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Abstract. We strive to find contexts (i.e., subgroups of entities) un-
der which exceptional (dis-)agreement occurs among a group of indi-
viduals, in any type of data featuring individuals (e.g., parliamentari-
ans, customers) performing observable actions (e.g., votes, ratings) on
entities (e.g., legislative procedures, movies). To this end, we introduce
the problem of discovering statistically significant exceptional contextual
intra-group agreement patterns. To handle the sparsity inherent to vot-
ing and rating data, we use Krippendorff’s Alpha measure for assessing
the agreement among individuals. We devise a branch-and-bound algo-
rithm, named DEvIANT, to discover such patterns. DEvIANT exploits
both closure operators and tight optimistic estimates. We derive analytic
approximations for the confidence intervals (CIs) associated with pat-
terns for a computationally efficient significance assessment. We prove
that these approximate CIs are nested along specialization of patterns.
This allows to incorporate pruning properties in DEvIANT to quickly
discard non-significant patterns. Empirical study on several datasets
demonstrates the efficiency and the usefulness of DEvIANT.

1 Introduction

Consider data describing voting behavior in the European Parliament (EP). Such
a dataset records the votes of each member (MEP) in voting sessions held in
the parliament, as well as the information on the parliamentarians (e.g., gender,
national party, European party alliance) and the sessions (e.g., topic, date). This
dataset offers opportunities to study the agreement or disagreement of coherent
subgroups, especially to highlight unexpected behavior. It is to be expected
that on the majority of voting sessions, MEPs will vote along the lines of their
European party alliance. However, when matters are of interest to a specific
nation within Europe, alignments may change and agreements can be formed
or dissolved. For instance, when a legislative procedure on fishing rights is put
before the MEPs, the island nation of the UK can be expected to agree on a
specific course of action regardless of their party alliance, fostering an exceptional
agreement where strong polarization exists otherwise.

We aim to discover such exceptional (dis-)agreements. This is not limited to
just EP or voting data: members of the US congress also vote on bills, while
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Amazon-like customers post ratings or reviews of products. A challenge when
considering such voting or rating data is to effectively handle the absence of
outcomes (sparsity), which is inherently high. For instance, in the European
parliament data, MEPs vote on average on only 3⁄4 of all sessions. These outcomes
are not missing at random: special workgroups are often formed of MEPs tasked
with studying a specific topic, and members of these workgroups are more likely
to vote on their topic of expertise. Hence, present values are likely associated
with more pressing votes, which means that missing values need to be treated
carefully. This problem becomes much worse when looking at Amazon or Yelp
rating data: the vast majority of customers will not have rated the vast majority
of products/places.

We introduce the problem of discovering significantly exceptional contextual
intra-group agreement patterns, rooted in the Subgroup Discovey (SD) [47]/ Ex-
ceptional Model Mining (EMM) [8] framework. To tackle the data sparsity issue,
we measure the agreement among groups with Krippendorff’s alpha, a measure
developed in the context of content analysis [28] which handles missing outcomes
elegantly. We develop a branch-and-bound algorithm to find subgroups featur-
ing statistically significantly exceptional (dis-)agreement among groups. This
algorithm enables discarding non-significant subgroups by pruning unpromising
branches of the search space (cf. Figure 1). Suppose that we are interested in
subgroups of entities (e.g., voting sessions) whose sizes are greater than a sup-
port threshold σ. We gauge the exceptionality of a given subgroup of size X ≥ σ,
by its p-value: the probability that for a random subset of entities, we observe
an intra-agreement at least as extreme as the one observed for the subgroup.
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Fig. 1: Main DEvIANT properties for safe sub-search space pruning. A subgroup is
reported as significant if its related Krippendorff’s Alpha falls in the critical region of
the corresponding empirical distribution of random subsets (DFD). When traversing
the search space downward (decreasing support size), the approximate confidence in-
tervals are nested. If the optimistic estimates region falls into the confidence interval
computed on the related DFD, the sub-search space can be safely pruned.
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Thus we avoid reporting subgroups observing a low/high intra-agreement due to
chance only. To achieve this, we estimate the empirical distribution of the intra-
agreement of random subsets (DFD: Distribution of False Discoveries, cf. [9,33])
and establish, for a chosen critical value α, a confidence interval CI1−α

X over
the corresponding distribution under the null hypothesis. If the subgroup intra-
agreement is outside CI1−α

X , the subgroup is statistically significant (p-value
≤ α); otherwise the subgroup is a spurious finding. We prove that the analytic
approximate confidence intervals are nested: σ ≤ Y ≤ X ⇒ CI1−α

X ⊆ CI1−α
Y

(i.e., when the support size grows, the confidence interval shrinks). Moreover,
we compute a tight optimistic estimate (OE) [18] to define a lower and upper
bounds of Krippendorff’s Alpha for any specialization of a subgroup having its
size greater than σ. Combining these properties, if the OE region falls into the
corresponding CI, we can safely prune large parts of the search space that do
not contain significant subgroups. In summary, the main contributions are:
1) We introduce the problem of discovering statistically significant exceptional
contextual intra-group agreement patterns (Section 3).
2) We derive an analytical approximation of the confidence intervals associ-
ated with subgroups. This allows a computationally efficient assessment of the
statistical significance of the findings. Furthermore, we show that approximate
confidence intervals are nested (Section 4). Particular attention is also paid to
the variability of outcomes among raters (Section 5).
3) We devise a branch-and-bound algorithm to discover exceptional contextual
intra-group agreement patterns (Section 6). It exploits tight optimistic estimates
on Krippendorff’s alpha and the nesting property of approximate CIs.

2 Background and Related Work

The page limit, combined with the sheer volume of other material in this paper,
compels us to restrict this section to one page containing only the most relevant
research to this present work.

Measuring Agreement. Several measures of agreement focus on two targets
(Pearson’s ρ, Spearman’s ρ, Kendall’s τ , Association); most cannot handle miss-
ing values well. As pointed out by Krippendorff [28, p.244], using association
and correlation measures to assess agreement leads to particularly misleading
conclusions: when all data falls along a line Y = aX + b, correlation is perfect,
but agreement requires that Y = X. Cohen’s κ is a seminal measure of agree-
ment between two raters who classify items into a fixed number of mutually
exclusive categories. Fleiss’ κ extends this notion to multiple raters and requires
that each item receives the exact same number of ratings. Krippendorff’s alpha
generalizes these measures while handling multiple raters, missing outcomes and
several metrics [28, p.232].
Discovering Significant Patterns. Statistical assessment of patterns has re-
ceived attention for a decade [44,21], especially for association rules [20,35]. Some
work focused on statistical significance of results in SD/EMM during enumera-
tion [9,33] or a posteriori [10] for statistical validation of the found subgroups.
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Voting and Rating Data Analysis. Previous work [3] proposed a method to
discover exceptional inter -group agreement in voting or rating data. This method
does not allow to discover intra-group agreement. In rating datasets, groups are
uncovered whose members exhibit an agreement or discord [6] or a specific rat-
ing distribution [1] (e.g., polarized, homogeneous) given upfront by the end-user.
This is done by aggregating the ratings through an arithmetic mean or a rating
distribution. However, these methods do not allow to discover exceptional (dis-
)agreement within groups. Moreover, they may output misleading hypotheses
over the intra-group agreement, since aggregating ratings in a distribution (i)
is highly affected by data sparsity (e.g., two reviewers may significantly differ
in their number of expressed ratings) and (ii) may conceal the true nature of
the underlying intra-group agreement. For instance, a rating distribution com-
puted for a collection of movies may highlight a polarized distribution of ratings
(interpreted as a disagreement) while ratings over each movie may describe a
consensus between raters (movies are either highly or lowly rated or by the
majority of the group). These two issues are addressed by Krippendorff’s alpha.

3 Problem Definition

Our data consists of a set of individuals (e.g., social network users, parliamentar-
ians) who give outcomes (e.g., ratings, votes) on entities (e.g., movies, ballots).
We call this type of data a behavioral dataset (cf. Table 1).

Definition 1 (Behavioral Dataset). A behavioral dataset B = 〈GI , GE , O, o〉
is defined by (i) a finite collection of Individuals GI , (ii) a finite collection of
Entities GE, (iii) a domain of possible Outcomes O, and (iv) a function o :
GI ×GE → O that gives the outcome of an individual i over an entity e.

The elements from GI (resp. GE) are augmented with descriptive attributes
AI (resp. AE). Attributes a ∈ AI (resp. AE) may be Boolean, numerical or cat-
egorical, potentially organized in a taxonomy. Subgroups (subsets) of GI (resp.
GE) are defined using descriptions from DI (resp. DE). These descriptions are
formalized by conjunctions of conditions on the values of the attributes. Descrip-
tions of DI are called groups, denoted g. Descriptions of DE are called contexts,

Table 1: Example of behavioral dataset - European Parliament Voting dataset

(a) Entities

ide themes date

e1 1.20 Citizen’s rights 20/04/16
e2 5.05 Economic growth 16/05/16
e3 1.20 Citizen’s rights;

7.30 Judicial Coop 04/06/16
e4 7 Security and Justice 11/06/16
e5 7.30 Judicial Coop 03/07/16
e6 7.30 Judicial Coop 29/07/16

(b) Individuals

idi country group age

i1 France S&D 26

i2 France PPE 30

i3 Germany S&D 40

i4 Germany ALDE 45

(c) Outcomes

idi ide o(i,e) idi ide o(i,e)

i1 e2 Against i3 e1 For
i1 e5 For i3 e2 Against
i1 e6 Against i3 e3 For
i2 e1 For i3 e5 Against
i2 e3 Against i4 e1 For
i2 e4 For i4 e4 For
i2 e5 For i4 e6 Against
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denoted c. From now on, G (resp. D) denotes both collections GI (resp. DI) and
GE (resp. DE) if no confusion can arise. We denote by Gd the subset of records
characterized by the description d ∈ D. Descriptions from D are partially or-
dered by a specialization operator denoted v. A description d2 is a specialization
of d1, denoted d1 v d2, if and only if d2 ⇒ d1 from a logical point of view. It
follows that Gd2 ⊆ Gd1 .

3.1 Intra-group Agreement Measure: Krippendorff’s Alpha (A)

Krippendorff’s Alpha (denoted A) measures the agreement among raters. This
measure has several properties that make it attractive in our setting, namely:
(i) it is applicable to any number of observers; (ii) it handles various domains
of outcomes (ordinal, numerical, categorical, time series); (iii) it handles missing
values; (iv) it corrects for the agreement expected by chance. A is defined as:

A = 1− Dobs

Dexp
(1)

where Dobs (resp. Dexp) is a measure of the observed (resp. expected) disagree-
ment. Hence, when A = 1, the agreement is as large as it can possibly be (given
the class prior), and when A = 0, the agreement is indistinguishable to agree-
ment by chance. We can also have A < 0, where disagreement is larger than
expected by chance and which corresponds to systematic disagreement.

Given a behavioral dataset B, we want to measure Krippendorff’s alpha for
a given context c ∈ DE characterizing a subset of entities GcE ⊆ GE , which
indicates to what extent the individuals who comprise some selected group are

in agreement g ∈ DI . From Equation (1), we have: A(S) = 1 − Dobs(S)
Dexp

for

any S ⊆ GE . Note that the measure only considers entities having at least two
outcomes; we assume the entities not fulfilling this requirement to be removed
upfront by a preprocessing phase. We capture observed disagreement by:

Dobs(S) =
1∑

e∈Sme

∑
o1o2∈O2

δo1o2 ·
∑
e∈S

mo1
e ·mo2

e

me − 1
(2)

Where me is the number of expressed outcomes for the entity e and mo1
e (resp.

mo2
e ) represents the number of outcomes equal to o1 (resp. o2) expressed for the

entity e. δo1o2 is a distance measure between outcomes, which can be defined ac-
cording to the domain of the outcomes (e.g., δo1o2 can correspond to the Iverson
bracket indicator function [o1 6= o2] for categorical outcomes or distance between
ordinal values for ratings. Choices for the distance measure are discussed in [28]).
The disagreement expected by chance is captured by:

Dexp =
1

m · (m− 1)

∑
o1,o2∈O2

δo1o2 ·mo1 ·mo2 (3)

Where m is the number of all expressed outcomes, mo1 (resp. mo2) is the number
of expressed outcomes equal to o1 (resp. o2) observed in the entire behavioral
dataset. This corresponds to the disagreement by chance observed on the overall
marginal distribution of outcomes.
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Table 2: Summarized Be-
havioral Data; Dobs(e) =∑
o1,o2∈O2 δo1o2

mo1
e ·mo2

e

me · (me − 1)

[F]or [A]gainst
e1 e2 e3 e4 e5 e6

i1 A F A
i2 F A F F
i3 F A F A
i4 F F A

me 3 2 2 2 3 2
Dobs(e) 0 0 1 0 2

3 0

Example: Table 2 summarizes the behavioral data
from Table 1. The disagreement expected by chance
equals (given: mF = 8, mA = 6): Dexp = 48/91.
To evaluate intra-agreement among the four individ-
uals in the global context (considering all entities),
first we need to compute the observed disagreement
Dobs(GE). This equals the weighted average of the
two last lines by considering the quantities me as
the weights: Dobs(GE) = 4

14 . Hence, for the global
context, A(GE) = 0.46. Now, consider the context
c = 〈themes ⊇ {7.30 Judicial Coop.}〉, having as
support: GcE = {e3, e5, e6}. The observed disagree-
ment is obtained by computing the weighted average,
only considering the entities belonging to the context:
Dobs(G

c
E) = 4

7 . Hence, the contextual intra-agreement is: A(GcE) = −0.08.
Comparing A(GcE) and A(GE) leads to the following statement: “while par-

liamentarians are slightly in agreement in overall terms, matters of judicial co-
operation create systematic disagreement among them”.

3.2 Mining Significant Patterns with Krippendorff’s Alpha

We are interested in finding patterns of the form (g, c) ∈ P (with P = DI ×
DE), highlighting an exceptional intra-agreement between members of a group
of individuals g over a context c. We formalize this problem using the well-
established framework of SD/EMM [8], while giving particular attention to the
statistical significance and soundness of the discovered patterns [21].

Given a group of individuals g ∈ DI , we strive to find contexts c ∈ DE
where the observed intra-agreement, denoted Ag(GcE), significantly differs from
the expected intra-agreement occurring due to chance alone. In the spirit of
[9,33,44], we evaluate pattern interestingness by statistical significance of the
contextual intra-agreement: we estimate the probability to observe the intra-
agreement Ag(GcE) or a more extreme value, which corresponds to the p-value
for some null hypothesis H0. The pattern is said to be significant if the estimated
probability is low enough (i.e., under some critical value α). The relevant null
hypothesis H0 is: the observed intra-agreement is generated by the distribution
of intra-agreements observed on a bag of i.i.d. random subsets drawn from the
entire collection of entities (DFD: Distributions of False Discoveries, cf. [9]).

Problem Statement. (Discovering Exceptional Contextual Intra-group Agree-
ment Patterns). Given a behavioral dataset B = 〈GI , GE , O, o〉, a minimum
group support threshold σI , a minimum context support threshold σE , a signif-
icance critical value α ∈]0, 1], and the null hypothesis H0 (the observed intra-
agreement is generated by the DFD); find the pattern set P ⊆ P such that:

P = {(g, c) ∈ DI ×DE : |GgI | ≥ σI and |GcE | ≥ σE and p-valueg(c) ≤ α}
where p-valueg(c) is the probability (under H0) of obtaining an intra-agreement
A at least as extreme as Ag(GcE), the one observed over the current context.
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4 Exceptional Contexts: Evaluation and Pruning

From now on we omit the exponent g if no confusion can arise, while keeping in
mind a selected group of individuals g ∈ DI related to a subset GgI ⊆ GI .

To evaluate the extent to which our findings are exceptional, we follow the
significant pattern mining paradigm4: we consider each context c as a hypothesis
test which returns a p-value. The p-value is the probability of obtaining an
intra-agreement at least as extreme as the one observed over the current context
A (GcE), assuming the truth of the null hypothesis H0. The pattern is accepted if
H0 is rejected. This happens if the p-value is under a critical significance value
α which amounts to test if the observed intra-agreement A (GcE) is outside the
confidence interval CI1−α established using the distribution assumed under H0.

H0 corresponds to the baseline finding: the observed contextual intra-agree-
ment is generated by the distribution of random subsets equally likely to occur,
a.k.a. Distribution of False Discoveries (DFD, cf. [9]). We evaluate the p-value
of the observed A against the distribution of random subsets of a cardinality
equal to the size of the observed subgroup GcE . The subsets are issued by uni-
form sampling without replacement (since the observed subgroup encompasses
distinct entities only) from the entity collection. Moreover, drawing samples only
from the collection of subsets of size equal to |GcE | allows to drive more judicious
conclusions: the variability of the statistic A is impacted by the size of the con-
sidered subgroups, since smaller subgroups are more likely to observe low/high
values of A. The same reasoning was followed in [33].

We define θk : Fk → R as the random variable corresponding to the observed
intra-agreement A of k-sized subsets S ∈ GE . I.e., for any k ∈ [1, n] with n =
|GE |, we have θk(S) = A(S) and Fk = {S ∈ GE s.t. |S| = k}. Fk is then the set
of possible subsets which are equally likely to occur under the null hypothesis

H0. That is, P(S ∈ Fk) =
(
n
k

)−1
. We denote by CI1−α

k the (1 − α) confidence
interval related to the probability distribution of θk under the null hypothesis
H0. To easily manipulate θk, we reformulate A using Equations (1)-(3):

A(S) =

∑
e∈S ve∑
e∈S we

| we = me and ve = me −
1

Dexp

∑
o1,o2∈O2

δo1o2 ·
mo1
e ·mo2

e

(me − 1) (4)

Under the null hypothesis H0 and the assumption that the underlying distri-
bution of intra-agreements is a Normal distribution5 N (µk, σ

2
k), one can define

4This paradigm naturally raises the question of how to address the multiple com-
parisons problem [23]. This is a non-trivial task in our setting, and solving it requires
an extension of the significant pattern mining paradigm as a whole: its scope is bigger
than this paper. We provide a brief discussion in Appendix C.

5In the same line of reasoning of [7], one can assume that the underlying distribution
can be derived from what prior beliefs the end-user may have on such distribution. If
only the observed expectation µ and variance σ2 are given as constraints which must
hold for the underlying distribution, the maximum entropy distribution (taking into
account no other prior information than the given constraints) is known to be the
Normal distribution N (µ, σ2) [5, p.413].
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CI1−α
k by computing µk = E[θk] and σ2

k = Var[θk]. Doing so requires either
empirically calculating estimators of such moments by drawing a large number r
of uniformly generated samples from Fk, or analytically deriving the formula of
E[θk] and Var[θk]. In the former case, the confidence interval CI1−α

k endpoints

are given by [17, p.9]: µk ± t1−α2 ,r−1σk
√

1 + (1/r), with µk and σk empirically
estimated on the r samples, and t1−α2 ,r−1 the (1 − α

2 ) percentile of Student’s
t-distribution with r − 1 degrees of freedom. In the latter case, (µk and σk are
known/derived analytically), the (1−α) confidence interval can be computed in
its most basic form, that is CI1−α

k = [µk− z(1−α2 )σk, µk + z(1−α2 )σk] with z(1−α2 )

the (1− α
2 ) percentile of N (0, 1).

However, due to the problem setting, empirically establishing the confidence
interval is computationally expensive, since it must be calculated for each enu-
merated context. Even for relatively small behavioral datasets, this quickly be-
comes intractable. Alternatively, analytically deriving a computationally efficient

form of E[θk] is notoriously difficult, given that E[θk] =
(
n
k

)−1∑
S∈Fk

∑
e∈S ve∑
e∈S we

and Var[θk] =
(
n
k

)−1∑
S∈Fk

(∑
e∈S ve∑
e∈S we

− E[θk]
)2

.

Since θk can be seen as a weighted arithmetic mean, one can model the ran-
dom variable θk as the ratio Vk

Wk
, where Vk and Wk are two random variables Vk :

Fk → R and Wk : Fk → R with Vk(S) = 1
k

∑
e∈S ve and Wk(S) = 1

k

∑
e∈S we.

An elegant way to deal with a ratio of two random variables is to approximate
its moments using the Taylor series following the line of reasoning of [12] and
[26, p.351], since no easy analytic expression of E[θk] and Var[θk] can be derived.

Proposition 1 (An Approximate Confidence Interval ĈI
1−α
k for θk).

Given k ∈ [1, n] and α ∈]0, 1] (significance critical value), ĈI
1−α
k is given by:

ĈI
1−α
k =

[
Ê[θk]− z1−α

2

√
V̂ar[θk], Ê[θk] + z1−α

2

√
V̂ar[θk]

]
(5)

with Ê[θk] a Taylor approximation for the expectation E[θk] expanded around

(µVk , µWk
), and V̂ar[θk] a Taylor approximation for Var[θk] given by:

Ê[θk] =
(n
k
− 1
) µv
µw

βw +
µv
µw

V̂ar[θk] =
(n
k
− 1
) µ2

v

µ2
w

(βv + βw) (6)

with:

µv =
1

n

∑
e∈GE

ve

µv2 =
1

n

∑
e∈GE

v2
e

µw =
1

n

∑
e∈GE

we

µw2 =
1

n

∑
e∈GE

w2
e

n = |GE |

µvw =
1

n

∑
e∈GE

vewe

and: βv =
1

n− 1

(
µv2

µ2
v

− µvw
µvµw

)
βw =

1

n− 1

(
µw2

µ2
w

− µvw
µvµw

)
For a proof of these equations, see Appendix A.

Note that the complexity of the computation of the approximate confidence

interval ĈI
1−α
k is O(n), with n the size of entities collection GE .
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4.1 Pruning the Search Space

Optimistic Estimate on Krippendorff’s Alpha. To quickly prune unpromis-
ing areas of the search space, we define a tight optimistic estimate [18] on Krip-
pendorff’s alpha. Eppstein and Hirschberg [14] propose a smart linear algorithm
Random-SMWA6 to find subsets with maximum weighted average. Recall that A
can be seen as a weighted average (cf. Equation (4)).

In a nutshell, Random-SMWA seeks to remove k values to find a subset of S
having |S| − k values with maximum weighted average. The authors model the
problem as such: given |S| values decreasing linearly with time, find the time at
which the |S| − k maximum values add to zero. In the scope of this work, given
a user-defined support threshold σE on the minimum allowed size of context
extents, k is fixed to |S| − σE . The obtained subset corresponds to the smallest
allowed subset having support ≥ σE maximizing the weighted average quantity
A. The Random-SMWA algorithm can be tweaked7 to retrieve the smallest subset of
size ≥ σE having analogously the minimum possible weighted average quantity
A. We refer to the algorithm returning the maximum (resp. minimum) possible
weighted average by RandomSMWAmax (resp. RandomSMWAmin).

Proposition 2 (Upper and Lower Bounds for A). Given S ⊆ GE, mini-
mum context support threshold σE, and the following functions:

UB(S) = A (RandomSMWAmax(S, σE)) LB(S) = A
(
RandomSMWAmin(S, σE)

)
we know that LB (resp. UB) is a lower (resp. upper) bound for A, i.e.:

∀c, d ∈ DE : c v d ∧ |GcE | ≥ |GdE | ≥ σE ⇒ LB(GcE) ≤ A(GdE) ≤ UB(GcE)

Using these results, we define the optimistic estimate for A as an interval
bounded by the minimum and the maximum A measure that one can observe
from the subsets of a given subset S ⊆ GE , that is:OE(S, σE) = [LB(S), UB(S)].

Nested Confidence Intervals for A. The desired property between two con-
fidence intervals of the same significance level α related to respectively k1, k2

with k1 ≤ k2 is that CI1−α
k1

encompasses CI1−α
k2

. Colloquially speaking, larger
samples lead to “narrower” confidence intervals. This property is intuitively plau-
sible, since the dispersion of the observed intra-agreement for smaller samples is
likely to be higher than the dispersion for larger samples. Having such a property
allows to prune the search subspace related to a context c when traversing the
search space downward if OE(GcE , σE) ⊆ CI1−α

|GcE |
.

Proving CI1−α
k2

⊆ CI1−α
k1

for k1 ≤ k2 for the exact confidence interval is
nontrivial, since it requires to analytically derive E[θk] and Var[θk] for any 1 ≤
k ≤ n. Note that the expected value E[θk] varies when k varies. We study such

a property for the approximate confidence interval ĈI
1−α
k .

6Random-SMWA: Randomized algorithm - Subset with Maximum Weighted Average.
7Finding the subset having the minimum weighted average is a dual problem to

finding the subset having the maximum weighted average. To solve the former problem
using Random-SMWA, we modify the values of vi to −vi and keep the same weights wi.
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Proposition 3 (Minimum Cardinality Constraint for Nested Approx-
imate Confidence Intervals). Given a context support threshold σE and α.

If σE ≥ Cα =
4nβ2

w

z2
1−α2

(βv + βw) + 4β2
w

,

then ∀k1, k2 ∈ N : σE ≤ k1 ≤ k2 ⇒ ĈI
1−α
k2 ⊆ ĈI

1−α
k1

Combining Propositions 1, 2 and 3, we formalize the pruning region property
which answers: when to prune the sub-search space under a context c?

Corollary 1 (Pruning Regions). Given a behavioral dataset B, a context sup-
port threshold σE ≥ Cα, and a significance critical value α ∈]0, 1]. For any
c, d ∈ DE such that c v d with |GcE | ≥ |GdE | ≥ σE, we have:

OE(GcE , σE) ⊆ ĈI
1−α
|GcE |

⇒ A(GdE) ∈ ĈI
1−α
|GdE |

⇒ p-value(d) > α

Proofs. All proofs of propositions and properties can be found in Appendix A.

5 On Handling Variability of Outcomes Among Raters

In Section 4, we defined the confidence interval CI1−α established over the DFD.
By taking into consideration the variability induced by the selection of a sub-
set of entities, such a confidence interval enables to avoid reporting subgroups
indicating an intra-agreement likely (w.r.t. the critical value α) to be observed
by a random subset of entities. For more statistically sound results, one should
not only take into account the variability induced by the selection of subsets of
entities, but also the variability induced by the outcomes of the selected group
of individuals. This is well summarized by Hayes and Krippendorff [22]: “The
obtained value of A is subject to random sampling variability—specifically vari-
ability attributable to the selection of units (i.e., entities) in the reliability data
(i.e., behavioral data) and the variability of their judgments”. To address these
two questions, they recommend to employ a standard Efron & Tibshirani boot-
strapping approach [13] to empirically generate the sampling distribution of A
and produce an empirical confidence interval CI1−α

bootstrap.
Recall that we consider here a behavioral dataset B reduced to the outcomes

of a selected group of individuals g. Following the bootstrapping scheme proposed
by Krippendorff [22,28], the empirical confidence interval is computed by repeat-
edly performing the following steps: (1) resample n entities fromGE with replace-
ment; (2) for each sampled entity, draw uniformly me ·(me−1) pairs of outcomes
according to the distribution of the observed pairs of outcomes; (3) compute the
observed disagreement and calculate Krippendorff’s alpha on the resulting re-
sample. This process, repeated b times, leads to a vector of bootstrap estimates
(sorted in ascending order) B̂ = [Â1, . . . , Âb]. Given the empirical distribution
B̂, the empirical confidence interval CI1−α

bootstrap is defined by the percentiles of

B̂, i.e., CI1−α
bootstrap = [Âbα2 ·bc, Âd(1−

α
2 )·be]. We denote by MCI1−α (Merged CI)

the confidence interval that takes into consideration both CI1−α = [le1, re1] and
CI1−α

bootstrap = [le2, re2]. We have MCI1−α = [min(le1, le2),max(re1, re2)].
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6 A Branch-and-bound Solution: Algorithm DEvIANT

To detect exceptional contextual intra-group agreement patterns, we need to
enumerate candidates p = (g, c) ∈ (DI ,DE). Both heuristic (e.g., beam search
[31]) and exhaustive (e.g., GP-growth [32]) enumeration algorithms exist. We
exhaustively enumerate all candidate subgroups while leveraging closure opera-
tors [15] (since A computation only depends on the extent of a pattern). This
makes it possible to avoid redundancy and to substantially reduce the number of
visited patterns. With this aim in mind, and since the data we deal with are of
the same format as those handled in the previous work [3], we apply EnumCC to
enumerate subgroups g (resp. c) in DI (resp. DE). EnumCC follows the line of al-
gorithm CloseByOne [29]. Given a collection G of records (GE or GI), EnumCC
traverses the search space depth-first and enumerates only once all closed de-
scriptions fulfilling the minimum support constraint σ. EnumCC follows a yield
and wait paradigm (similar to Python’s generators) which at each call yield the
following candidate and wait for the next call. See Appendix B for details.

DEvIANT implements an efficient branch-and-bound algorithm to Discover
statistically significant Exceptional Intra-group Agreement paTterns while lever-
aging closure, tight optimistic estimates and pruning properties. DEvIANT starts
by selecting a group g of individuals. Next, the corresponding behavioral dataset
Bg is established by reducing the original dataset B to elements concerning solely
the individuals comprising GgI and entities having at least two outcomes. Subse-
quently, the bootstrap confidence interval CI1−α

bootstrap is calculated.

Algorithm 1: DEvIANT(B, σE , σI , α)

Inputs : Behavioral dataset B = 〈GI , GE , O, o〉, minimum support threshold
σE of a context and σI of a group, and critical significance value α.

Output: Set of exceptional intra-group agreement patterns P .
1 P ← {}
2 foreach (g,GgI , contg) ∈ EnumCC(GI , ∗, σI , 0,True) do
3 GE(g) = {e ∈ E s.t. me(g) ≥ 2} . me(g): number of individuals of group g
4 Bg = 〈GE(g), GgI , O, o〉 who expressed an outcome on e

5 CI1−αbootstrap = [Âbα
2
·bc, Âd(1−α

2
)·be] . With B̂ = [Âg1, ..., Â

g
b ] computed on

6 σgE = max (Cα (g) , σE) respectively b resamples of Bg
7 foreach (c,GcE , contc) ∈ EnumCC(GE(g), ∗, σgE , 0,True) do

8 MCI1−α|Gc
E
| = merge

(
ĈI

1−α
|Gc
E
|,CI1−αbootstrap

)
9 if OE(GcE , σ

g
E) ⊆ MCI1−α|Gc

E
| then

10 contc ← False . Prune the unpromising search subspace under c

11 else if Ag(GcE) /∈ MCI1−α|Gc
E
| then

12 pnew ← (g, c)
13 if @pold ∈ P s.t. ext(pnew) ⊆ ext(pold) then
14 P ← (P ∪ pnew) \ {pold ∈ P | ext(pold) ⊆ ext(pnew)}
15 contc ← False . Prune the sub search space (generality concept)

16 return P
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Table 3: Main characteristics of the behavioral datasets. C0.05 represents the minimum
context support threshold over which we have nested approximate CI property.

|GE | AE (Items-Scaling) |GI | AI (Items-Scaling) Outcomes Sparsity C0.05

EPD88 4704 1H + 1N + 1C (437) 848 3C (82) 3.1M (C) 78.6% ' 10−6

CHUS9 17350 1H + 2N (307) 1373 2C (261) 3M (C) 31.2% ' 10−4

Movielens10 1681 1H + 1N (161) 943 3C (27) 100K (O) 06.3% ' 0.065
Yelp11 127K 1H + 1C (851) 1M 3C (6) 4.15M (O) 0.003% ' 1.14

Before searching for exceptional contexts, the minimum context support
threshold σE is adjusted to Cα(g) (cf. Proposition 3) if it is lower than Cα(g).
While in practice Cα(g)� σE , we keep this correction for algorithm soundness.
Next, contexts are enumerated by EnumCC. For each candidate context c, the
optimistic estimate interval OE(GcE) is computed (cf. Proposition 2). Accord-
ing to Corollary 1, if OE(GcE , σ

g
E) ⊆ MCI1−α

|GcE |
, the search subspace under c can

be pruned. Otherwise, Ag(GcE) is computed and evaluated against MCI1−α
|GcE |

. If

Ag(GcE) 6∈ MCI1−α
|GcE |

, then (g, c) is significant and kept in the result set P . To

reduce the number of reported patterns, we keep only the most general patterns
while ensuring that each significant pattern in P is represented by a pattern in

P . This formally translates to: ∀p′ = (g′, c′) ∈ P \P : p-valueg
′
(c′) ≤ α⇒ ∃p =

(g, c) ∈ P s.t. ext(q) ⊆ ext(p), with ext (q = (g′, c′)) ⊆ ext (p = (g, c)) defined by

Gg
′

I ⊆ G
g
I and Gc

′

E ⊆ GcE . This is based on the following postulate: the end-user
is more interested by exceptional (dis-)agreement within larger groups and/or
for larger contexts rather than local exceptional (dis-)agreement. Moreover, the
end-user can always refine their analysis to obtain more fine-grained results by
re-launching the algorithm starting from a specific context or group.

7 Empirical Evaluation

Our experiments aim to answer the following questions: (Q1) How well does
the Taylor-approximated CI approach the empirical CI? (Q2) How efficient is
the Taylor-approximated CI and the pruning properties? (Q3) Does DEvIANT
provide interpretable patterns? Source code and data are available on our com-
panion page: https://github.com/Adnene93/Deviant.
Datasets. Experiments were carried on four real-world behavioral datasets (cf.
Table 3): two voting (EPD8 and CHUS) and two rating datasets (Movielens
and Yelp). Each dataset features entities and individuals described by attributes
that are either categorical (C), numerical (N), or categorical augmented with
a taxonomy (H). We also report the equivalent number of items (in an itemset
language) corresponding to the descriptive attributes (ordinal scaling [16]).

8Eighth European Parliament Voting Dataset (04/10/18).
9102nd-115th congresses of the US House of Representatives (Period: 1991-2015).

10Movie review dataset - https://grouplens.org/datasets/movielens/100k/.
11Social network dataset - https://www.yelp.com/dataset/challenge (25/04/17).

https://github.com/Adnene93/Deviant
https://grouplens.org/datasets/movielens/100k/
https://www.yelp.com/dataset/challenge
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Table 4: Coverage error between empirical CIs and Taylor CIs.

B µerr σerr B µerr σerr B µerr σerr B µerr σerr

CHUS 0.007 0.004 EPD8 0.007 0.004 Movielens 0.0075 0.0045 Yelp 0.007 0.004
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Fig. 2: Comparison between DEvIANT and Naive when varying the size of the de-
scription space DI . Lines correspond to the execution time and bars correspond to the
number of output patterns. Parameters: σE = σI = 1% and α = 0.05.

Q1. First, we evaluate to what extent the empirically computed confidence in-
terval approximates the confidence interval computed by Taylor approximations.
We run 1000 experiments for subset sizes k uniformly randomly distributed in
[1, n = |GE |]. For each k, we compute the corresponding Taylor approximation

ĈI
1−α
k = [aT , bT ] and empirical confidence interval ECI1−α

k = [aE , bE ]. The
latter is calculated over 104 samples of size k from GE , on which we compute
the observed A which are then used to estimate the moments of the empirical
distribution required for establishing ECI1−α

k . Once both CIs are computed, we
measure their distance by Jaccard index. Table 4 reports the average µerr and the
standard deviation σerr of the observed distances (coverage error) over the 1000
experiments. Note that the difference between the analytic Taylor approximation
and the empirical approximation is negligible (µerr < 10−2). Therefore, the CIs
approximated by the two methods are so close, that it does not matter which
method is used. Hence, the choice is guided by the computational efficiency.

Q2. To evaluate the pruning properties’ efficiency ((i) Taylor-approximated CI,
(ii) optimistic estimates and (iii) nested approximated CIs), we compare DE-
vIANT with a Naive approach where the three aforementioned properties are
disabled. For a fair comparison, Naive pushes monotonic constraints (minimum
support threshold) and employs closure operators while empirically estimating
the CI by successive random trials from Fk. In both algorithms we disable the
bootstrap CI1−α

bootstrap computation, since its overhead is equal for both algo-
rithms. We vary the description space size related to groups of individuals DI
while considering the full entity description space. Figure 2 displays the results:
DEvIANT outperforms Naive in terms of runtime by nearly two orders of mag-
nitude while outputting the same number of the desired patterns.

Figure 3 reports the performance of DEvIANT in terms of runtime and num-
ber of output patterns. When varying the description space size, DEvIANT re-
quires more time to finish. Note that the size of individuals search space DI
substantially affects the runtime of DEvIANT. This is mainly because larger
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Fig. 3: Effectiveness of DEvIANT on EPD8 when varying sizes of both search spaces
DE and DI , minimum context support threshold σE and the critical value α. Default
parameters: full search spaces DE and DI , σE = 0.1%, σI = 1% and α = 0.05.

Table 5: All the exceptional consensual/conflictual subjects among Republican
Party representatives (selected upfront, i.e. GI restricted over members of Repub-
lican party) in the 115th congress of the US House of Representatives. α = 0.01.

id group (g) context (c) Ag(∗) Ag(c) p-value IA

p1 Republicans 20.11 Government and Administration issues 0.83 0.32 <.001 Conflict
p2 Republicans 5 Labor 0.83 0.63 <.01 Conflict
p3 Republicans 20.05 Nominations and Appointments 0.83 0.92 <.001 Consensus

DI leads to more candidate groups of individuals g which require DEvIANT
to: (i) generate CI1−α

bootstrap and (ii) mine for exceptional contexts c concerning
the candidate group g. Finally, when α decreases, the execution time required
for DEvIANT to finish increases while returning more patterns. This may seem
counter-intuitive, since fewer patterns are significant when α decreases. It is
a consequence of DEvIANT considering only the most general patterns. Hence,
when α decreases, DEvIANT goes deeper in the context search space: much more
candidate patterns are tested, enlarging the result set. The same conclusions are
found on the Yelp, Movielens, and CHUS datasets (cf. Appendix D).

Q3. Table 5 reports exceptional contexts observed among House Republicans
during the 115th Congress. Pattern p1, illustrated in Figure 4, highlights a
collection of voting sessions addressing Government and Administrative issues
where a clear polarization is observed between two clusters of Republicans. A roll
call vote in this context featuring significant disagreement between Republicans
is “House Vote 417” (cf. https://projects.propublica.org/represent/

votes/115/house/1/417) which was closely watched by the media (Washing-
ton Post: https://wapo.st/2W32I9c; Reuters: https://reut.rs/2TF0dgV).

Table 6 depicts patterns returned by DEvIANT on the Movielens dataset.
Pattern p2 reports that “Middle-aged Men” observe an intra-group agreement
significantly higher than overall, for movies labeled with both adventure and
musical genres (e.g., The Wizard of Oz (1939)).

8 Conclusion and Future Directions

We introduce the task to discover statistically significant exceptional contex-
tual intra-group agreement patterns. To efficiently search for such patterns, we
devise DEvIANT, a branch-and-bound algorithm leveraging closure operators,

https://projects.propublica.org/represent/votes/115/house/1/417
https://projects.propublica.org/represent/votes/115/house/1/417
https://wapo.st/2W32I9c
https://reut.rs/2TF0dgV
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(a) Overall intra-agreement 
between Republicans

(b) intra-agreement between Republicans 
in Government and Administrative Issues 

related voting sessions 

Pro-Trump: Many rep. of 
this cluster endorsed

Donald Trump for the 2016 
presidential election 

Anti-Trump: Many rep. of 
this cluster opposed

Donald Trump for the 2016 
presidential election 

Fig. 4: Similarity matrix between Republicans, illustrating Pattern p1 from Table 5.
Each cell represents the ratio of voting sessions in which Republicans agreed. Green
cells report strong agreement; red cells highlight strong disagreement.

Table 6: Top-3 exceptionally consensual/conflictual genres between Movielens raters,
α=0.01. Patterns are ranked by absolute difference between Ag(c) and Ag(∗).
id group (g) context (c) Ag(∗) Ag(c) p-value IA

p1 Old 1.Action & 2.Adventure & 6.Crime Movies -0.06 -0.29 < 0.01 Conflict
p2 Middle-aged Men 2.Adventure & 12.Musical Movies 0.05 0.21 < 0.01 Consensus
p3 Old 4.Children & 12.Musical Movies -0.06 -0.21 < 0.01 Conflict

approximate confidence intervals, tight optimistic estimates on Krippendorff’s
Alpha measure, and the property of nested CIs. Experiments demonstrate DE-
vIANT’s performance on behavioral datasets in domains ranging from political
analysis to rating data analysis. In future work, we plan to (i) investigate how to
tackle the multiple comparison problem [21], (ii) investigate intra-group agree-
ment which is exceptional w.r.t. all individuals over the same context, and (iii)
integrate the option to choose which kind of exceptional consensus the end-user
wants: is the exceptional consensus caused by common preference or hatred for
the context-related entities? All this is to be done within a comprehensive frame-
work and tool (prototype available at http://contentcheck.liris.cnrs.fr)
for behavioral data analysis alongside exceptional inter-group agreement pattern
discovery implemented in [3].
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A Appendix: Proofs

Recall that θk : Fk → R is the random variable corresponding to the observed
intra-agreement A (Krippendorff’s alpha) of subsets S ∈ GE of size k. I.e., for
any k ∈ [1, n] with n = |GE | we have θk(S ∈ Fk) = A(S) and Fk = {S ∈
GE s.t. |S| = k}. Then, Fk is the set of possible outcomes which are equally
likely to occur under the null hypothesis H0. We let n denote the number of
records in GE (i.e., |GE | = n). Each record e ∈ GE is associated with a value ve
and we. The quantity θk can be expressed as a ratio Vk

Wk
, where Vk, Wk are two

random variables Vk : Fk → R and Wk : Fk → R with Vk(S) = 1
k

∑
e∈S ve and

Wk(S) = 1
k

∑
e∈S we.

Proof (Proposition 1). For any f(x, y), the bivariate second order Taylor expan-
sion about any λ = (λx;λy) is:15

f(x, y) = f(λ) + f ′x(λ)(x− λx) + f ′y(λ)(y − λy)

+
1

2

(
f ′′xx(λ)(x− λx)2 + 2f ′′xy(λ)(x− λx)(y − λy) + f ′′yy(λ)(y − λy)2

)
+ ε

(7)

where ε is a remainder of smaller order than the term of the equation.
An approximation of the expectation E[f(x, y)] expanded around λ = (λx;λy) is:

E[f(x, y)] ≈ f(λ) +
1

2

[
f ′′xx(λ)Var[X] + 2f ′′xy(λ)Cov[X,Y ] + f ′′yy(λ)Var[Y ]

]
Given that f(x, y) = x

y and using the fact that E[X − µx] = 0 (which is

valid for both V and W ), we have: Var[X] = E[(X − µx)2] and Cov[X,Y ] =
(X − µx)(Y − µy). We can derive an approximation of E[θk] = E[ VkWk

] around

(µVk , µWk
):

E[θk] = E[
Vk
Wk

] = E[f(Vk,Wk)] ≈ µVk
µWk

− Cov[Vk,Wk]

µ2
Wk

+
Var[Wk]µVk

µ3
Vk

(8)

The formulas of E[Vk] (resp. E[Wk]) and Var[Vk] (resp. V [Wk]) can be derived
analytically. We denote by µv (resp. µw) the arithmetic mean of the values
(resp. weights) corresponding to each entity e ∈ GE , i.e.: µv = 1

n

∑
e∈GE

ve and

µw = 1
n

∑
e∈GE

we with n = |GE |.

E[Vk] =
1(
n
k

) ∑
S∈Fk

1

k

∑
e∈S

ve =
1

n

∑
e∈GE

ve = µv (9)

Var[Vk] =
1(
n
k

) ∑
S∈Fk

(
1

k

∑
e∈S

ve − E[Vk]

)2

=
1(
n
k

) ∑
S∈Fk

(
1

k

∑
e∈S

ve − µv

)2

=
1

k

(
n

n− 1

(
µv2 − µ2

v

))
− 1

n− 1

(
µv2 − µ2

v

)
with µv2 =

1

n

∑
e∈GE

v2
e

(10)

15a concise lecture note follows the same reasoning and explains the derivations; see
http://www.stat.cmu.edu/~hseltman/files/ratio.pdf

http://www.stat.cmu.edu/~hseltman/files/ratio.pdf
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The same reasoning applies to compute the expected value and the variance
related to Wk:

E[Wk] =
1

n

∑
e∈GE

we = µw (11)

Var[Wk] =
1(
n
k

) ∑
S∈Fk

(
1

k

∑
e∈S

we − E[Wk]

)2

=
1

k

(
n

n− 1

(
µw2 − µ2

w

))
− 1

n− 1

(
µw2 − µ2

w

)
with µw2 =

1

n

∑
e∈GE

w2
e

(12)

We now derive the formula for Cov(Vk,Wk). The same line of reasoning for
the computation of the variance of Vk and Wk applies. We obtain:

Cov[Vk,Wk] =
1(
n
k

) ∑
S∈Fk

(
1

k

∑
e∈S

ve − E[Vk]

)(
1

k

∑
e∈S

we − E[Wk]

)

=
1

k

(
n

n− 1
(µvw − µvµw)

)
− 1

n− 1
(µvw − µvµw)

with µvw =
1

n

∑
e∈GE

weve

(13)

Using Equations (9), (10), (11), (12), (13), we derive the approximation of
E[θk] after simplifications of (8):

E[θk] ≈ Ê[θk] =
(n
k
− 1
) µv
µw

βw +
µv
µw

with βw =
1

n− 1

(
µw2

µ2
w

− µvw
µvµw

)
(14)

The same reasoning applies to approximate Var[θk] using Taylor expansions.
We will confine ourselves to a first-order Taylor expansion around (µv, µw) to
make the analytic derivation of the approximation of Var[θk] feasible. The same
observation has been made by [25,12] and [26, p. 351] to approximate the variance
for a ratio random variable. We obtain:

Var[θk] = Var[f(Vk,Wk)] ≈ Var[Vk]

µ2
Wk

− 2
µVkCov[Vk,Wk]

µ3
Wk

+
µ2
Vk

Var[Wk]

µ4
Wk

(15)

After simplifications and by using the same line of reasoning when deriving the
expected value approximation reported in Equation (14), we obtain:

Var[θk] ≈ V̂ar[θk] =
(n
k
− 1
) µ2

v

µ2
w

(βv + βw)

with βw =
1

n− 1

(
µw2

µ2
w

− µvw
µvµw

)
and βv =

1

n− 1

(
µv2

µ2
v

− µvw
µvµw

) (16)
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We denote by ĈI
1−α
k the approximate confidence interval calculated using

the approximations from Equations (14) and (16) of the expected value Ê[θk]

and the variance V̂ar[θk], respectively. This results in:

ĈI
1−α
k =

[
Ê[θk]− z1−α2

√
V̂ar[θk], Ê[θk] + z1−α2

√
V̂ar[θk]

]
It is worth mentioning that the complexity of the computation of this ap-

proximate confidence interval is linear to the size n. ut

Proof (Proposition 2). To simplify the text, we will omit σE as a parameter in
the proof and keep in mind that we consider the minimum support threshold
σE . Given that c v d, with c, d two descriptions from D, we have GdE ⊆ GcE .
The proposition stems from the fact that:

1. A(GcE) ≤ UB(GcE), since RandomSMWAmax computes the subset Scmax having
the maximum weighted average A as proven by Epstein and Hirschberg [14].

2. UB is monotonic w.r.t. the partial order ⊆ between sets. That is:

∀S, S′ ⊆ GE : S′ ⊆ S ⇒ UB(S′) ≤ UB(S)

This can be proven by reductio ad absurdum. We denote by S′max ⊆ S′ (resp.
Smax ⊆ S) the optimal subset of S′ (resp. S) having its size ≥ σE and the
maximum possible weighted average A. Suppose that ∃S, S′ ⊆ GE : S′ ⊆
S ∧ UB(S′) > UB(S) (A(S′max) > A(Smax)). Since S′ ⊆ S, this means that
there is another subset in S, namely S′max, that observes a greater weighted
average A than the actual optimal subset Smax, which is absurd.

From properties 1. and 2. we have: A(GdE) ≤ UB(GdE) ≤ UB(GcE). The same
reasoning holds to prove that LB is a lower bound. �

Proof (Proposition 3). In order to prove the desired property for the approximate
confidence intervals, we first must determine if the variance decreases when k
increases.

k1, k2 ∈ N : if k1 ≤ k2 ⇒ V̂ar[θk1 ] ≥ V̂ar[θk2 ] (17)

From Equation (16), V̂ar[θk] =
(
n
k − 1

) µ2
v

µ2
w

(βv + βw). Given that n
k − 1 is

a decreasing function w.r.t. k, proving Equation (17) requires that βv + βw is
a positive quantity. This stems from the fact that the original formula of the
approximate variance given in Equation (15) is positive. This can be proved by
a direct application of the Covariance inequality [36, p. 149], which itself is an
application of the Cauchy-Schwarz inequality [38]. Since βv + βw is of the same
sign of Equation (16), we have βv + βw ≥ 0. For the sake of a self-contained
proof. We give the proof of this assertion below:

From Equations (15) and (16), we have: βv + βw is of the same sign of:

Var[Vk]

µ2
Vk

− 2
Cov[Vk,Wk]

µVkµWk

+
Var[Wk]

µ2
Wk

(18)
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From the Covariance inequality, we have Cov[Vk,Wk] ≤ σ[Vk]σ[Wk] with σ2[Vk] =
Var[Vk] and σ2[Wk] = Var[Wk], hence Equation (18) is greater than:

σ2[Vk]

µ2
Vk

− 2
σ[Vk]σ[Wk]

µVkµWk

+
σ2[Wk]

µ2
Wk

=
σ[Vk]

µVk

(
σ[Vk]

µVk
− σ[Wk]

µWk

)
− σ[Wk]

µWk

(
σ[Vk]

µVk
− σ[Wk]

µWk

)
=

(
σ[Vk]

µVk
− σ[Wk]

µWk

)2

≥ 0

Hence βv + βw ≥ 0, which confirms that the variance is decreasing under in-
creasing size k, as stated in Equation (17).

Recall that, by approximation, we want to ensure that for σE ≤ k1 ≤ k2 with

σE a threshold on the context support, we have ĈI
1−α
k2 ⊆ ĈI

1−α
k1 . Hence, we need

to find the minimum σE above which such property is valid. This amounts to
finding a lower bound for σE such that:

z1−α2

√
V̂ar[θk1 ]− z1−α2

√
V̂ar[θk2 ] ≥

∣∣∣Ê[θk1 ]− Ê[θk2 ]
∣∣∣ (19)

Using the definitions of V̂ar[θk] and Ê[θk] from Equations (14) and (16), the
Equation (19) can be rewritten to:(√

n

k1
− 1 +

√
n

k2
− 1

)
≤ z1−α2

√
βv + βw
β2
w

Since σE ≤ k1 ≤ k2, we require that:

2

√
n

σE
− 1 ≤ z1−α2

√
βv + βw
β2
w

After simplifications, we obtain that σE must satisfy the following constraint:

σE ≥ Cα =
4nβ2

w

z2
1−α2

(βv + βw) + 4β2
w

ut

Proof (Corollary 1). The proof is straightforward. From Proposition 2, we have
that for any c, d ∈ DE s.t. c v d, if Gc ≥ Gd ≥ σE then:

A
(
GdE
)
∈ OE (GcE , σE) (20)

From Proposition 3, if σE ≥ Cα we have:

CI1−α
|GcE|

⊆ ĈI
1−α
|GdE| (21)

From Equations (20) and (21) and the fact that OE(GcE , σE) ⊆ ĈI
1−α
|GcE |

, it follows

that A
(
GdE
)
∈ OE (GcE , σE) ⊆ ĈI

1−α
|GcE| ⊆ ĈI

1−α
|GdE|, hence p-value(d) > α. ut
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B Appendix: Enumeration Algorithm

Given a collection of records G whose descriptive attributes are A = {a1, . . . , al}
which can be Boolean, numerical, or categorical, potentially organized among
a taxonomy. Attributes A allow to structure the search space D by considering
descriptions d ∈ D, which are conjunctions of conditions over the attributes’
domains of interpretation. A condition over a categorical attribute is an equality
test while a condition over a numerical attributes is a membership test in an
interval. By Gd we denote the set of records of G covered by the description d.

The EnumCC algorithm enumerates once and only once all closed descrip-
tions whose associated subgroups fulfill the minimum support constraint σ. The
algorithm follows the same reasoning of most common SD algorithms and goes
in the same line of the CloseByOne Algorithm (CbO) [30] and the Divide-And-
Conquer Algorithm [4]. It traverses the search lattice D in a top-down, DFS
fashion starting from the most general description ∗ whose support is the en-
tire collection G. It proceeds by atomic refinements to progress, step by step,
toward more specific descriptions. This is enabled by a refinement operator de-
noted ηj for the jth attribute. ηj keeps all conditions related to attributes ai for
i 6= j intact, and refines only the jth condition. If the condition is related to a
numerical attribute, a minimal change to the left or right is performed [24]. If
the condition is related to a categorical attribute, return an equality test for all
possible values of the domain (if the condition was never refined before), other-
wise no refinement is possible. If the attribute is an HMT (categorical attribute
augmented with a taxonomy) only one tag is refined to its child or an additional
tag is appended [3]. In a nutshell, for each parameter description d, EnumCC
starts by assessing if the subgroup Gd is valid (|Gd| ≥ σ). In this case, the closed
description closure d is computed and returned only if the canonicity test is
passed (cf. [16, p.66-68]). The description closure d corresponds to the tightest
description of Gd (maximal in terms of the partial order v on descriptions in

Algorithm 2: EnumCC(G, d, σG, f, cnt)

Inputs : G is the collection of records, each encompassing m attributes,
d is a description from D, σG is a support threshold,
f ∈ [1,m] is a refinement flag, cnt is a Boolean.

Output: yields all closed descriptions, i.e. clo[D] = {clo(d) s.t. d ∈ D}
1 if |Gd| ≥ σ then

2 closure d← δ(Gd) . compute the most specific description of Gd

3 if dlf closure d then
4 cnt c← copy(cnt) . cnt c value can be modified by a caller algorithm
5 yield (closure d, Gclosure d, cnt c) . yield results and wait for next call
6 if cnt c then
7 foreach j ∈ [f, l] do
8 foreach d′ ∈ ηj(closure d) do
9 foreach (nc, Gnc, cnt nc) ∈ EnumCC(G, d′, σG, j, cnt c) do

10 yield (nc, Gnc, cnt nc)
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D) which is the conjunction of all descriptions (conjunction of conditions) re-
lated to the records g ∈ Gd. Next, if the caller-algorithm allows the algorithm
to continue (Boolean cnt c kept True), the description closure d is refined by
starting from the last refined attribute (pointed out by the flag f ∈ [1..l]), since
refining preceding attributes will certainly cause the next canonicity test to fail
causing the algorithm to backtrack. Eventually, a recursive call is done to explore
the sub-search space related to d (closure d).
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C Appendix: Multiple Comparisons Problem

In what follows, each pattern Hi = (gi, ci) is seen as a hypothesis test which
returns a p-value pi. Recall that, in this paper, the list of hypotheses to test cor-
responds to the full search space L = {(g, c) ∈ DI ×DE : |GgI | ≥ σI and |GcE | ≥
σE} where g (resp. c) is a closed description (i.e. the maximum description
w.r.t. v) in the equivalence class [g] (resp. [c]) of descriptions having their ex-

tent equal to GgI (resp. GcE), i.e. [g] = {g′ ∈ DI s.t. Gg
′

I = GgI} (resp. [c] = {c′ ∈
DE s.t. Gc

′

E = GcE}). Having this in mind, in what follows, the content of L is
shortly denoted by L = {H1, . . . ,Hω} and comprises ω hypotheses. Hypotheses
in L are ordered by their p-values {p1, . . . , pω} where pi = p-valuegi(ci).

The Multiple Comparisons Problem (MCP) [23] is a critical issue in signifi-
cant pattern mining [21]. In a nutshell, given the critical value α which roughly
corresponds to the probability of type 1 error (rejecting a true null hypothesis
which is equivalent to accepting a spurious pattern), it is to be expected that
ω · α hypotheses will erroneously pass the test, i.e., ω · α hypotheses suffer a
type 1 error. The classic approach to deal with the MCP is to control the family
wise error rate (FWER), which is the probability of accepting at least one false
discovery. Other approaches control the false discovery rate (FDR), which cor-
responds to the expected proportion of false discoveries. We give an overview of
relevant existing approaches that deal with the MCP and point out why using
them in our setting is a non-trivial task. For a survey on methods dealing with
the MCP, we refer the interested reader to [21].

The most famous method to control FWER at ≤ γ (typically 0.05) is Bon-
ferroni adjustments [11]. The critical α used to test the significance of a pattern
is adjusted to γ

ω so as to have FWER at ≤ γ with ω the number of all pat-
terns to test in L. The problem with this approach is that when ω is huge16,
Bonferroni adjusts α to a value very close to 0. This leads to a high number
of false negatives as most interesting pattern will be considered spurious (high
Type 2 error rate). Clearly, ω is unknown and needs, in the most trivial way, to
be bounded by a quantity ω0 which is larger than ω. Usually, ω0 corresponds
to the maximum size of the search space: it is equal to 2#items in the case of an
itemset dataset. Webb gives a bound [44] on the size of the search space when
dealing with the MCP in attribute-value datasets when the description length
is bounded. Using this reasoning without bounding the description length and
considering the specification of each attribute (numerical, categorical, . . . ), in
the smallest of our datasets (Movielens; see Table 3) we have ω0 = 72 349 200.
This requires α to be equal to 6.92 × 10−10 for the FWER to be at ≤ 0.05.
All the other datasets require α to be ≤ 10−76 when bounding ω with the size
of the search space. Clearly, such settings for α prohibit the discovery of any
meaningful information from the datasets, which cannot possibly be the desired
effect of attempts at solving the MCP.

16Which is the case in the general setting of pattern mining even if we consider only
closed patterns satisfying the support size threshold constraint.
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Several techniques exist in the literature to relax the requirements on α while
ensuring a FWER at ≤ γ in order to increase the statistical power:

1. Terada et al. [41,40] propose the LAMP technique, relying on Tarone’s Ex-
clusion Principle (TEP) [39]. This principle stipulates that in the list of m
hypotheses in L to be tested, one must ignore untestable patterns for multi-
ple comparisons. A pattern Hi is said to be untestable if the lower bound
of its p-value, denoted p∗i , is under the adjusted α = γ

m . Terada et al. [41]
proposed this lower bound p∗i for the particular task of finding significant
rules17 [43] where significance is commonly assessed using a Fisher exact
test [19,20], since a 2× 2 contingency table is available. The lower bound p∗i
computation depends on this contingency table. Clearly, there is no trivial
mapping of our problem to the problem of finding significant rules. Hence,
adapting the LAMP algorithm to have an efficient branch and bound tech-
nique, incorporating both the proposed bounds in this work (the DEvIANT
algorithm) and LAMP reasoning, is clearly a daunting task that requires
an in-depth investigation and a new devoted approach which is beyond the
scope of this work.

2. Similarly, most of the existing work measuring the interestingness of pat-
terns with statistical significance while efficiently handling the MCP, deals
with the significant rule discovery setting [42,27,34,37]. Some of these meth-
ods [42,34,37] rely on the Westfall-Young permutation testing method [46]
to increase statistical power. Still, no straightforward application of these
techniques in our setting is possible: these methods perform random permu-
tations on the class label, and no class label is given in the problem addressed
in our work.

3. Other state-of-the-art techniques follow a multi-stage procedure [21] to tackle
the MCP. A first step constrains L to a subset of patterns (e.g., testable un-
der TEP). A subsequent post-processing phase controls the FWER [44] or
FDR [44,27]. For example, Webb [44] proposes to divide the data into Ex-
ploratory and Holdout data. Hypotheses are sought by analyzing solely the
exploratory data. Eventually, a constrained number of patterns are found
which are validated against the holdout data. In our setting, one needs to
investigate how to divide the data into these two parts, since we have two
dimensions: context space and group space. In this configuration, a question
of crucial importance must be answered: do we need to consider each group
independently and divide the entities dataset (defining the context space)
into exploratory vs holdout data for each group? Or do we need to jointly
consider both these dimensions? This clearly requires a thorough investiga-
tion to avoid proposing a naive solution.

4. Layered critical values [45,2] propose to consider a varying adjustment factor
for each level of the search space as long as the sum of all critical values is
not above γ. This requires:

17Each record in the underlying dataset is associated with a binary target label and
the objective is to find rules that have significant association with one of the two labels.
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– estimating the size of each level (which could be done by following the
reasoning of Webb in [45]);

– identifying what is a level of the search space: do we consider levels
jointly between group and context search space?

Choosing joint consideration in the latter bullet point implies ignoring (most
of the time) the level-1 groups in the search space: the level will grow in size
after considering all the contexts corresponding to the group characterizing
the whole collection of individuals. Otherwise, the question raised in the for-
mer bullet point needs to be answered to provide an appropriate algorithm.
Furthermore, combining the layered critical values along with DEvIANT is
not straightforward as it requires re-investigation of the proposed pruning
properties.

As we can see, several fundamental questions remain to be answered before
one could incorporate a solution to the MCP in the task of finding significant
exceptional contextual intra-group agreement patterns. We argue that the scope
of this problem is bigger than the ECMLPKDD 2019 publication at hand; it
is a non-trivial task that deserves proper attention in the wider context of the
significant pattern mining paradigm. We plan to investigate this in future work,
and expect that the scope is too wide to fit within a single conference paper; a
proper exploration probably requires a journal-length publication.



DEvIANT: Discovering Significant Exceptional (Dis-)Agreement 25

D Appendix: Additional Experiments

D.1 Performance evaluation

Additional experiments reporting the execution time and the number of reported
significant patterns by DEvIANT on Movielens, Yelp, CHUS, and EPD8. In
these experiments we also study the overhead induced by the computation of the
bootstrapping confidence interval required to handle the variability of outcomes
and evaluated for each generated group of individuals.
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Fig. 5: Effectiveness of DEvIANT on Movielens when varying sizes of both search
spaces DE and DI , minimum context support threshold σE and the critical value α.
Default parameters: full search spaces DE and DI , σE = 0.1%, σI = 1% and α = 0.05.
Bootstrapping Confidence intervals for handling variability of outcomes is disabled in
the figures on the top row, and enabled in the figures on the bottom row.
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Fig. 6: Effectiveness of DEvIANT on Yelp when varying sizes of both search spaces
DE and DI , minimum context support threshold σE and the critical value α. Default
parameters: full search spaces DE and DI , σE = 0.1%, σI = 1% and α = 0.05. Boot-
strapping Confidence intervals for handling variability of outcomes is disabled in the
figures on the top row, and enabled in the figures on the bottom row.
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Fig. 7: Effectiveness of DEvIANT on CHUS when varying sizes of both search spaces
DE and DI , minimum context support threshold σE and the critical value α. Default
parameters: full search spaces DE and DI , σE = 0.1%, σI = 1% and α = 0.05. Boot-
strapping Confidence intervals for handling variability of outcomes is disabled in the
figures on the top row, and enabled in the figures on the bottom row.
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Fig. 8: Effectiveness of DEvIANT on EPD8 when varying sizes of both search spaces
DE and DI , minimum context support threshold σE and the critical value α. Default
parameters: full search spaces DE and DI , σE = 0.1%, σI = 1% and α = 0.05. Boot-
strapping Confidence intervals for handling variability of outcomes is disabled in the
figures on the top row, and enabled in the figures on the bottom row.
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D.2 Qualitative evaluation

Here, we report additional illustrative examples depicting the significant pat-
terns discovered by DEvIANT when carried on the Eighth European Parliament
(EPD8) dataset and Yelp dataset.

Table 7: Top-5 exceptional consensual/conflictual subjects among European Political
Groups in the 8th EU parliament. α = 0.01. Patterns are ranked by the absolute
difference between Ag(c) and Ag(∗).
id group (g) context (c) Ag(∗) Ag(c) p-value IA

p1 S&D 8.10 Revision of the Treaties and 0.81 0.44 < 0.001 Conflict
intergovernmental conferences

p2 * 2 Internal market, single market 0.27 0.54 < 0.001 Consensus
6 External relations of the Union

p3 S&D 8.30 Treaties in general 0.81 0.55 < 0.001 Conflict

p4 * 2 Internal market, single market, 0.27 0.53 < 0.001 Consensus
4.15 Employment policy, act. combat unemployment

p5 ALDE 1.20.09 Protection of privacy and data protection 0.73 0.48 < 0.001 Conflict
8 State and evolution of the Union

Table 8: Top-10 exceptional consensual/conflictual subjects among countries’ par-
lementarians in the 8th EU parliament. α = 0.01. Patterns are ranked by the absolute
difference between Ag(c) and Ag(∗).

id group (g) context (c) Ag(∗) Ag(c) p-value IA

p1 Sweden 4 Economic, social and territorial cohesion 0.3 0.84 <0.0001 Consensus
6.30 Development cooperation

p2 Finland 4 Economic, social and territorial cohesion 0.36 0.87 <0.0001 Consensus
6.30 Development cooperation

p3 Finland 8.20.04 Pre-accession and partnership 0.36 0.75 <0.01 Consensus

p4 Sweden 8.20 Enlargement of the Union 0.3 0.66 <0.0001 Consensus

p5 Slovakia 1.10 Fundamental rights in the EU, Charter 0.48 0.13 <0.0001 Conflict

p6 Malta 4.60.06 Consumers economic 0.63 0.97 <0.0001 Consensus
and legal interests

p7 Malta 2.10 Free movement of goods 0.63 0.34 <0.0001 Conflict

p8 Latvia 4.60.06 Consumers economic 0.42 0.69 <0.0001 Consensus
and legal interests

p9 Luxembourg 1.20 Citizen’s rights, 0.51 0.23 <0.01 Conflict
8 State and evolution of the Union

p10 * 2 Internal market, single market 0.27 0.54 <0.001 Consensus
6 External relations of the Union
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Table 9: Top-10 exceptional consensual/conflictual subjects among German national
parties in the 8th EU parliament. α = 0.01. Patterns are ranked by the absolute
difference between Ag(c) and Ag(∗).
id group (g) context (c) Ag(∗) Ag(c) p-value IA

p1 Sozialdemokratische 1 European citizenship, 0.91 0.31 <0.0001 Conflict
Partei Deutschlands 3 Community Policies

p2 * 3.70.11 Natural disasters, Solidarity Fund 0.38 0.93 <0.0001 Consensus

p3 * 6.20.05 Multilateral economic and 0.38 0.85 <0.0001 Consensus
trade agreements and relations

p4 * 3.50 Research and technological development 0.38 0.78 <0.001 Consensus
4 Economic, social and territorial cohesion

p5 * 3.30.03 Telecommunications, 0.38 0.02 <0.0001 Conflict
data transmission, telephone

p6 Liberal-Conservative 3.50.15 Intellectual property, copyright 0.91 0.57 <0.0001 Conflict
Refomists

p7 * 3.30.06 Information and communication tech. 0.38 0.04 <0.001 Conflict
4 Economic, social and territorial cohesion

p8 DIE LINKE. 3.15 Fisheries policy 0.88 0.56 <0.0001 Conflict

p9 * 3.50.20 Scientific and technological 0.38 0.7 <0.001 Consensus
cooperation and agreements

p10 * 3.30.05 Electronic and mobile 0.38 0.07 <0.001 Conflict
communications, personal communications

Table 10: Top-10 exceptional consensual/conflictual places/categories/states among
Yelp users. α = 0.01. Patterns are ranked by the absolute difference between Ag(c)
and Ag(∗).
id group (g) context (c) Ag(∗) Ag(c) p-value IA

p1 * 03 Automotive 0.14 -0.16 <0.0001 Conflict

p2 * 10 Health & Medical 0.14 -0.14 <0.0001 Conflict

p3 * 08 Financial Services 0.14 -0.11 <0.0001 Conflict

p4 newcomer 09.38.07 Health Markets, 09.47 Juice Bars & Smoothies 0.14 -0.07 <0.01 Conflict

p5 * El Dorado Hills, California 0.14 0.35 <0.0001 Consensus

p6 * 14 Local Services 0.14 -0.06 <0.0001 Conflict

p7 * 04 Beauty & Spas 0.14 -0.06 <0.0001 Conflict

p8 * 15 Mass Media 0.14 -0.05 <0.01 Conflict

p9 * 11 Home Services’ 0.14 -0.05 <0.0001 Conflict

p10 * Midlothian, Edinburgh 0.14 0.31 <0.0001 Consensus
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E Appendix: Empirical DFDs

Here, we give an overview of the empirical distributions of Krippendorff’s Alpha
for 1000 draws from Fk equally likely to occur. Recall that Fk represents the
subsets of the entire collection of entities of size k over which we define the ran-
dom variable θk : Fk → R. Thus, the distributions presented here illustrate the
values observed on 1000 trials of θk. To illustrate the fact that the confidence
intervals associated with θk (considering its distribution under the null hypoth-
esis) are nested (when k grows, the confidence interval shrinks), we perform the
experiments for various valuations of k.
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Fig. 9: Empirical distribution of the observed values of 1000 trials of θk for four val-
uations of k (DFD). The top figure displays experiments on EPD8; the bottom figure
displays experiments on CHUS (US House of representatives). We observe that the
distributions are encapsulated when k decreases. Also, the dispersion of A increases
and the corresponding empirical confidence interval grows in size.
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Fig. 10: Empirical distribution of the observed values of 1000 trials of θk for four
valuations of k (DFD). The top figure displays experiments on Movielens; the bottom
figure displays experiments on Yelp. We observe that the distributions are encapsulated
when k decreases. Also, the dispersion of A increases and the corresponding empirical
confidence interval grows in size.
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Table 11: Symbol table

Symbol Definition

GE A finite collection of records depicting entities

GI A finite collection of records depicting individuals

O The domain of possible outcomes

o Function returning the outcome of an individual over an entity

B = 〈GI , GE , O, o〉; A behavioral dataset

A AE (resp. AI): Descriptive attributes of entities (resp. individuals)

D DE (resp. DI): The description domain of contexts (resp. groups)

GcE A subgroup of entities supporting a context c ∈ DE
GgI A subgroup of individuals supporting a group g ∈ DI
g = g ∈ DI ; a description of a group of individuals characterizing GgI ⊆ GI .
c = c ∈ DE ; a context characterizing a subset of entities GcE ⊆ GE .

p = (g, c) ∈ P; The sought patterns.

P ⊆ P; The returned pattern set

v read “less restrictive than” is a partial order between

descriptions in some descriptions space D (DE or DI)
Bg The reduced behavioral dataset for individuals comprising GgI
A Intra-group agreement measure - Krippendorff’s Alpha

Ag(GcE) Intra-group agreement of a group g over a context c

We omit the exponent g in the notations and we assume that

we have a group of individuals g in mind (we use Bg)
Dexp Expected disagreement (via marginal distribution) between individuals

Dobs Observed disagreement between individuals

n Number of entities in GE , i.e., |GE |
m Number of all expressed outcomes

mo1 Number of expressed outcomes equal to o1
me Number of expressed outcomes for entity e (also denoted we)

mo1
e Number of expressed outcomes equal to o1 for entity e

δo1o2 Distance between two outcomes in O

DFD Distribution of False discoveries

Fk Fk = {S ⊆ GE s.t. |S| = k}
θk Random variable θk : Fk → R with S 7→ A(S). Also θk = Vk

Wk

ve Intra-group agreement (Krippendorff’s Alpha) for one entity,

given by: me − 1
Dexp

∑
o1,o2∈O2 δo1o2 ·

m
o1
e ·m

o2
e

(me−1)

Vk Random variable Vk : Fk → R with S 7→ 1
k

∑
e∈S ve

Wk Random variable Wk : Fk → R with S 7→ 1
k

∑
e∈S we

α Critical value

CI1−αk The 1− α confidence interval associated with the DFD of θk.

ĈI
1−α
k The 1− α Taylor-approximated confidence interval of CI1−αk .

ĈI
1−α
bootstrap The bootstrap confidence interval.

LB(S, σE) Lower bound of A for any specialization of a

subgroup having its size greater than σE
UB(S, σE) Upper bound of A for any specialization of a

subgroup having its size greater than σE
OE(S, σE) = [LB(S, σE), UB(S, σE)]. Optimistic estimate region of A
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