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ABSTRACT

Aims. Information on the existence and properties of diffuse interstellar bands (DIBs) outside the optical domain is still limited.
Additional infra-red (IR) measurements and IR-optical correlative studies are needed to constrain DIB carriers and locate various
absorbers in 3D maps of the interstellar matter.
Methods. We extended our study of H-band DIBs in Apache Point Observatory Galactic Evolution Experiment (APOGEE) Telluric
Standard Star (TSS) spectra. We used the strong λ15273 band to select the most and least absorbed targets. We used individual spectra
of the former subsample to extract weaker DIBs, and we searched the two stacked series for differences that could indicate additional
bands. High-resolution NARVAL and SOPHIE optical spectra for a subsample of 55 TSS targets were additionally recorded for
NIR/optical correlative studies.
Results. From the TSS spectra we extract a catalog of measurements of the poorly studied λλ15617, 15653, and 15673 DIBs in
'300 sightlines, we obtain a first accurate determination of their rest wavelength and constrained their intrinsic width and shape. In
addition, we studied the relationship between these weak bands and the strong λ15273 DIB. We provide a first or second confirmation
of several other weak DIBs that have been proposed based on different instruments, and we add new constraints on their widths and
locations. We finally propose two new DIB candidates.
Conclusions. We compared the strength of the λ15273 absorptions with their optical counterparts λλ5780, 5797, 6196, 6283, and
6614. Using the 5797–5780 ratio as a tracer of shielding against the radiation field, we showed that the λ15273 DIB carrier is
significantly more abundant in unshielded (σ-type) clouds, and it responds even more strongly than the λ5780 band carrier to the
local ionizing field.

Key words. infrared: ISM – infrared: stars – ISM: lines and bands – dust, extinction – ISM: general

1. Introduction

Diffuse interstellar bands (DIBs) are weak absorption fea-
tures observed in stellar spectra (see Herbig 1995; Sarre
2006, for a review). Their interstellar origin was established
in the 1930s (see McCall & Griffin 2013, for a historical re-
view), and today, more than 400 optical DIBs have been re-
ported between λλ4400 and λλ8600 (e.g., Jenniskens & Desert
1994; Galazutdinov et al. 2000; Hobbs et al. 2009). There are
no firm detections in the near-UV (Bhatt & Cami 2015).
Most measured DIBs have a Galactic origin, but they have
been detected in the Magellanic clouds, M 31, and M 33
(Welty et al. 2006; Cordiner et al. 2008a,b; Ehrenfreund et al.
2002; Cordiner et al. 2011; van Loon et al. 2013) and in a

? Full Table 5 is available at the CDS via anonymous ftp to
cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/600/A129
?? Based on SDSS/APOGEE Archive data, on observations collected
with the NARVAL spectrograph on the Bernard Lyot telescope (TBL)
at Observatoire du Pic du Midi (CNRS/UPS), France, and with the
SOPHIE spectrograph on the Observatoire de Haute-Provence (OHP)
1.93 m telescope (CNRS/AMU).

few line-of-sights toward starburst galaxies or in Type Ia
supernovae spectra, for instance (Heckman & Lehnert 2000;
Sollerman et al. 2005; Cox & Patat 2008; Phillips et al. 2013).
A DIB radial gradient was established for the first time
in a 160 Mpc distant galaxy (Monreal-Ibero et al. 2015).
Carbon is involved in most of the proposed candidates
for DIB carriers in the form of hydrocarbon chains (e.g.,
Maier et al. 2004), polycyclic aromatic hydrocarbons (PAHs,
e.g., van der Zwet & Allamandola 1985; Leger & D’Hendecourt
1985; Crawford et al. 1985; Salama et al. 1996; Kokkin et al.
2008), and/or fullerenes (Iglesias-Groth 2007; Sassara et al.
2001). Recent reviews about the DIB-PAH and the fullerene
hypotheses can be found in Cox (2011), Omont (2016). Re-
cently, the carrier for at least two DIBs was identified for the first
time with C+

60 (Campbell et al. 2015, 2016; Walker et al. 2015),
confirming earlier results of Foing & Ehrenfreund (1994). C+

60
was also detected in emission toward NGC 7023 by Berné et al.
(2013) and Sellgren et al. (2010), and C60 and C70 have also been
identified in emission in young planetary nebulae (Cami et al.
2010). According to Snow (2014), DIBs may represent the
largest reservoir of organic matter in the Universe. Despite their
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very likely presence in the gas phase, DIB strengths are in most
cases correlated with tracers of both dust and or gas, allowing
us to estimate the amount of interstellar matter along a line
of sight. Even if the nature of the precise carriers is still un-
known, DIBs can therefore be used to trace the structure of the
ISM in the same way as others species, using established em-
pirical relations, for example, with neutral hydrogen, interstel-
lar Na I D and Ca H&K lines or extinction (e.g., Herbig 1993;
Friedman et al. 2011). They also offer certain advantages when
used instead of (or in addition to) other tracers. For example,
given their intrinsic weakness, they are ideal tracers in condi-
tions where other features (e.g., Na I D) saturate, such as very
dense molecular clouds or regions seen through a large amount
of extinction. Encouraged by this correlation between DIBs and
ISM, several teams have recently presented works that made
use of the information provided by the different spectroscopic
surveys to study the Galactic ISM structure and extinction in
2D or 3D by using the strength of different DIBs as a proxy
(e.g., Munari et al. 2008; van Loon et al. 2013, 2015; Yuan et al.
2014; Kos et al. 2014; Puspitarini et al. 2015; Lan et al. 2015;
Baron et al. 2015; Farhang et al. 2015; Bailey et al. 2016). On
the other hand, it has become clear that the environment of the
DIB carriers, and mainly the effective radiation field, strongly
influences their formation and/or ionization (Krelowski et al.
1992; Cami et al. 1997; Cox & Spaans 2006; Vos et al. 2011;
Cordiner et al. 2013), and these effects should not be overlooked
when performing mapping. Conversely, DIB strengths or DIB
ratios may be used to gather information on the physical proper-
ties of interstellar clouds and study their relationships with dust
absorption and emission properties.

To date, ∼30 DIBs have been detected in the near-infrared
(NIR; >0.9 µm; Joblin et al. 1990a, 1999b; Foing & Ehrenfreund
1994; Geballe et al. 2011; Cox et al. 2014; Hamano et al. 2015,
2016), and only one band (the λ15273 DIB) has been exten-
sively explored, based on the high-quality high spectral reso-
lution and numerous APOGEE spectra (Zasowski et al. 2015).
NIR DIBs are particularly useful since they allow us to make use
of highly reddened target stars and explore, if present, the dens-
est areas of the ISM. The exact number and relative strengths of
the NIR DIBs provide further constraints on their carrier popu-
lation. The Sloan Digital Sky Survey (SDSS)/APOGEE dataset
offers a unique opportunity to extract NIR DIBs and study their
properties. In particular, the smooth continua of the bright and
early-type stars selected in each field to be used as standards for
telluric line corrections (telluric standard stars, TSSs) make them
ideal targets for DIB extraction.

Our work has two main aims. On the one hand, we present
the results of an analysis of the APOGEE TSS spectra, devoted
to the extraction and identification of weak NIR DIBs. The work
is a continuation of the extraction of an extensive catalog of mea-
surements of the strong λ15273 DIB based on the same TSS data
(Elyajouri et al. 2016), and makes use of these previous results.
On the other hand, we explore the potential of the strongest IR
DIB as tracer of the interstellar structure. The paper is structured
as follows: Sect. 2 contains a brief description of the datasets. In
Sect. 3 we describe equivalent width and Doppler shift measure-
ments of the λλ15617, 15653, and 15673 DIBs as well as their
properties. Section 4 describes our exploratory method aiming at
confirming (or not) the known weak NIR DIBs and at potentially
identifying additional NIR DIBs. Section 5 presents the optical
DIB measurements and the correlations between NIR and opti-
cal equivalent widths. Our main conclusions are summarized in
Sect. 6.

2. Data

2.1. APOGEE TSS data

This contribution is based on the products from APOGEE, which
is one of the SDSS-III experiments (Eisenstein et al. 2011;
Aihara et al. 2011). Specifically, we used spectra from the SDSS
data release 121 (DR12 Alam et al. 2015), which provides all
the data taken between April 2011 and July 2014. Each individ-
ual spectrum covers from ∼15 100 Å to ∼16 700 Å at a reso-
lution of R ∼ 22 500. The TSSs are used to clean the spectra of
the APOGEE targets from telluric absorption lines, including the
TSSs themselves. They are the bluest stars on a given APOGEE
plate with a magnitude in the range 5.5 ≤ H ≤ 11 mag, and
are therefore hot and bright stars with spectra that are most of-
ten (but not always) featureless. These characteristics make them
ideal targets to aim at detection of faint DIBs, as we intend here.
On the other hand, being hotter than the main APOGEE tar-
gets, the TSSs do not have fully adjusted tailored synthetic spec-
tra (García Pérez et al. 2016; for a TSSs detailed description see
Zasowski et al. 2013). The APOGEE products contain the TSS
decontaminated spectra and synthetic stellar spectra that provide
the main stellar line locations and relative depths and widths.
Both have been used by Elyajouri et al. (2016) to extract a cata-
log of λ15273 DIB measurements for '6700 lines of sight. Fur-
ther details on the selection and characteristics of the sample of
TSSs used for the catalog can be found in Elyajouri et al. (2016,
and references therein). In continuity of our previous work, we
restricted our analysis to the 6700 TSSs for which we detected
the λ15273 DIB. Throughout the analysis we use vacuum wave-
lengths for the infrared data.

2.2. New optical spectra

A subset of ∼60 target stars from the APOGEE TSS list de-
scribed in Sect. 3 has been observed in the visible with NAR-
VAL, the spectropolarimeter of the Bernard Lyot telescope (2 m)
at Pic du Midi observatory, used in high-resolution spectroscopic
mode (R ' 80 000). For all data the signal-to-noise ratio (S/N)
is between 50 and 100. Two targets were observed twice in or-
der check the estimated uncertainties. An additional subset of
five targets was observed with the SOPHIE spectrograph at the
1.93 m telescope of the Haute-Provence Observatory at a re-
solving power R ' 39 000. Because the targets have been se-
lected for their good detections of the weak NIR DIBs in the
APOGEE spectral range, they were expected to be strongly ab-
sorbed and possess a smooth continuum, which has been verified
for all of them. The telluric absorption lines were removed in the
λ6283 DIB spectral intervals using TAPAS model transmittances
(Bertaux et al. 2014) and the rope length method described in
Raimond et al. (2012).

3. Catalog of λλ15617, 15653, and 15673 DIBs

Based on earlier results by Cox et al. (2014), it appears that only
four DIBs satisfy EW/FWHM ≥ 3: λλ15273, 15617, 15653,
and 15673 bands in the 15 100.08 to 16 999.8 Å range. The
λ15273 DIB is by far the strongest interstellar band in this spec-
tral range and has been extensively studied by Zasowski et al.
(2015). In addition, a catalog of λ15273 measurements based on
the TSSs has been presented in Elyajouri et al. (2016). Here we
focus on the three other, weaker bands. Based on the few avail-
able detections (Geballe et al. 2011; Cox et al. 2014), we expect
1 http://www.sdss.org/dr12/
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them to be between two and three times fainter than the band
at λ15273. The first part of this paper aims at creating a cata-
log of equivalent widths and central wavelengths for these three
strongest-weak DIBs. Our previous measurements of the strong
λ15273 DIB serve as a reference for wavelength shifts and en-
ter further correlation studies. In what follows, we describe the
creation of the catalog and determine some of its properties.

3.1. Fitting method

To maximize the chances of detection of those three fainter
DIBs, we use as starting point the 5124 spectra of the cata-
log by Elyajouri et al. (2016), which were classified as having a
well-detected DIB at λ15273. After visual inspection, 308 spec-
tra were retained because they display at least one of the three
bands. From the extracted DIB EWs and Eq. (3) in Sect. 5, they
correspond to an average visual extinction Av = 1.2. They are
characterized by a very high S/N, with a lowest S/N of 135 and
a very high average S/N of 700. This is due to a double selection
effect: first, the TSSs are characterized by a higher than average
S/N, being the bluest and brightest objects in the field. Second,
the visual selection among the TSSs favors the best spectra. As
we show below, for such remarkable data DIB extractions are
essentially limited by the presence of telluric (and sometimes)
stellar line contaminations and not by the noise. We then fit each
TSS spectrum to a model made out of the product of several
components as follows:

Mλ = [S λ]α ×
3∏

i=1

DIB[σ, λ,D] × (1 + [A] × λ). (1)

The variables in this equation are described in detail below.

• [S λ]α, an adjusted stellar spectrum: S λ is the initial stellar
model provided by the APOGEE project. The scaling fac-
tor (α) is introduced in order to adjust the model stellar line
depths to the data.

• DIB[σ, λc,D], the DIB profile: it was modeled as a Gaussian
function with three free parameters associated to its Gaus-
sian RMS width (σ), central wavelength (λc) and depth (D)
for each DIB. Here we fit the data for the three DIBs simul-
taneously (i = 1–3).

• (1 + [A] × λ), a 1-degree polynomial introduced to model as
close as possible the continuum around the three DIBs.

We selected a predefined spectral range for the fit restricted to
the vicinity of the three DIBs [15 578−15 689] Å to determine
the above coefficients, the width σ, central wavelength λc, and
depth D for each one. Table 1 shows the fitting constraints. We
fit the three features simultaneously using a unique stellar con-
tinuum (a unique scaling factor α), since they are close in wave-
length. We note that there is no stellar Brackett line in this spec-
tra region. Errors provided by APOGEE were used to mask the
spectral ranges that are affected by artifacts due to imperfect sky
emission correction or other sources of uncertainty. Represen-
tative examples illustrating our fitting procedure are shown in
Fig. 1. In each sightline, equivalent widths and stellar rest frame
wavelength are determined from the best-fit parameters and are
given in Table 5. We rejected those cases from the catalog where
the fit failed due to low S/N, an inadequate stellar model, or most
of the times very strong telluric contamination. This cleaning
rejected more spectra for the broadest λ15653 DIB (46 rejec-
tions) compared to the narrower bands (13 and 0 rejections for
the λλ15617 and 15 673 bands respectively).

1.08

1.06

1.04

1.02

1.00

0.98

0.96

0.94

Fl
ux

 +
 o

ffs
et

 

1568015670156601565015640156301562015610
Wavelength (Å)

1.00

0.95

0.90

0.85

0.80

0.75

0.70

Fig. 1. λλ15617, 15 653, 15 673 NIR DIBs toward six
TSS targets from the new catalog. Reduced APOGEE
spectra are shown with solid color lines: 2MASS
J03483498+5048039 (brown), 2MASS J03584538+5222502 (green),
2MASS J00165734+6333108 (red), 2MASS J04360336+3640031
(blue), 2MASS J00274417+6001430 (orange), and
2MASS J00281188+5905318 (pink). Spectra are in the stellar
rest frame and vertically offset by –0.04, –0.02, 0., 0.02, 0.04, and 0.06
from bottom to top.The solid black curves represent the fitted model.
The dot-dot-dashed green line is an example of an adjusted APOGEE
stellar model. The black rectangles indicate the masked regions.

Table 1. Fitting constraints of λλ15617, 15 653, and 15 673 NIR DIBs.

Spectral range σmax Depth
(Å) (Å)

15 617 [15 607, 15 620] 5 ≥0.0001
15 653 [15 648, 15 660] 7 ≥0.0001
15 673 [15 668, 15 680] 4.5 ≥0.0001

3.2. Error estimates

We distinguish two sources of errors, one associated with the
noise (δEWn) at the DIB location, and one associated with the
placement of the continuum (δEWc). In the case of regularly
distributed noise, that is, for the equivalent noise level on the
sides of the DIB and at the DIB location, these errors can be
treated as independent and are added quadratically. Because tel-
luric line residuals and stellar features may be drastically differ-
ent along the spectrum and from one spectrum to the other, we
conservatively added the two errors. Here, we used the following
formulation:

δEW =δEWn + δEWc =2
√

2σδDepth+2
√

2σstdev(data−model).
(2)

δDepth is the uncertainty on the DIB depth that results from the
Gaussian fit. The approximate formula for the first term was de-
rived using a series of simulations with varying Gaussian noise.
The exact mathematical formulation is

√
π
√

2σδDepth, that is,
≈1.8

√
2σδDepth when the width is fixed during the fit. We con-

servatively replaced 1.8 by 2 to account for the partially free
width. The quantity stdev(data–model) is the standard deviation
in the two regions that define the continuum [15 578−15 607] Å
and [15 675−15 683] Å. This second term again conservatively
assumes that the continuum can be displaced by one standard
deviation on both sides of the DIB. The mean values over the
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Table 2. Basic properties of λλ15617, 15 653, and 15 673 NIR DIBs.

λc Mean FWHM Peak FWHM EW/E(B − V)∗ No. of successful fits
(Å) (Å) (Å) (mÅ/mag)

15 617 15 616.13 ± 0.07 4.37 4.03 51 295
15 653 15 651.38 ± 0.07 5.72 4.56 77 262
15 673 15 671.82 ± 0.03 3.74 3.31 96 308

Notes. (∗) Based on the λ15273 DIB.

whole catalog of these two errors are on the same order. How-
ever, their relative values vary strongly from one spectrum to the
other. For the spectra shown in Fig. 1 the second term is domi-
nant since the continuum is very well fit, but there are opposite
situations.

3.3. DIB characteristics

The λλ15617, 15 653, and 15 673 DIBs have been observed in
only a few sightlines (Geballe et al. 2011; Cox et al. 2014). Here
we benefit from the large amount of measurements to improve
their characterization.

3.3.1. Central wavelengths

A very precise determination of the rest wavelength of the strong
λ15273 DIB has been made by Zasowski et al. (2015) based on
the whole APOGEE dataset. Combining this information with
our previous measurements of the Doppler shifts of this strong
DIB in the TSS spectra (Elyajouri et al. 2016) allows us to de-
termine the rest wavelengths of the three weak DIBs in a rela-
tive way: for each spectrum we computed the difference between
the fitted central wavelength of each weak DIB, that is, λ15 617,
λ15 653, or λ15 673 and the central wavelength of the λ15273 DIB,
λ15 273. While all DIB wavelengths vary from one star to the other
due to the IS cloud motions and subsequent Doppler shifts, for a
given sightline the Doppler shifts of all DIBs are the same, and
as a result, the wavelength intervals between the DIB centroids
(e.g., ∆λ15 617 = λ15 617–λ15 273) remain approximately constant
(we assume that Vr/c is negligible). For each of the three DIBs
we computed the average of these wavelengths intervals for all
spectra of the catalog and added to the difference the central
value λ = 15 272.42Å of the strong DIB (Zasowski et al. 2015).
The resulting three central wavelengths and estimated errors are
listed in Table 2.

3.3.2. DIB widths and shapes

The large number of measurements for nearby targets allows us
to improve estimates of the DIB widths and shapes. Table 2 lists
the mean FWHM of all fitted Gaussian absorptions and Fig. 2
displays their distributions. Both show significant differences be-
tween the three DIBs, with a width decreasing by a factor 1.5
from the broadest band (λ15653) to the narrower (λ15673). Ow-
ing to the weakness of the DIBs and our selection of the most
reddened sightlines, our distribution suffers from biases and it is
not possible to derive the intrinsic widths simply from the his-
tograms. However, it is possible to constrain the intrinsic widths
to some extent. On one hand, the histograms are asymmetric
with a shallower slope toward the high widths, indicating that in
addition to broadening due to noise and spectra contamination,
there is an additional kinematical broadening. This is particularly
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Fig. 2. Histograms of the λλ15617, 15 653, and 15 673 DIB widths
(FWHM) for the targets of the catalog.

visible for the λλ15617 and 15 653 bands. As a consequence, we
can consider the histogram peak as an upper limit on the intrin-
sic width. On the other hand, the histograms show that there are
only very few cases of DIBs narrower than '2 Å, and visual in-
spection shows that they correspond to large uncertainties. For
these reasons we can safely assume that this value corresponds
to a lower limit for all our sightlines.

As we discuss in Sect. 5, for the TSS targets the velocity
spread of the intervening clouds is found to be small by compar-
ison with the optical DIB widths, and this must be also true for
the NIR DIBs. Therefore, the 2 Å cutoff is very likely the null-
broadening low end of the histogram. This results in the reduced
intervals for the intrinsic widths: 2 ≤ FWHM(15 617) ≤ 4.4 Å,
2 ≤ FWHM(15 653) ≤ 5.7 Å, and 2 ≤ FWHM(15 673) ≤
3.7 Å. In the future, more numerous measurements of spectra
and velocity structures or high-resolution single-cloud line-of-
sight studies will hopefully better constrain the intrinsic widths.

We used the stacked spectra described in Sect. 4 to derive
the average shape of the λλ15273, 15 617, and 15 673 bands.
The λ15653 DIB was not considered here because it is quite
strongly contaminated by a telluric emission. The average pro-
files are displayed in Fig. 3 and suggest that the λλ15617 and
15 673 bands are slightly asymmetric, with a shallower slope of
the red wing in a way similar to most optical DIBs. The asym-
metry is stronger for the λ15617 band. A Gaussian fit to the
λ15273 band gives FWHM = 3.91 Å, a value slightly lower
than the peak value FWHM = 4.12 Å (or σ = 1.75 Å) mea-
sured by Zasowski et al. (2015) for high-latitude sightlines. Our
use of bright, often nearby targets may explain that our average
width is less affected by cloud velocity dispersion and is closer
to the intrinsic width. Gaussian fits to the averaged λλ15617 and
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Table 3. DIB detections in the APOGEE spectral range (except for the strong λ15273 DIB) and their widths.

λDIB Geballe11∗ Cox14∗∗ This work This work
(Å) FWHM (Å) mean FWHM (Å)

15 225 30 ± 10 (4 LOS) not confirmed not confirmed –
15 617 10 ± 2 (5 LOS) 3 LOS 295 LOS 4.37
15 653 15 ± 4 (6 LOS) 2 LOS 262 LOS 5.72
15 673 9 ± 2 (6 LOS) 3 LOS 308 LOS 3.74
15 990 9 ± 2 (4 LOS) not confirmed confirmed 160 stacked spectra 5.4
16 232 24 ± 3 (6 LOS) 1 LOS confirmed (idem) 17::
16 573 (4 LOS) 1 LOS confirmed (idem) 5.2
16 585 (6 LOS) 2 LOS confirmed (idem) 3.3
16 596 (5 LOS) 1 LOS not confirmed –
15 235 – – new candidate? –
16 769 – – new candidate 2.8

Notes. (∗) Geballe et al. (2011), (∗∗) Cox et al. (2014), (::) uncertain, LOS: line of sight.
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Fig. 3. Extracted average normalized profile of the λλ15273, 15 617,
and 15 673 DIBs (see Sect. 4 for explanations of the stacked spectra).

15 673 profiles provide FHWM = 4.2 and 3.1 Å, respectively,
which corresponds to the maxima in their histograms in Fig. 3.

4. Search for the weakest bands

Table 3 lists all published DIB detections and candidates in the
APOGEE wavelength range (except for the strong λ15273 DIB),

based on the earlier works (Geballe et al. 2011; Cox et al. 2014).
For all bands the number of detections is very small and some are
quite uncertain. We used the TSS spectra to improve the charac-
terization of these previous detections and tentatively identify
new candidates. To do so, we assumed that on average, all DIBs
are positively correlated with the strong λ15273 band and built
two average spectra, one that we call strong-15 273, which is
made of spectra showing a λ15273 band with a high EW, and
one that we call weak-15 273, which is made of spectra show-
ing a weak EW. The former strong-15 273 list starts with our
selection of 308 targets of Sect. 3 that correspond to highly red-
dened targets. We selected in this list the spectra for which the
standard deviation between the data and the fitted model in the
whole [15 263–15 558] Å spectral interval is smaller than 1%,
and the 16 895 Å stellar line depth is larger than 3%. This sec-
ond criterion may appear surprising at first sight because it ex-
cludes the hottest target stars, but it ensures an excellent mod-
eling of all stellar lines. This appeared to be crucial for the
stacking. A total of 164 spectra were retained. For the weak-
15 273 list we started with the subsample of the full TSS catalog
of Elyajouri et al. (2016) that corresponded to the detection of
weak DIBs (flag 5). We extracted from this subsample the se-
ries of data that meets the same signal quality requirements as
for the strong DIBs above. Forty spectra were retained follow-
ing these criteria. The S/N for the two stacked spectra reaches
∼2000–2500 in the clean areas, allowing in principle to detect
absorptions as weak as 0.05%. For both subsets the spectra were
shifted to a common rest frame (the rest frame of the first tar-
get) and were then stacked. The strong-15 273 stacked spectrum
was used to determine the central wavelengths and average pro-
files (see the λλ15273, 15 617, and 15 673 DIB profiles in the
previous section and Table 2).

The two stacked spectra are displayed in Fig. 4. The figure
allows us to compare them in all spectral regions in a search for
departures that indicate an absorption feature, based on the as-
sumption that all absorptions are at least partly correlated. The
strong-15 273 spectrum shows significant departures from the
weak-15 273 spectrum at the locations of several of the detected
DIBs, which confirms their existence: the obvious λ15273, the
three DIBs λλ15617, 15 653, and 15 673 discussed in the pre-
vious section, and the four bands λλ15990, 16 232, 16 573, and
16 585. For all of them, except for the λ15653 band, which is
strongly contaminated by telluric lines and the λ16232 band,
which appears to be very broad, we have fitted a continuum
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Fig. 4. Stacked spectra created from 164 sight lines selected for their strong, well detected λ15273 DIB (solid black curve), and for 40 sightlines
selected for a combination of high signal, clean spectrum, and weakness of the λ15273 DIB (blue solid curve). Before stacking, the spectra
have been shifted to a common rest frame. In each figure the pink dashed lines show the telluric models and the green dashed curve displays
the NIR emission sky. At the location of an actual DIB we expect the black curve to exhibit a depression by comparison with the blue curve.
Telluric absorption and emission spectra allow us to distinguish artifacts that are due to telluric lines and real interstellar absorptions. Weak NIR
DIBs detected previously are indicated by colored boxes with the following code: green box: detected by Geballe et al. (2011) and confirmed by
Cox et al. (2014); yellow box: detected by Geballe et al. (2011), but not confirmed by Cox et al. (2014); red box: potential new detection.

around each detected or potential DIB in the strong-15 273 spec-
trum and extracted the DIB profile. The continuum-normalized
spectra are shown in Figs. 3 and 5. Gaussian fits to the profiles
provided the band widths listed in Table 3. For the broad λ16232
band we show the difference between the two stacked spectra
and the corresponding estimated value of its width. The λ16232
width is found to be significantly smaller than earlier results of
Geballe et al. (2011).

The comparison between the two stacked spectra does not
reveal any marked difference at the location of the tentative
λ15225 DIB detected by Geballe et al. (2011), in agreement with
the absence of detection by Cox et al. (2014). However, we de-
tect a non-negligible depression at 15 235 Å, and we suggest that
it is a potential DIB candidate. We do not detect any feature at
16 596 Å, contrary to Geballe et al. (2011) and Cox et al. (2014).

We note that this spectral region corresponds to a strong telluric
doublet.

Finally, we detect a potential candidate at 16 769 Å, as shown
in Fig. 6. This spectral region corresponds to the left wing of
a broad stellar line whose continuum is fit as illustrated in the
figure.

The detectability of new weak diffuse bands strongly de-
pends on the spectral interval. It is much lower in intervals con-
taminated by telluric residuals and at the location of stellar lines.
In the cleanest areas, a DIB with EW/E(B − V) = 11 mÅ mag−1

such as the λ15990 DIB can be detected using the stacked spec-
tra, as shown in Fig. 4. However, such a DIB represents here a
limit for the method, as can be estimated visually from the figure:
DIBs weaker than EW/E(B− V) ∼ 10 mÅ mag−1 and widths on
the order of 1–2 Å may remain undetected in the clean areas of
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Fig. 5. Same as Fig. 3 for the λλ15990, 16 573, and 16 584 DIBs.
For the broad λ16232 Å band we show the difference between the two
stacked spectra and the corresponding estimated value of its width.

the data. Stronger DIBs can also remain undetected in contami-
nated areas.

5. Correlative studies

NIR DIB correlative studies are essential in several respects:

– Like all correlations, they contain informations on the carri-
ers and may reveal families of DIBs. Today, NIR DIB-DIB
correlation studies are still limited by the small number of
NIR DIB measurements for transitions other than the λ15273
APOGEE main DIB. Cox et al. (2014) studied the correla-
tions among three NIR DIBs (λλ11 800, 13 180, and 15 273)
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Fig. 6. Potential λ16769 DIB candidate. In red is shown the original
stacked spectrum. The dashed line is the fitted continuum around the
DIB, and the normalized spectrum is shown in black. A spectral in-
terval strongly contaminated by a telluric line and not included in the
continuum fitting is shown in pale blue.

and found correlation coefficients of 0.90 and 0.97. On the
other hand, their comparisons with optical DIBs led to a
wider range of coefficients, from 0.83 to 0.98. Hamano et al.
(2015, 2016) performed an extensive study of NIR DIB cor-
relations for the 20 bands within the [0.91−1.32] µm spectral
range and found widely distributed correlation coefficients,
ranging from 0.45 to 0.99 for NIR-NIR relationships, and
ranging from 0.39 to 0.95 for the relationships between four
NIR DIBs and eight optical bands.

– DIB–DIB correlations and DIB correlations with the redden-
ing or the gas column are important when the DIBs are to be
used for mapping purposes. In principle, any ISM tracer, in-
cluding DIBs, can be used to assign distances to clouds based
on gradients, but the links with other tracers are fundamental
for deriving physical quantities.

– Optical DIBs observations cannot be used to trace highly or
extremely reddened LOS. In contrast, NIR DIBs may be very
useful to have a proxy of the amount of matter that may be
able to penetrate these regions.

Here we have used the APOGEE TSS data and ground-based
measurements to study the links between the NIR DIBs we could
extract and the links between the APOGEE strong DIB and op-
tical bands in more detail.

5.1. NIR-NIR DIB correlations

Figure 7 shows a comparison of the three DIBs λλ15617, 15 653,
and 15 673 with the stronger λ15273 band. Despite the large un-
certainties, each of the three DIBs is positively correlated with
this band. We performed a proportional linear fit using the or-
thogonal distance regression (ODR) method to take uncertainties
on two compared quantities into account. The slopes we found
are indicated in the figure. These slopes are used to derive the av-
erage equivalent width per unit reddening listed in Table 2, using
as a reference the value derived by Zasowski et al. (2015) for the
λ15273 DIB, namely:

EWDIB = 102 mÅ × A1.01±0.01
V , (3)

using the relation between extinction and reddening provided by
Savage & Mathis (1979):

R = AV/E(B − V) = 3.1. (4)
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Fig. 7. Correlation between the λλ15617, 15 673, and 15 653 NIR DIBs
and the strong λ15273 NIR DIB. The slope for the ODR proportional
linear fit is shown in each plot.

5.2. Extraction of optical DIBs from APOGEE TSS follow-up
observations

The equivalent width for the optical DIBs was measured us-
ing a modified version of the fitting method described in
(Puspitarini et al. 2013). The parameter determination was split

into two steps. First, we determined the shift of the DIB by
cross-correlation of the observed spectrum with an empiri-
cally determined template for the DIB (Puspitarini et al. 2013;
Raimond et al. 2012). Then, the shifted spectrum was fit to de-
termine the coefficients associated to the strength of the DIB and
small adjustements to the continuum. We note that the DIB at
λ6283 is in a spectral region with heavy atmospheric absorption.
For this specific DIB, we therefore estimated and removed the
telluric absoption using TAPAS2 (Bertaux et al. 2014). Equiv-
alent widths are listed in Table 4. Reported errors are based
on the formal one-sigma statistical errors associated to the fit.
Representative examples of fits for each DIB are presented in
Fig. 8.

5.3. NIR-visible comparisons

We used the subset of APOGEE targets with high-resolution
optical spectra to study various relations. In addition to the
APOGEE+NARVAL/SOPHIE data, we included the results by
Cox et al. (2014). Compared to their results, our targets probe
smaller column material, but the number of targets is now
strongly increased, namely from 9 to 58 lines of sight. Our goal
is to study how the λ15273 DIB compares with these optical
bands, especially those that are the most or the least sensitive to
the line-of-sight type.

We performed ODR linear fits for the five optical DIBs
λλ5780, 5797, 6196, 6283, and 6614. Results presented in Fig. 9
show that the strongest infrared DIB (i.e., the DIB at 15 273 Å)
is well related with the strongest optical DIBs, which in turn
trace the amount of interstellar matter along a line of sight well
(e.g., Merrill 1934; Herbig 1993). This supports the use of this
DIB as a tracer of the extinction, for instance. This is of par-
ticular interest to map the extinction along very reddened lines
of sight that are impregnable at optical wavelengths. The corre-
sponding Pearson correlation coefficients r and reduced χ2s are
shown in the Fig. 9. All correlation coefficients are above 0.81,
that is, they are similar to the average coefficients for the optical
DIBs (Friedman et al. 2011). Interestingly, the best reduced chi-
squared of the five DIBs is found for the λ6283 band, and the
worst correlation is found for the λ5797 band, with a variation
by a factor of almost 2 between the two bands, which is quite sig-
nificant. For all DIBs observed by Cox et al. (2014), HD 147889
is the most spectacular outlier, followed by HD 161056.

5.4. Influence of the environment on the λ15273 DIB:
detection of an edge effect for the λ15273 DIB

It is well known that the relative strength of optical DIBs varies
with the line of sight (e.g., Krelowski et al. 1992; Cami et al.
1997; Cox & Spaans 2006; Friedman et al. 2011; Vos et al.
2011; Cordiner et al. 2013), which reflects the reaction of the
DIB carriers to the properties of the ISM. On the one hand, the
so-called σ-type clouds, named after σ Sco, are associated with
low-density clouds and/or locations that are exposed to interstel-
lar UV radiation field. On the other hand, ζ-type clouds, named
after ζ Oph, are associated with higher densities areas that are
better protected from the UV radiation. Specifically, Cami et al.
(1997) found that the λ5780 DIB carrier is more abundant in the
edge of the clouds (i.e., a σ-type unshielded location), while that
of λ5797 DIB struggled to survive at these locations and instead
reached its maximum in the shielded core of the clouds. Thus
the ratio between the strengths of the λλ5797 and 5780 DIBs is

2 http://www.pole-ether.fr/tapas/
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Table 4. Extracted equivalent widths for optical DIBs.

2MASS ID EW5780 EW5797 EW6196 EW6283 EW6614

(mÅ) (mÅ) (mÅ) (mÅ) (mÅ)
TBL

J02102704+4846405 120.6 ± 3.0 31.3 ± 2.1 9.5 ± 1.9 352.0 ± 8.4 39.1 ± 2.2
J02205086+5519394 165.0 ± 2.6 72.8 ± 1.7 17.9 ± 1.5 589.7 ± 5.9 66.3 ± 2.0
J02255659+5500312 182.2 ± 3.6 43.1 ± 2.5 18.9 ± 2.4 640.6 ± 9.3 76.2 ± 2.8
J03074529+5211022 213.2 ± 3.7 58.4 ± 2.2 22.2 ± 2.2 541.9 ± 8.8 86.3 ± 2.2
J03241477+5030175 106.4 ± 3.2 48.0 ± 2.2 17.5 ± 1.9 257.7 ± 7.9 47.9 ± 2.0
J03302697+4703478 159.6 ± 3.2 51.8 ± 2.1 15.8 ± 1.9 350.2 ± 8.6 68.2 ± 2.3
J03305254+3005529 213.6 ± 4.9 109.0 ± 3.7 22.5 ± 3.4 280.0 ± 10.9 104.3 ± 3.1
J03331168+4604257 151.8 ± 2.8 55.9 ± 1.8 16.9 ± 1.5 379.5 ± 6.0 64.0 ± 1.9
J03403509+4854098 204.0 ± 2.7 53.2 ± 1.8 24.6 ± 1.5 518.1 ± 6.3 86.0 ± 1.9
J03440847+3207165 208.1 ± 3.3 99.3 ± 2.3 28.7 ± 1.9 419.1 ± 7.2 99.1 ± 2.3
J03564617+3925190 249.1 ± 4.1 101.0 ± 2.9 31.1 ± 2.5 551.5 ± 9.1 126.6 ± 2.5
J03580309+3756269 277.6 ± 5.2 98.7 ± 3.2 28.3 ± 2.9 600.5 ± 10.5 142.5 ± 3.1
J04133625+4342167 293.0 ± 4.7 122.7 ± 3.0 35.4 ± 3.1 685.8 ± 9.7 137.3 ± 3.3
J04140539+4348366 223.5 ± 2.7 86.3 ± 1.7 25.1 ± 1.6 478.0 ± 5.9 112.0 ± 1.8
J04315994+3623164 216.4 ± 3.0 68.9 ± 2.0 25.5 ± 2.0 466.5 ± 8.3 116.3 ± 2.2
J04360336+3640031 228.3 ± 3.2 102.9 ± 2.2 32.2 ± 1.8 550.6 ± 7.3 138.8 ± 2.0
J04570053+2155579 276.2 ± 4.2 92.5 ± 2.8 27.4 ± 2.8 496.7 ± 8.4 125.5 ± 3.0
J05000982+2235338 230.2 ± 3.1 56.0 ± 1.9 23.1 ± 1.8 660.3 ± 8.2 102.1 ± 1.9
J05003353+2236565 229.1 ± 3.7 67.2 ± 2.5 28.5 ± 2.2 660.0 ± 12.1 105.1 ± 2.4
J05011186+2336315 236.0 ± 3.6 87.3 ± 2.2 23.1 ± 2.2 545.9 ± 7.1 101.4 ± 2.4
J18140097+0035338 176.4 ± 5.1 107.1 ± 3.5 29.5 ± 3.0 503.9 ± 10.7 121.7 ± 3.3
J19484594+2256137 360.4 ± 4.7 179.3 ± 3.1 51.6 ± 2.4 536.5 ± 8.5 236.6 ± 3.1
J19594179+3054499 92.6 ± 2.6 21.4 ± 1.7 9.7 ± 1.7 243.7 ± 5.7 34.3 ± 1.9
J20012170+2217258 348.1 ± 3.7 108.2 ± 3.3 43.2 ± 2.1 938.1 ± 13.9 145.5 ± 2.1
J20135903+3632379 197.6 ± 2.8 76.1 ± 1.9 26.4 ± 1.5 604.9 ± 6.3 72.5 ± 1.7
J20141795+3709286 164.6 ± 4.2 56.9 ± 2.7 24.5 ± 2.4 414.5 ± 8.3 72.9 ± 3.0
J20145498+3722420 18.9 ± 2.4 5.5 ± 1.7 1.9 ± 1.4 38.6 ± 6.7 10.9 ± 1.8
J20250713+3638161 214.8 ± 4.6 48.1 ± 2.9 29.8 ± 3.4 630.3 ± 10.1 120.3 ± 3.3
J20444908+3157167 256.0 ± 3.1 115.9 ± 2.2 25.5 ± 2.0 544.1 ± 8.7 122.6 ± 2.3
J20451060+5112379 245.9 ± 3.2 79.4 ± 2.0 33.7 ± 1.8 697.3 ± 7.3 127.5 ± 2.0
J20510469+5025102 181.7 ± 4.8 61.3 ± 2.6 18.8 ± 2.5 336.2 ± 10.5 105.4 ± 2.7
J20550326+3928488 145.2 ± 4.0 70.7 ± 2.7 20.6 ± 2.8 375.9 ± 8.8 67.3 ± 2.6
J20564108+3957218 261.9 ± 3.0 133.1 ± 2.2 35.0 ± 1.7 728.5 ± 8.1 136.0 ± 2.0
J20595186+3858384 244.6 ± 5.8 87.4 ± 3.7 32.7 ± 3.9 729.0 ± 11.8 130.5 ± 4.0

J20595186+3858384(2) 253.2 ± 3.3 93.2 ± 2.1 35.7 ± 2.0 712.9 ± 7.5 133.0 ± 2.2
J21100235+4913175 215.0 ± 4.3 57.8 ± 2.7 28.3 ± 2.5 493.3 ± 8.5 102.9 ± 3.1
J21122845+4703145 166.6 ± 2.9 67.6 ± 1.8 18.5 ± 1.6 460.8 ± 6.7 55.8 ± 2.0
J21161964+4901093 305.0 ± 5.4 119.1 ± 3.9 35.3 ± 3.3 883.3 ± 12.0 136.7 ± 3.5
J21183302+6644202 320.7 ± 3.2 160.2 ± 2.0 38.7 ± 1.7 669.6 ± 7.5 141.6 ± 2.0
J21282648+4655259 194.9 ± 2.6 41.3 ± 1.8 17.5 ± 1.4 602.7 ± 8.5 76.7 ± 1.8
J21301511+5626264 266.6 ± 7.6 101.3 ± 5.0 41.6 ± 4.7 792.0 ± 16.1 116.7 ± 5.1

J21301511+5626264(2) 262.4 ± 4.8 91.4 ± 3.6 42.9 ± 3.4 749.7 ± 11.7 121.0 ± 3.1
J21344455+4432322 214.2 ± 2.9 60.1 ± 1.8 20.2 ± 1.5 639.1 ± 7.0 73.8 ± 1.7
J21363278+4303344 196.3 ± 2.7 50.2 ± 1.7 19.3 ± 1.6 696.4 ± 7.4 80.4 ± 1.9
J21373102+5259450 199.1 ± 2.9 57.2 ± 1.9 22.4 ± 1.9 488.3 ± 7.0 88.1 ± 2.5
J21375836+4152509 153.4 ± 3.2 38.3 ± 1.8 11.5 ± 1.4 357.2 ± 6.8 46.1 ± 1.8
J21432261+5850422 211.0 ± 2.6 109.4 ± 1.6 25.5 ± 1.5 457.4 ± 8.1 114.6 ± 2.2
J21434429+4323427 229.8 ± 5.2 81.9 ± 3.5 27.8 ± 3.5 728.2 ± 11.2 106.2 ± 3.4

J21434429+4323427(2) 232.2 ± 7.5 80.0 ± 5.2 22.5 ± 5.0 748.8 ± 16.0 97.3 ± 5.1
J21462326+5212411 35.6 ± 2.3 9.8 ± 1.5 2.3 ± 1.7 93.9 ± 5.7 12.2 ± 1.5
J21502003+3856054 193.1 ± 3.7 51.3 ± 2.6 16.0 ± 2.7 710.4 ± 9.6 64.4 ± 2.7
J21534939+3951119 245.7 ± 4.7 63.7 ± 2.9 25.6 ± 2.6 700.7 ± 10.3 82.9 ± 2.9
J21541026+3952378 242.2 ± 3.1 88.9 ± 2.1 23.3 ± 1.8 720.8 ± 7.2 96.4 ± 2.1
J21551055+5326166 277.8 ± 4.0 76.5 ± 3.0 23.9 ± 2.6 745.8 ± 9.8 108.5 ± 2.6
J22032307+5129046 201.6 ± 4.5 47.7 ± 3.1 10.9 ± 3.2 639.7 ± 10.1 67.1 ± 3.4

OHP
J19113993+1925541 186.9 ± 3.2 45.1 ± 2.2 15.0 ± 1.2 553.1 ± 9.7 33.2 ± 3.3
J19302526+1741428 63.6 ± 1.7 11.3 ± 1.2 6.6 ± 0.7 203.3 ± 9.0 26.3 ± 1.2
J20025554+4559129 218.5 ± 2.7 49.0 ± 2.9 20.6 ± 1.1 722.6 ± 9.7 77.6 ± 2.6
J21451397+4319554 160.6 ± 2.5 43.3 ± 1.6 16.5 ± 1.1 472.5 ± 7.5 62.3 ± 1.4
J21282648+4655259 124.9 ± 2.7 34.5 ± 2.0 7.0 ± 1.6 251.3 ± 5.8 60.0 ± 1.5

Notes. (2): the second observation.
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Fig. 8. Representative fit examples for the optical DIBs for three stars observed with NARVAL (Cols. 1–3) and one star observed with SOPHIE
(last column). They are ordered from bluer (top) to redder (bottom) band. Each panel contains a main graphic on top, with the observed spectrum
in black and the fit in red. Integration limits for estimating the equivalent width are marked in cyan. The auxiliary graphic at the bottom contains
the residuals in red.

well suited to distinguishing these two types of sight lines, and it
has been used as a means to quantify the exposure to the UV ra-
diation (e.g., Maíz Apellániz et al. 2015; Cordiner et al. 2013):
sight lines with low EW(λ5797)/EW(λ5780) values are classi-
fied as σ-type, while those with high EW(λ5797)/EW(λ5780)
are considered as ζ-type. Different limiting values to sepa-
rate between these two types of clouds can be found in the

literature. As a reference, we use in our discussion a ratio
of EW(λ5797)/EW(λ5780) ' 0.32, as proposed by Vos et al.
(2011).

Because only few lines of sight have measurements on both
the λ15273 infrared DIB and the λ5780 and λ5797 optical DIBs,
the reaction of the λ15273 infrared DIB to the UV radiation field
has not been addressed until now, as far as we are aware. Our
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Fig. 9. From top to bottom: correlation between the equivalent widths of the strongest NIR λ15273 DIB and of the five optical λλ5797, 6196,
6614, 5780, and 6283 DIBs. Compared to the Cox et al. (2014) targets, the OHP-SOPHIE and TBL-NARVAL targets correspond to shorter sight
line and weaker absorptions. For the λ6283 DIB only the latter two datasets are presented. Correlation coefficients r and reduced χ2 resulting from
the linear ODR fit are indicated in each plot.

sample of about 60 lines of sight is large enough to allow us
to do so. Since we lack color excess determinations, we cannot
use normalized equivalent widths (i.e., EW/E(B − V) ratios), as
has been done by Cami et al. (1997), for example. Instead, we
make use of a series of optical bands that are known for reacting

to the radiation environment in a different manner (from blue
to red: λλ5780, 5797, 6196, 6283, and 6614), and we test the
sensitivity of the λ15273 band to the environment by compar-
ing its strength with the one of each of these bands for all our
targets. Individual 5797/5780 ratios for each target are used as a
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quantitative measurement of the radiation. In this way, identify-
ing which of the λ15273/optical DIB ratios appears independent
of the EW(λ5797)/EW(λ5780) ratio allows us to associate the
behavior of the infrared DIB with that of this optical DIB, which
in turn places constraints on its carrier and assesses its diagnostic
potential.

The results are presented in Fig. 10, where the measured
ratios are ordered according to their degree of variability with
respect to the EW(λ5797)/EW(λ5780). In general, differences
between ratios are much larger in the σ-type regime (un-
shielded) than in the ζ-type regime, where the behavior is
smoother even though differences still exist. The strongest
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variation is found for the ratio involving the λ5797 DIB,
which is weakened in the presence of a strong UV radiation
field (Ehrenfreund & Jenniskens 1995; Cami et al. 1997). Con-
versely, the λ15273 infrared DIB follows the λ5780 band more
closely, and even more so the λ6283 band. The comparison with
the two other optical DIBs under consideration (λλ6196 and
6614) displays an intermediate behavior. Our results therefore
point toward a connection between the carriers of λλ5780 and
6283 DIBs, and that for the λ15273 infrared DIB. For exam-
ple, we might expect an ionization potential for the carrier of the
λ15273 infrared DIB smaller than 13.6 eV, as proposed for the
λλ5780 and 6283 DIBs (Ehrenfreund & Jenniskens 1995).

Our results for the comparisons with the λ5780 and λ5797
optical DIBs are similar to those obtained by Hamano et al.
(2015, 2016) for the 10 780, 19 792, 11 797, 12 623, and
13 175 Å bands: the NIR DIB is better correlated with the λ5780
band. According to these authors, the tight correlations with this
band, which is favored in a strong UV field, support the idea
that the carriers for the six DIBs are cation molecules. An in-
depth discussion of the nature of the λ15273 DIB carrier is not
possible at this stage, but we would like to highlight here that
because both the λλ5780 and 6283 DIBs are enhanced in pres-
ence of strong radiation fields (Ehrenfreund & Jenniskens 1995;
Cami et al. 1997; Vos et al. 2011), our results support the possi-
bility of using the λ15273 DIB in a similar way. In other words,
this DIB may be a good tool to be used as a proxy of the envi-
ronmental properties, especially in highly reddened areas.

We emphasize that in the context of 3D ISM mapping the
skin effect is a second-order phenomenon. Clouds are assigned
a distance by means of positive DIB EW radial gradients, and
EW radial gradients are positive at cloud crossings regardless of
the amplitude of the skin effect. On the other hand, the enhance-
ment of the λ15273 DIB in external layers of clouds exposed to
the radiation may prevent an optimal localization of the cloud
core, and may instead spread the reconstructed cloud core in a
wider volume compared to its actual one. However, given the
poor spatial resolution reached by current 3D maps, this is not
important. Conversely, future high-resolution and high-quality
measurements may take advantage of the skin effect and use the
DIB ratios to construct more detailed maps and simultaneously
detect the environmental effects.

6. Conclusion

In this contribution, we presented an in-depth exploitation of the
TSS spectra of the Apache Point Observatory Galactic Evolu-
tion Experiment (APOGEE), as provided by the SDSS DR12.
The work follows the path opened by Elyajouri et al. (2016) and
makes extensive use of the catalog presented there for the IR DIB
at λ15273. In addition to the IR data, we make use of high-
resolution optical spectra obtained with SOPHIE and NARVAL.

The main results and conclusions of this work can be sum-
marized as follows.

1. We provide a catalog of measurements of the strength (as
traced by the equivalent width) and central wavelength for
λλ15617, 15 653, and 15 673 DIBs with a total number of
295, 262, and 308 detections, respectively. This constitutes
the largest compilation of measurements for these DIBs to
date.

2. We made use of this large number of detections to charac-
terize in detail the central wavelength, width, and shape of
these three DIBs. All of them have a FWHM > 2 Å. The es-
timated upper limit for the intrinsic widths are 4.4, 5.7, and

3.7 Å for the λλ15617, 15 653, and 15 673 DIB, respectively.
We explored the shape of the DIBs by creating a spectrum
of extremely high S/N ratio through stacking. All the three
bands seem asymmetric and have a shallower slope in the
red wing, similar to what is observed in most optical DIBs.
The asymmetry is stronger for the λ15617 band. We used the
stacked spectrum to derive an average FWHM of 3.9 Å for
the λ15273 band. This value is slightly lower than the distri-
bution peak value of 5.1 from Zasowski et al. (2015).

3. We searched for weaker previously reported IR DIBs. To do
so, we stacked spectra since the S/N is not good enough to
extract measurements for these DIBs in an individual sight
line. We confirm the previously reported detection of DIBs
at λλ15990, 16 232, 16 573, and 16 585. We do not find any
absorption feature at λ16596, nor at λ15225, where DIB can-
didates have previously been reported (Geballe et al. 2011).
Our in-depth search suggests a possible existence of two ad-
ditional DIBs at λλ15235 and 16 769.

4. We provide first average ratios for the four NIR DIBs
λλ15273, 15 617, 15 653, and 15 673.

5. We used a total of about 60 spectra to explore the relation be-
tween the strongest infrared DIB (λ15273) and several strong
optical DIBs. The IR DIB correlates well with all of them,
with Pearson coefficients always higher than 0.8. We fit a
linear regression to all the pairs IR DIB − optical DIBs. The
best χ2 is found for the pair involving the DIB at λ6283,
pointing toward a close relationship between the carriers of
these two DIBs.

6. This relationship is confirmed when we explore the behavior
of the λ15273 DIB with respect to the environment. The IR
DIB nicely follows the λ5780 band, similarly to the 10 780,
19 792, 11 797, 12 623, and 13 175 Å bands (Hamano et al.
2016), and it even more tightly follows the band at λ6283. It
therefore probably forms in similar environmental conditions
(i.e., in a relatively strong UV radiation field). We propose
the λ15273 DIB (or a ratio involving this DIB) as an infrared
diagnostic of the physical conditions of the ISM.
A feature in the near-IR with this capability is particularly
relevant since it constitutes a tool able to trace the environ-
mental conditions in lines of sight that are impenetrable to
optical wavelengths. Moreover, we are living in an epoch
where astronomy is becoming more and more infrared ori-
ented. Highly multiplexed infrared spectrographs for 10 m
telescopes like MOONS (Cirasuolo et al. 2014) will be soon
in operation. Likewise, high-resolution spectroscopy with
the ELT family will also prioritize the infrared.
Even if our interest is in lines of sight that are transparent
enough in the optical, it is therefore desirable to develop
equivalent diagnostics at near-IR wavelengths.
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