) in an elementary fashion.

Bounds for the direct reading complexity

A sequence a = (a n ) n≥0 can be q-automatic in either reverse or direct reading. In the former case, we feed the base-q expansion of n into the q-automaton starting with the least significant digit, and in the latter, starting with the most significant digit. Now a is q-automatic in direct reading if and only if it is q-automatic in reverse reading, but the direct and reverse reading minimal automata that generate a are generally different and thus there are two notions of complexity; thus far we have bounded the reverse complexity comp q (a). We now wish to bound the forward reading complexity -→ comp q (a), which equals the number of states in a minimal qautomaton generating a. For the sake of symmetry, henceforth we write ←comp q (a) instead of comp q (a).

If we start with a reverse reading q-automaton whose states are labelled using elements of an F q -vector space of dimension k, then using basic duality theory for vector spaces, we obtain the following result.

Proposition 5.1. Let f (x) = ∞ n=0 a n x n ∈ F q [[x]].
If there exists a F q -vector space V of dimension m that contains f and that is invariant under the action of Ω 1 , then both -→ comp q (a) and ←comp q (a) are bounded by q m . Proposition 5.1 is a rephrasing of Proposition 2.4 in [START_REF] Bridy | Automatic sequences and curves over finite fields[END_REF], where Bridy uses the notion of a q-presentation for the sequence a. This concept is analogous to the notion of a recognizable rational series, which follows from the fact that a deterministic finite automaton with output in a finite field can be seen as a weighted automaton, so that its rational series is recognizable [START_REF] Berstel | Noncommutative rational series with applications[END_REF].

Bridy shows that he can inject Ω 1 (f ) into a vector space of dimension (h + 1)d, so that he bounds -→ comp q (a) by q (h+1)d . Here too our bounds are only slightly weaker, particularly in the smooth case.

Corollary 5.2. Let f (x) = n≥0 a n x n ∈ F q [[x]
] be an algebraic power series of degree d and height h, and let P (x, y) ∈ F q [x, y] denote the minimal polynomial of f .

(i) If ∂P ∂y (0, 0) = 0 and f (0) = 0, then -→ comp q (a) ≤ q 1+(h+1)d . (ii) Otherwise, let r be the order at 0 of the resultant of P (x, y) and ∂P ∂y (x, y). Then -→ comp q (a) ≤ q 1+(h+1)d+r . In particular, -→ comp q (a) ≤ q (3h+1)d-h+1 .

Proof. We first prove (i), which corresponds to the smooth case. The proof of Theorem 3.1 tells us that we can realise most of Ω 1 (f ) in the F q -vector space ∆(W ) where W is defined in (16), of dimension (h + 1)d. The only element of Ω 1 (f )\W is f itself. Thus we add f to ∆(W ), to obtain a vector space of dimension 1 + (h + 1)d into which we have injected Ω 1 (f ). Applying Proposition 5.1 gives the result.

In the general case, an inspection of the last part of the proof of Theorem 4.1 tells us that the vector space ∆(V r,0 ), defined in Lemma 4.3 contains most of Ω 1 (f ). Here, we have to add another basis element, representing the addition of constants in the expression F q + ∆(V r,0 ). We must also add (at most) r basis elements, to represent the set E(f ) defined in (30). The result follows form Proposition 5.1 and the bound in (17).

6. Linking the genus to our setting Let P (x, y) ∈ F q [x, y], let P be the Newton polygon of P (x, y), and let g P be the number of integral points in the interior of P. We recall that g P is closely related to the genus g of the curve associated with P . In a majority of cases we have g P = g, and in general g ≤ g P . For example, if P (x, y) is irreducible over every algebraic extension of F q , then this follows by work of Beelen [START_REF] Beelen | A generalization of Baker's theorem[END_REF].

If f (x) ∈ F q [[x]] is a root of P (x, y) ∈ F q [x, y] of degree d and height h, then g P ≤ (h -1)(d -1). Bridy's bound (3) is better than his general bound (4) when the genus is smaller than (h -1)(d -1). In our case too, if g P < (h -1)(d -1), then it is possible to obtain better bounds: we can choose smaller vector spaces to work with, taking into account the shape of P, instead of the full rectangular bases that we have in ( 16) or (20).

Acknowledgement

The second author is grateful to Peter Beelen for a discussion of his work. She also thanks IRIF, Université Paris Diderot-Paris 7, for its hospitality and support.

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme under the Grant Agreement No 648132.

We first infer from (9) that (22) Λ , (xy) i M r (xy, y) j y -1 Q r (xy, y) = Λ , (xy) i M r (xy, y) j y 1-q Q r (xy, y) q-1 y -1 Q r (xy, y) .

Developing Q r (xy, y) q-1 , we note that (xy) i M r (xy, y) j y 1-q Q r (xy, y) q-1 is an F qlinear combination of elements of the form y 1-q (xy) i+n M r (xy, y) j+m where 0 ≤ n ≤ (q -1)h and 0 ≤ m ≤ d(q -1). Setting i = i + n and j = j + m, we obtain (23) r -α ≤ i ≤ r + qh and 0 ≤ j ≤ qd -1 .

Recall that Λ , (x a y b ) is nonzero if and only if a ≡ b ≡ mod q. Using Property (9), we obtain that either Λ , (y 1-q (xy) i M r (xy, y) j ) = 0, or Λ , (xy) i y 1-q M r (xy, y) j = Λ , (xy) i y 1-q (M r (xy, y) j mod q M r (xy, y)

where the asterisked equality follows because the only way this expression is nonzero is if j ≡ q -1 mod q, and in this case only the (xy) r(q-1) y q-1 term in M r (xy, y) q-1 will lead to a nonzero term after application of Λ , . By (23), we have (25) 0 ≤ j /q ≤ d -1 and r -(α/q + 1 -1/q) ≤ i + r(q -1)q ≤ r + h , and we infer from ( 22) and (24) that Λ , (V r,α ) ⊂ V r,α/q+1-1/q . Finally, inspection of the case < q -1 and α = 1 gives us Λ , (V r,1 ) ⊂ V r,0 .

We also have the following similar result.

Lemma 4.4. Let

Proof. The proof of (i'), (ii'), and (iii') follows the same argument as in the proof of Lemma 4.3. The fact that Λ , (V r,α

Proof. To simplify notation we let V (x) := V r (x), g(x) := f (r) (x), and

Let ∈ {0, . . . , q -1}. We first infer from (9) that

Let i and j be two such integers. Equality (9) implies that (28) Λ , y 2-q (xy) i M (xy, y) j = Λ , y 2-q (xy) i M (xy, y) j mod q M (xy, y)

and thus either Λ , y 2-q (xy) i M (xy, y) j = 0 or Λ , y 2-q (xy) i M (xy, y) j mod q = 0, which is only possible if j ≡ q -2 mod q or j ≡ q -1 mod q. Continuing from (28), if j ≡ q -2 mod q, Λ , y 2-q (xy) i M (xy, y) j = (xy)

and if j ≡ q -1 mod q, Λ , y 2-q (xy) i M (xy, y) j = -Λ , (xy) i+(q-2)r V (xy) M (xy, y)

In all cases, Λ , y 2-q (xy) i M (xy, y) j belongs to span Fq (xy) i M (xy, y) j : r -r/q -/q ≤ i ≤ r + h -/q, 0 ≤ j ≤ d -1 .

Combining this with (27), we get that

Furthermore if ≥ 1, we see that

By Equalities (11) and ( 26), this ends the proof.

Before proving Theorem 4.1, we need a last auxiliary result, which gives the intertwining relations between the operators Λ and multiplication by a power of x. Its proof is straightforward.

Lemma 4.6. Let 0 ≤ j ≤ q -1 and 0 ≤ ≤ q -1. Then

Note in particular that Lemma 4.6 implies that Λ n 0 (xf (x)) = xΛ n q-1 (f (x)) for each n > 0.

Proof of Theorem 4.1 . Recall that

Lemma 4.5 implies that Λ (f (r) ) ∈ ∆(V r, r q +1-1 q ) for all and that Λ (

Using Properties ( 9) and (10), we obtain that for t ≥ t 0 , for any ( t , . . . 0 ), there is a unique ( ˜ t , . . . ˜ 0 ) and a unique i ∈ {0, 1} such that

Iterating Lemmas 4.3 and 4.4, we have:

as for at least one j ≥ t 0 , we have ˜ j is nonzero, so that we can apply Lemma 4.4.

) , since ˜ t = p -1 for j ≥ t 0 , so that we can apply Lemmas 4.3 and 4.4. We stress that t can be zero, so that each of cases (b) and (c) can correspond to arbitrarily long compositions of Cartier operators. Notice that

), so that the total contribution from (a), (b) and (c) combined is of dimension at most (h + 1)d + 1.

On the other hand, defining

where the the o(1) term tends to 0 for large values of any of q, d, h. Indeed, |E(f )| ≤ q t0 , while by (17) we have r ≤ h(2d -1). Hence Equality (29) gives the claim. We conclude that |Ω 1 (f )| ≤ q (h+1)d+1 + o(q hd ). Now (6) completes the proof of Theorem 4.1.

Remark 4.7. Note that in the smooth case r = 0, there is no contribution from (c) above, and, since a 0 = 0, we have Ω 1 (f )\{f } ⊂ ∆(V 0,0 ), so that we recover Theorem 3.1. Also for the smooth case, (b) is precisely the orbit of f under Λ 0 , and Bridy deals with this orbit by showing that its cardinality is at most o(q hd ); this is where Bridy uses additional arguments involving Landau's function.