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Abstract

Domain wall propagation in cylindrical nanowires with modulations of diam-
eter is a key phenomenon to design physics-oriented devices, or a disruptive
three-dimensional magnetic memory. This chapter presents a combination of
analytical modelling and micromagnetic simulations, with the aim to present
a comprehensive panorama of the physics of pinning of domain walls at modu-
lations, when moved under the stimulus of a magnetic field or a spin-polarized
current. For the sake of considering simple physics, we consider diameters
of a few tens of nanometers at most, and accordingly domain walls of trans-
verse type. Modeling with suitable approximations provides simple scaling
laws, while simulations are more accurate, refining the results and defining
the range of validity of the models. While pinning increases with the relative
change of diameter, a key feature is the much larger efficiency of pinning at
an increase of diameter upon considering current rather than field, due to
the drastic decrease of current density related to the increase of diameter.

1 Introduction

1.1 Fundamental and technological motivations for do-
main wall pinning

The interest for domain walls in one-dimensional conduits is both for the sake
of physics and for technological concepts. As regards physics, considering
domain walls in nearly one-dimensional systems allows one to reduce the
number of internal degree of freedom to a minimum. In the limit of cylindrical
wires with a diameter typically below seven time the dipolar exchange length
lex =

√
2Aex/µ0M2

S , with Aex the exchange stiffness and MS spontaneous
magnetization, one can neglect variations of magnetization across the wire
section, boiling down the description of the domain wall to a one-dimensional
problem [56]. In any case, compared with extended thin films this reduces
the possible complexity of the wall, obviously easing the understanding of
any phenomena related with domain-wall motion, e.g. precessional dynamics
and spin-torques. As regards technology, domain walls have been proposed
as means to store[10, 46, 39], transport and process information[7, 8].

It may be desirable to modulate the energy landscape of a domain-wall
in such a one-dimensional conduit. This may include potential barriers or
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potential wells. On the fundamental side, such modulations can allow to
repeatedly initialize the system with a domain wall at a precise location.
This is especially useful to implement time-resolved measurements in a pump-
probe scheme, which requires the averaging of reproducible events, including
the preparation of a given type of domain wall[29]. Also, energy barriers
may be used to confine a domain wall in a segment of finite length to ease
its investigation[16]. On the applied side, a digital memory device requires
that bits of information are allocated a specific physical location. Thus,
domain walls may be forced to remain in potential wells, or conversely, be
separated by energy barriers. Among others, this prevents that successive
walls in a conduit merge together, which would induce the loss of information.
Also, similar to the argument given above for fundamental devices, defining
a precise starting position can be helpful to clock circuits, for instance in the
case of logic functions involving several domain walls.

The modulation of potential along has been largely developed and ex-
ploited in planar strips based on thin film and lithography technologies. Most
are based on the modulation of geometry, which is easily achievable with
lithography. This includes notches[60, 29], protrusions[20] or more complex
designs such as connection to other magnetic pads[41]. Other means have
been demonstrated, such as stray field from neighboring magnetic pads[14]
or domain walls[51], ion irradiation[59, 52] or reprogrammable electric-field
gating[11].

1.2 Types of pinning for nanowires

In the present chapter we focus on cylindrical conduits, which we will call
nanowires. Magnetic nanowires have been synthesized routinely for several
decades, mostly by e.g. electroplating in polymer or anodized aluminum
templates[27, 53, 54]. This synthesis methods presents constraints to design
modulations of the potential for domain walls, however also offers opportu-
nities, with respect to flat strips. There exist essentially two designs, which
have been developed experimentally and considered theoretically in the past
ten years.

The first route for creating a potential landscape, is through the geometry
of the wire, involving the longitudinal modulation of the diameter. Indeed,
the energy of a domain wall sensitively depends on the wire (local) diameter,
involving changes in both exchange and dipolar energy. The most com-
mons means to achieve such a modulation are multistep anodization[50, 54]
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or pulsed anodization[40] of aluminum. While the versatility is lower than
with lithography for strips, a large variety of designs has been demonstrated.
More exotic routes exist, such as pulsed plating followed by etching[22], or
the alternation of wire and tubes[48, 45]. The focus of the present work is
restricted to the diameter modulation of a plain wire.

The second route for creating a potential landscape, is through the lon-
gitudinal modulation of the material. While this is analogous to strips pro-
cessed with local irradation or gating, it is more straightforward and versatile
to achieve in nanowires, by changing the growth conditions during synthesis.
The ways to achieve this are multibath anodization for more versatility, or
pulsing the plating potential in a bath with several metal salts, for a faster
implementation[24, 17]. Note that one may use various magnetic materi-
als, especially varying the composition of compounds[26], or non-magnetic
materials such as Cu[17, 18].

1.3 Existing theories and experiments

The one-dimensional landscape model for domain walls is probably one of the
earliest problems tackled in magnetism to explain the physics of coercivity,
as described by the Becker-Kondorski model[12, 13, 36, 37]. A key conclusion
is that while domain walls are found at the bottom of energy wells at rest,
the depinning field is associated with local maxima of slope of the potential,
themselves coinciding with inflexion points of the potential curve. We will see
that this concept is still applicable for the more specific theories developed
in our contribution. Later on, the one-dimensional landscape model was use
again in specific cases by A. Aharoni and followers, again in the context of
the physic of coercivity. Potential wells and steps[4], slopes[3] and others,
were introduced and described. These effective models have been made more
specific to the geometry of a nanowire, highlighting the local slope

A number of micromagnetic simulations have been made, considering
linear modulations[5], sharp single modulations[49], sharp constrictions[22],
smooth modulations of various length[26]. However, often the processes of
domain-wall nucleation at a wire’s end and the process of going through the
modulation are not studied separately, thus not well describing the latter.
Besides, some detailed models of walls at modulations have been proposed[6],
however their complexity does not allow to shed a general picture on the
phenomenon of pinning. Overall, the existing literature shows interesting
features, however does not provide a comprehensive view. This lack has
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been driven the present work, to deriving simple analytical scaling laws, and
compare the field-driven and current-driven cases.

Finally, note that experimental reports of the interaction of domain walls
at modulations of diameter are still scarce and incomplete. Letting aside
reports of magnetometry of large assemblies of wires still in a matrix, or
experiments on single wires, however not separating the physics of nucleation
from the one of going through the modulation, only a handful of reports exist
of domain-walls in diameter-modulated single wires[15]. These do not provide
a comprehensive quantitative picture at present.

Figure 1: (a) and (b) Scanning electron micrographs illustrating the exis-
tence of two different diameter transition geometries in the multisegmented
aluminum oxide membranes from [16] and [58]. (c) Topography of isolated
multisegmented nanowire and magnetic force microscopy image showing the
domain wall displacement after application of dc field [58].

2 Theoretical background

The scope of the present section is to recall the basics of nanomagnetism
in a circular cross-section nanowire comprising the domain wall, which are
relevant for the concepts discussed in the following sections. We start with
the energy terms corresponding to ferromagnetic cylindrical nanowires with
no modulation, which we will call straight. Then, we introduce the conse-
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quences of the diameter modulations, which imply the existence of an extra
magnetic field related to the existence of the magnetic charges.

2.1 Domain walls in cylindrical nanowires

Figure 2: (a) Micromagnetic distribution of longitudinal magnetization for
the transverse-like head-to-head domain wall for radius R1 = 5 nm and
R2 = 10 nm, obtained numerically using equation (1). (b) Simulated do-
main wall energy vs. diameter, ins straight wire diameter. The dashed curve
corresponds is a third-order polynomial fit serving as a guide to the eye.

Domain walls and domains in a ferromagnetic material are usually de-
scribed within the framework of the micromagnetic theory. First introduced
by W.F. Brown [19], it is based on a continuous description of magnetiza-
tion M and of all other quantities. The norm of the magnetization vector is
assumed to be constant and uniform, so that the local magnetization den-
sity can be written as a function of the lateral position r and of time t
as M(r, t) = MS m(r, t) with MS being the spontaneous magnetization. A
magnetization distribution can thus be described considering solely the unit
vector m(r, t), which indicates the local orientation of the magnetization
vector. Its time evolution is governed by the Landau-Lifshitz-Gilbert (LLG)
equation

∂m

∂t
= γ0Heff ×m + αm× ∂m

∂t
, (1)

where γ0 > 0 is the gyromagnetic ratio and α is the phenomenological Gilbert
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damping factor. The effective magnetic field Heff is defined as

Heff = − 1

µ0MSV

δE

δm
. (2)

It is related to the system’s energy E, volume V and magnetic permeability
µ0. The first term of the LLG equation reflects the precession of the mag-
netization vector around the effective field, which may include the internal
field contributions as well as the external applied field Happ. Damping of this
motion is described in the second term. This equation may be completed by
the torque T produced by the spin-polarized current. However, in this sec-
tion we do not consider the phenomena related to the spin-polarized current,
which are discussed in section 4.

In most cases of domain-wall motion, it is desirable to minimize extrin-
sic pinning such as due to spatial fluctuations of magnetic anisotropy, grain
boundaries etc. Consequently, here we consider only magnetically-soft mate-
rials(such as Fe20Ni80), in particular with no magnetocrystalline anisotropy.
Thus, for a straight cylindrical wire[31] under applied magnetic field, the
energy E of the system reads:

E = E0 + EZ, (3)

where

E0 =
µ0

2

∫
V

M ·Hd(r)dV + Aex

∫
V

[∇m(r)]2 dV, (4)

EZ = −µ0MS

∫
V

m(r) ·H(r)dV. (5)

E0 is the internal energy. The first term in the equation (4) corresponds
to the magnetostatic contribution. The magnitude and orientation of the
dipolar field Hd depend sensitively on the aspect ratio of the ferromagnet.
The second term corresponds to the exchange contribution in its continuum
form, with the exchange stiffness Aex. When an external field Happ is applied,
its contribution is described as the the Zeeman energy term (5).

For complex magnetic textures or non-trivial geometries, when simplifi-
cations of the LLG equation could not be done, the evolution of the magnetic
system in time is solved numerically using appropriate micromagnetic codes.
In this chapter all numerical simulations have been done using our home-built
finite element freeware feeLLGood (Finite Element Landau Lifshitz Gilbert
equation Oriented Object Development)[9, 55, 1]. The non-regular finite
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element mesh of feeLLGood accurately describes the cylindrical geometry
without creating an artificial numerical roughness at the cylinder surface.
Moreover, feeLLGood ’s parallelized SCALFMM library[2] based on so-called
Fast Multipole Method for dipolar field calculation makes it competitive with
usually less time consuming finite difference micromagnetic codes.

As we are considering soft magnetic material, the characteristic length
scale of choice is the dipolar exchange length lex =

√
2Aex/µ0M2

S , resulting
from the competition between exchange and magnetostatic energy contribu-
tions. Magnetization tends to be rather uniform over distances smaller than
lex, while it may rotate at larger scales under the influence of boundary con-
ditions or dipolar energy. In cylindrical nanowires, depending on the wire
diameter so far two different domain wall types have been theoretically pre-
dicted [33, 31] and experimentally observed [44, 23, 21, 42]. Moderate wire
diameters (D < 7lex) considered in this chapter favor the formation of the so-
called transverse-like domain wall [28, 47]. In one dimension its profile along
the z axis is well described by mz = tanh(z/∆) and my = 1/ cosh(z/∆),
where ∆ is the wall-width parameter. Fully tree-dimensional transverse-like
domain wall distributions obtained by solving numerically equation (1) and
corresponding energies are depicted in figure 2.

2.2 Geometry of modulation and potential barrier

A modulation of diameter induces a variation of the internal energy of the
system, which depends on the longitudinal position of the domain wall. The
center of the wall will be named zDW, which does not mean that we are
assuming a wall with zero thickness. In the following, we study four types
of modulation profiles, which connect a smaller cross-section with radius
R1, to a larger cross-section with radius R2: abrupt modulation, straight
modulation, circular-based and tanh-based modulations, see figure 3(a).

The abrupt modulation is described by the simple step-function

R(z) =

{
R1, z < 0,
R2, z > 0.

(6)

The straight modulation of with length λ corresponds to the linear func-
tion

R(z) =


R1, z < −λ/2,
kz + s, −λ/2 < z < λ/2,
R2, z > λ/2,

(7)
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Figure 3: (a) Type of modulation geometry considered and (b) corresponding
energy of the domain wall E0 vs. its position zDW, from micromagnetic
simulations. Parameters used for the energy plots are R1 = 5 nm, R2 =
7.5 nm, λ = 100 nm and µ0MS = 5 T. Grey horizontal lines correspond to
the energy of a straight wire with R = 5 nm and R = 7.5 nm.

with k = (R2 −R1)/λ and s = (R2 +R1)/2.
The circle-based profile allows for a smooth transition between smaller
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and larger cross-section parts

R(z) =


R1, z < −λ/2,
y1 −

√
R2

mod − (z + λ/2)2, −λ/2 < z < 0,

y2 +
√
R2

mod − (z − λ/2)2, 0 < z < λ/2,
R2, z > λ/2,

(8)

with Rmod = [(R2 − R1)2 + λ2]/[4(R2 − R1)], y1 = (R2
2 + 2R1R2 − 3R2

1 +
λ2)/[4(R2−R1)] and y2 = (3R2

2−2R1R2−R2
1−λ2)/[4(R2−R1)]. Is has been

used in subsection 3.2 and in section 4 for the micromagnetic simulations.
For the analytic calculations, the circle-based wire profile was approximately
replaced by the tanh-based profile

R(z) = [R1 +R2 + (R2 −R1) tanh(4z/λ)]/2. (9)

This is an analytic differentiable function, which approximates well the circle-
based profile in the case of the gently sloping modulations studied in 3.2 and
4. For the gently sloping modulation with (R2−R1) << λ the relative error
made by tanh-based shape approximation instead of circular-based profile is
less than 10 percents.

To illustrate the energy modification, in figure 3(b) we plotted the internal
energy E0 as a function of the position of the domain wall. These curves
were obtained by solving the LLG equation (1) numerically for domain walls
drifting freely from the broader part toward the thinner part of the wire in
the absence of any driving force. In that case we used α = 1, to approach a
quasistatic situation. The energy of the domain wall is smaller in the thinner
part of the wire. Handwavingly, this makes sense as the area and thus the
volume of the domain wall, as well as its total magnetic charge and hence the
dipolar energy, scale with the wire cross-section. Far from the modulation
the value of E0 recovers the value of energy of a straight wire, as depicted
by horizontal grey lines. The width of the transition between the lower and
upper values of E0, corresponds approximately to the modulations length λ.

2.3 Magnetic charges

By analogy with electrostatics based on Maxwell’s equations, the magnetic
volume and surface charges ρm = −MS∇m and σm = MS (n ·m), may be
introduced as a source of the dipolar field Hd [32, 34], where n is the outward-
pointing unit vector normal to the system surface. The expression for the
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Figure 4: Schematics of magnetic charges distribution in (a) uniformly mag-
netized cylindrical wire, (b) cylindrical wire with head-to-head domain wall
and (c) modulated diameter nanowire with head-to-head domain wall placed
in the thinner part. Red color corresponds to the positive magnetic charge
and blue one to the negative magnetic charge.

dipolar field reads:

Hd(r) =

∫
ρm(r′)(r− r′)

4π|r− r′|3
d3r′ +

∮
σm(r′)(r− r′)

4π|r− r′|3
dS. (10)

In the case of the uniformly magnetized straight cylindrical wire (figure
4), each of the wire’s end posses the total magnetic charge q1 = ±πMSR

2
1.

The total charge is an invariant, whose conservation imposes that the head-
to-head domain wall in a cylindrical nanowire bears a total magnetic charge
qDW = 2πMSR

2
1. In the case of a modulation of diameter, the two end

charges are different: q1 = ±πMSR
2
1 and q2 = ±πMSR

2
2. Considering for in-

stance the case where the domain wall is clearly in the smaller-diameter
part, qDW = 2πMSR

2
1, and a charge is associated with the modulation:

qmod = πMS(R2
2 − R2

1) (figure 4(c)). At this stage, we did not discussed
which type of charge (volume or surface) contributes to the total charge. In
all cases (end, modulation, domain wall), the total charge is distributed both
over volume charge density as well as the surface charge density, whose dis-
tributions are non-trivial. The micromagnetic distribution of the magnetic
potential φm related to the charge distribution (Hd = −∇φm) illustrates this
fact in figure 5. Most notably, the modulation charge qmod gives rise to a
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Figure 5: Magnetic potential φm distribution for different positions of the
head-to-head domain wall. Red (resp. blue) color corresponds to posi-
tive (resp. negative) values of φm.

magnetic dipolar field Hmod, which we calculate in the next section (subsec-
tion 2.4). We show that it tends to move the domain wall away from the
modulation.

2.4 Magnetic field generated by the modulation

In this section we determine the magnitude and the direction of the magnetic
field generated by the modulation of diameter. As regards its contribution
of the energy of the system through its interaction with the domain wall,
for simplicity we consider its value on the wire axis and at the center of the
domain wall zDW.

Following Eq.10, the elementary magnetic field dH generated by an ele-
ment of magnetic charge dq at the distance r reads:

dH =
dq

4πr2

r

r
. (11)

For the axisymmetrical charge distribution, which is the case here, the re-
sulting magnetic field generated by the whole modulation, is aligned with the
z axis. While the the total charge of the modulation is fixed, its distribution
over surface and volume contributions is not straightforward. Thus, some
approximation that conserves the total charge of the modulation should be
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made. We assume that the magnetization vector in the modulation is strictly
aligned with the z axis at each point. This simplification limits the magnetic
charge of the modulation to the surface charge σm only, while volume charges
are zero. The surface charge approximation allows us to estimate the ampli-
tude of the magnetic field generated by the modulation analytically in some
specific cases.

Figure 6: (a) Sketch of the magnetic field generated by the elements of the
magnetically charged axisymmetric surface in the presence of the head-to-
head domain wall at the position zDW for abrupt modulation. Red color
corresponds to the positive surface charge and blue color to the negative one.
(b) Magnetic field generated by the abrupt modulation µ0Hmod vs. domain
wall position zDW for several values of R2. Parameters used for this plot are
R1 = 5 nm and µ0MS = 1 T.

Abrupt modulation. Besides being close to applicable in some experimen-
tal cases, the abrupt modulation is a text-book case, from which the general
features of the impact of a modulation on domain-wall motion can be easily
illustrated.

With the above assumtions, the abrupt modulation is described by Eq.(6).
It is charged positively when the head-to-head domain wall is to the left of
the modulation, and negatively when it is to the right of the modulation
[Figure 6(a)]. The elementary magnetic field generated by the element dS of
the charged surface at the domain wall position zDW, and projected on the
z axis, reads:

dHz(zDW) = −|zDW|
r
·MSRdR

2r2
. (12)

Here dq = σdS, σ = ±MS (n ·m), dS = 2πRdR, r/r = ∓1, dHz =
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dH|zDW|/r and r2 = z2
DW + R2. The summation of all contributions from

element charges over the entire charged surface gives:

Hz(zDW) = −MS

2

∫ R2

R1

|zDW|RdR
(R2 + z2

DW)
3/2
. (13)

Upon integration, we obtain the magnetic field Hmod ≡ Hz(zDW ) generated
by the modulation at the center of the head-to-head domain wall

Hmod(zDW) = −MS|zDW|
2

(
1√

R2
2 + z2

DW

− 1√
R2

1 + z2
DW

)
, (14)

which is plotted in Figure 6(b). The Hmod always opposes the head-to-head
domain wall movement to the right, being negative for all zDW. In other
words, the charges at the modulation tend to favor motion towards the part
with smaller radius, similar to the energy of the domain wall itself.

Figure 7: (a) Sketch of the magnetic field generated by the elements of
the magnetically charged axisymmetric surface in the presence of the head-
to-head domain wall at the position zDW for the modulation of arbitrary
profile given by the continuous function R(z). Red color corresponds to the
positive surface charge and blue color to the negative one. (b) Magnetic field
generated by the tanh-based profile modulation of the length λ vs. domain
wall position zDW for several values of λ. Parameters used for this plot are
R1 = 5 nm, R2 = 10 nm and µ0MS = 1 T.

Charged surface with arbitrary profile. While the main physics is captured
by the abrupt modulation, it is associated with an unphysical cusp of Hmod
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at the very center of the modulation. Besides, it may not be realistic for
slowly-varying modulations such as found in some experimental cases. The
present paragraph intends to describe such situations. Following the same
method and assuming only surface charges, let us calculate the magnetic field
generated by the modulation with an arbitrary profile given by the contin-
uous function R(z). As shown in Figure 7(a) the corresponding modulation
surface is charged positively to the right of the head-to-head domain wall and
negatively to the left of it. We may assume a stepwise jump of surface charges
across the domain-wall, in the case of gentle modulations. The summation
of all contributions from the entire charged surface reads:

Hmod(zDW) = −MS

2

∫ ∞
−∞

|zDW − z|R(z)R′(z)dz

[(zDW − z)2 +R2(z)]3/2
, (15)

This is derived from σm = ∓MS sin(α), dS = 2πR(z)dl, dl = dz/ cos(α),
tan(α) = R′(z) the derivative of R(z), dHz = dH|zDW − z|/r and r2 =
(zDW − z)2 +R(z)2.

Figure 7(b) depicts Hmod computed using Eq.15 for a tanh-based profile
given by the formula 9. Similar to the case of abrupt modulation, Hmod

opposes the head-to-head domain wall movement to the right. However,
there is now no more cusp at zDW = 0, and the maximum magnitude of
Hmod is now found at the center of the modulation. Note that this maximum
decreases sharply with increasing modulation length λ.

Figure 8: (a) Sketch of the tanh-based and straight profiles with R1 = 5 nm,
R2 = 10 nm and λ = 100 nm. (b) Magnetic field generated by tanh-based and
straight modulation profiles illustrated in (a). (c) Magnetic field generated
by tanh-based modulation for several values of R2. All curves are plotted for
µ0MS = 1 T.
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Straight modulation. In the case of the straight modulation of three seg-
ments [Figure 8(a)] given by the formula (7), the integral in equation (15)
should be calculated separately for each segment:

Hmod(zDW) =


∫ λ/2
−λ/2 F (zDW, z)dz,

−
∫ zDW

−λ/2 F (zDW, z)dz +
∫ λ/2
zDW

F (zDW, z)dz,

−
∫ λ/2
−λ/2 F (zDW, z)dz,

(16)

where

F (zDW, z) =
MS

2

(zDW − z) (kz + s)k

[(zDW − z)2 + (kz + s)2]3/2
. (17)

For very large λ we may roughly estimate Hmod considering kz negligible in
comparison to s. This gives the analytic expression for the field generated
by the straight modulation in the following form

Hmod(zDW) =



−ksMS

2

(
1√

(λ/2+zDW)2+s2
− 1√

(λ/2−zDW)2+s2

)
,

+ksMS

2

(
1√

(λ/2−zDW)2+s2
+ 1√

(λ/2+zDW)2+s2
− 2

)
,

−ksMS

2

(
1√

(λ/2−zDW)2+s2
− 1√

(λ/2+zDW)2+s2

)
.

(18)

Figure 8 compares Hmod calculated for a straight modulation and a tanh-
based profile.

2.5 Energy of interaction

In addition to the local terms [Eqs. (4),(5)] describing the domain wall
behavior within the straight cylindrical wire, the energy of interaction of
the domain wall with modulation charges Emod must be considered. This is
an extra contribution to the internal energy, while the domain wall moves
through the modulation, however also at longer range. The total energy now
reads:

Etot = E0 + EZ + Emod. (19)

The derivative of energy with respect to the wall position, can be written un-
der the form of an effective field. The one associated with the supplementary
energy term Emod is reads, for an axisymmetrical wire:
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∂Emod

∂zDW

= −µ0qDWHmod(zDW). (20)

It is unlikely that Emod has an analytic expression in the case of an arbitrary
modulation profile and arbitrary domain wall profile. In contrast, the field
distribution Hmod(zDW) can be derived analytically by making some assump-
tions, as shown in subsection 2.4. Besides, the z-derivative of energy may be
sufficient, for example, to calculate the domain wall depinning field. In this
case we do not need the energy Emod expression but only its derivative, as
the minimization of the total energy gives the domain wall pinned position.

3 Modulation under applied magnetic field

Figure 9: Head-to-head domain wall displacement under the applied mag-
netic field Happ. The color scale bar indicates the longitudinal magnetization
mz.

In this section we focus on the case of domain wall behavior under a
magnetic field applied along the wires axis [Figure 9]. In particular we aim
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to calculate the critical field needed to depin the domain wall. As both
the internal and the Zeeman energies are conservative, one may derive the
critical field Hcrit and corresponding critical domain wall position zcrit on
the basis of the position-dependent domain wall energy. In the majority
of cases the purely analytical treatment of this problem is tricky or even
impossible. For this reason, below we propose an analytical estimation of
the Hcrit in particular limit cases, which implies a number of simplifying
hypothesis. Despite the limitations of the simplified approach, our analytical
analysis focuses on the key ingredients and gives a very reasonable estimation
of the behavior of the critical depinning field in response to the modulation
parameters. The cases for which the assumptions used below are too drastic
should be covered by micromagnetic simulations.

3.1 Abrupt modulation

Figure 10: (a) Total energy EZ + Emod versus domain wall position zDW for
several values of the applied field and R2 = 10 nm. Vertical arrows show
the pinned domain wall positions. (b) Critical field value Hcrit as a function
of the larger radius R2. Solid line corresponds to the analytic formula, solid
circles and open squares correspond to micromagnetic simulations with Aex =
1 · 10−11 J/m and reduced Aex = 0.25 · 10−11 J/m. All curves are plotted for
µ0MS = 1 T and R1 = 5 nm.

In this subsection we estimate the critical applied field Hcrit needed to
depin the domain wall in a wire with an abrupt modulation of diameter,
described by equation (6) and visualized in figure 9. The wire axis was taken
as the z direction. The modulation was centered at z = 0 and L is the
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total length of the wire. The head-to-head domain wall was prepared in the
narrow section of the wire, and driven toward the larger section by applying
a magnetic field.

Micromagnetic simulations suggest that for such modulation the transi-
tion between the two energy levels (or potential barrier) is relatively sharp
(figure 3(b)). Moreover, magnetization is mostly perpendicular to the mod-
ulation surface, which gives the maximum surface charge σm = MS(m ·n)
and thus generates the large magnetic field of the modulation (equation
(14) and figure 6(b)). In this case it is reasonable to assume that the
key ingredient in domain wall pinning is the competition between applied
magnetic field Happ and the magnetic field generated by the modulation
Hmod. Besides, the abrupt jump of diameter, and thus domain wall energy
when crossing the modulation, makes that an abrupt jump may not de-
scribe all features of the total depinning process. Rather, it is illustrative to
describe the long-range competition between the applied field contribution
EZ = −2µ0MSHappπR

2
1zDW + Cste and the energy of interaction between

domain wall and modulation Emod = −2µ0MSπR
2
1

∫
Hmod(zDW, z

′)dz′. This
explains the non-monotonic energy profile with domain wall position zDW, as
shown in figure 10(a). Note also, that we neglected the inner structure of the
domain wall to derive the Zeeman energy, instead we considered the Zeeman
energy of two adjacent uniformly magnetized domains on either sides of the
domain walls center position, zDW.

The energy derivative ∂(EZ + Emod)/∂zDW = 0 have extrema for zmax

and zmin. The the latter corresponds to the domain wall pinned position,
while the former highlights the top of the energy barrier preventing further
motion. Using equations (14), (20) and applied field contribution, we obtain
the expression which relates the applied magnetic field to the energy extrema:

Happ =
zmin,maxMS

2

 1√
R2

1 + z2
min,max

− 1√
R2

2 + z2
min,max

 . (21)

At some critical value of applied field Hcrit both extrema zmin and zmax con-
verge into the same point (an inflection point). zcrit may be found using
∂2(EZ + Emod)/∂z2

DW = 0. zcrit corresponds to the final pinned position of
the domain wall:

zcrit = − R
2/3
1 R

2/3
2√

R
2/3
1 +R

2/3
2

, (22)
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and the corresponding Hcrit needed to depin the domain wall reads

Hcrit =
MS

2

(
zcrit√

R2
2 + z2

crit

− zcrit√
R2

1 + z2
crit

)
. (23)

Figure 10(b) compares formula (23) with micromagnetic simulation. This
comparison reveals qualitatively and quantitatively similar tendencies. Note
that simulations conducted with a value of Aex reduced in comparison to that
of the Permalloy-like material, fits slightly better the analytic results. Is may
be explained by the more compact domain wall which probably better suits
the model assumptions.

3.2 Smooth modulation

In this subsection we estimate the critical applied field Hcrit needed to depin
the domain wall in a smooth diameter modulation described by equation (9)
and schematized in figure 11(a). In practice, the modulation with length λ
was centered at z = 0, and L is the total length of the wire. The head-to-head
domain wall was prepared in the narrow section of the wire and was driven
towards the larger section by applying a magnetic field. To determine the
qualitative expression for Hcrit, we considered the domain wall and Zeeman
energies E0 and EZ, based on the magnetostatic, exchange and applied field
contributions (Eqs.(4),(5)). For simplicity, here we omit the energy of inter-
action Emod between the domain wall and the charges of the modulation. It
has been shown in [35] for smooth modulations, that the extension of the
present model by including the Emod does not have any qualitative impact,
and results only in a slight shift in the total energy minima and maxima.
Below, we introduce the approximations that can be used to estimate each
energy term. The details of calculation may be found in [35].

For the dipolar energy, we considered that the magnetic charge qDW =
2MSπR

2 [38] carried by the head-to-head wall was uniformly distributed
within the plain sphere of radius R, thus with a magnetic charge density
ρm = 3qDW/4πR

3. The real distribution of the magnetic charge is much
more complex [25],[30]. Nevertheless, our approximation leads to a compact
analytical expression for the different energy terms and gives a reasonable
order of magnitude. Note that this magnetic charge depends on the domain
wall position zDW , through R(zDW).

By analogy with electrostatics, a dipolar field Hd is generated by the
charged plain sphere, with a total magnetostatic contribution 3πµ0M

2
SR

3/5.
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Figure 11: (a)Schematic illustration of the uniformly-charged sphere corre-
sponding to the domain wall. (b) Domain wall energy E0 +EZ as a function
of the domain wall position, for several values of applied magnetic field. (c)
Critical field Hcrit as a function of modulation length λ for R2 = 6 nm. (d)
Critical field Hcrit as a function of larger radius R2 for λ = 100 nm. All curves
are plotted for µ0MS = 1 T and R1 = 5 nm.

This contribution rapidly grows with the wire radius like R3 which is consis-
tent with the micromagnetic simulations of the domain wall energy plotted
in figure 2(b) as a function of R. The exchange energy contribution can be
estimated by applying the one-dimensional spin chain model [32] with slowly
varying magnetization. In this case [∇m(r)]2 ≈ (π/2R)2, so that the total
exchange energy contribution equals Aexπ

3R/3. To estimate the Zeeman en-
ergy contribution, we neglected the inner structure of the domain wall and
considered the Zeeman energy of two adjacent uniformly magnetized domains
located at the domain walls center position, zDW. The domain wall energy

22



excluding the integration constant then becomes:

E(zDW) =
3π

5
µ0M

2
SR

3(zDW) +
Aex

3
π3R(zDW)− 2µ0MSHappπ

∫ z

−L/2
R2(z)dz

(24)
and is depicted in figure 11(b). Note that is it compulsory analytically to
consider the finite length of the wire, so that the Zeeman energy is finite.

Both local minima and local maxima are found using energy minimization
∂E(zDW)/∂zDW=0, which gives:

∂R(zDW)

∂zDW

(
18

5
+

l2exπ
2

3R2(zDW)

)
− 4Happ

MS

= 0 (25)

with lex = 2Aex/µ0M
2
S . For a tanh-based profile and smooth modulation

with (R2−R1)/(R2 +R1) << 1, the coordinates of minimum and maximum
of energy reads

zmax,min = ±λ
4

arctanh
√

1− aHapp, (26)

where a = 5λ
9MS(R2−R1)

[
1 + 10l2exπ

2

27(R1+R2)2

]−1

. The coordinate of the energy min-

imum zmin corresponds to the domain wall pinned position. It corresponds
to an internal effective field Heff experienced at this point by the center of
the domain wall:

Heff = −Happ = −
(

1−
√

1−Happ

)
/a. (27)

The domain wall depinning condition, at a given critical applied field value
Hcrit, can be defined as the convergence of two energy extrema at the same
point, zmin = zmax (red curve in figure 11(b)). Here we derive zcrit = 0 for
(R2−R1)/(R2 +R1) << 1 (the numerical solution of the equation (25) with-
out this assumption gives slightly different result [35]). The corresponding
critical field Hcrit reads:

Hcrit =
9MS(R2 −R1)

5λ

(
1 +

10l2exπ
2

27(R1 +R2)2

)
(28)

and is depicted in figure 11(c) and 11(d) as a function of the modulation
parameters. The domain wall repulsion from a modulation due to Hmod,
when not negligible, shifts Hcrit towards higher values. Nevertheless, the
analytical formula (28) provides a good estimation of Hcrit and the relation
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between Hcrit and geometric parameters. A key finding is that the critical
field is proportional to the slope of the modulation (R2 − R1)/λ, with a
negligibly small exchange correction for small diameters.

The comparison between analytical formula (28) and micromagnetic sim-
ulations reveals qualitatively similar tendencies. Moreover, small R2/R1 ra-
tios and long λ, corresponding to gently sloping modulations, ensure the
best fit between the simulations and the analytical expression. The cases for
which the assumptions used in this model are too drastic should be covered
by micromagnetic simulations.

3.3 Protrusion: double abrupt modulation

In this subsection we estimate the critical applied field Hcrit needed to depin
the domain wall in a wire with a protrusion with length Λ, as schematized
in figure 12(a) and given by the formula:

R(z) =


R1, z < 0,
R2, 0 < z < Λ,
R1, z > Λ.

(29)

Similar to subsection 3.1, the head-to-head domain wall was prepared in
the narrow left section of the wire and driven towards the larger section by
applying a magnetic field. To calculate Hcrit, the assumptions which may be
done as well as the procedure to follow, are exactly the same. In order to
calculate Hcrit for any length Λ, we should examine the field Hmod created
by the charges from both sides of the protrusion. Its expression reads

Hmod = −MS|zDW|
2

(
1√

R2
2 + z2

DW

− 1√
R2

1 + z2
DW

)

+
MS|zDW − Λ|

2

(
1√

R2
2 + (zDW − Λ)2

− 1√
R2

1 + (zDW − Λ)2

)
.

(30)

The magnitude of Hmod is plotted in figure 12(b),(c) and (d) for different
values of the protrusion length Λ. Blue and red lines correspond to the contri-
bution of each side of protrusion separately. The black solid line corresponds
to the total Hmod. Almost for all values of Λ (except for very small Λ, i.e.,
for short modulation), Hmod has its deepest minimum to the left of the pro-
trusion (for zDW < 0). This means, the domain wall should be blocked to the
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Figure 12: (a) Schematic of the protrusion geometry of the length Λ and
double abrupt radius modulation between smaller one R1 and larger one
R2. (b),(c) and (d) Analytical curve for the magnetic field generated by a
double modulation, for three values of the protrusion length Λ. Red and blue
lines correspond to the contribution of each modulation and black line to the
total resulting magnetic field Hmod. All curves are plotted for µ0MS = 1 T,
R1 = 5 nm and R2 = 10 nm.

left of the protrusion. For very small Λ, the situation maybe reversed (figure
12(b)) and the domain wall may be pinned to the right of the protrusion.
In order to quantify this phenomenon we followed the same procedure for
the energy minimization similar to single abrupt modulation case and solved
numerically ∂2(EZ +Emod)/∂z2

DW=0 condition. This numerical solution gives
Hcrit as a function of protrusion length Λ, and is plotted in figure 13(a).

This gives rises to two regimes. As expected, for large Λ (wide protru-
sion), the critical field Hcrit recovers the single abrupt modulation value.
The pinning position is ahead of the protrusion, like for a single increase
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Figure 13: (a) Critical field Hcrit as a function of the protrusion length Λ for
several values of R2. Red horizontal dashed line corresponds to the critical
field value for Λ = ∞ (single abrupt modulation) and R2 = 12.5 nm. (b)
Micromagnetic simulation of the Hcrit as a function of the protrusion length
Λ for R2 = 10 nm. The branch with solid squares corresponds to the domain
wall pinned to the left of the protrusion. The branch with open circles
corresponds to the domain wall pinned to the right of the protrusion. Black
horizontal dashed line corresponds to the critical field value for Λ =∞ (single
abrupt modulation). (c) Domain wall pinned to the left of the protrusion
for Λ = 30 nm and domain wall pinned to the right of the protrusion for
Λ = 10 nm. The color scale bar indicates the longitudinal magnetization mz.
All graphs are plotted for µ0MS = 1 T and R1 = 5 nm.

of diameter. Once the domain wall enters the protrusion, propagation pro-
ceeds beyond the center of the protrusion as the geometry favors expulsion,
adding its effect to the Zeeman energy. For decreasing protrusion lengths
the pinning field also decreases. This is related to the partial balance of the
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repulsive charge on the left side of the protrusion and the attractive charge
on the right side of the modulation. For very small values of Λ, the critical
field Hcrit has non-monotonic behavior, which correspond to the case with
the domain wall pinned to the right of the modulation.

However, the model considers a domain wall with zero width, an hypoth-
esis that may be put at stake for a short modulation. Besides, we stressed in
section 3.1 that the model with abrupt modulation may not describe accu-
rately the situation when the domain wall enters the modulation. For these
reasons, it is important to check the situation with micromagnetic simula-
tions. Surprisingly, these reproduce rather well the tendencies obtained in
the simplified model, as shown in figures 12(b) and 12(c). Among others,
the existence of two regimes is confirmed. This stresses that care needs to be
taken in the analysis of experimental data, for which multiple pinning sites
may not results from extrinsic imperfections.

4 Modulation under applied current

In this section we describe the domain wall behavior under applied current.
For the sake of providing a realistic picture even when crossing the modula-
tion, we immediately jump to the case of the smooth diameter modulation
given by the tanh-based profile formula (9) and schematized in figure 14(a).
The wire axis is again taken as the z direction. The modulation of the length
λ is centered at z = 0 and L is the total length of the wire. The head-to-
head domain wall was prepared in the narrow section of the wire and driven
towards the larger section by applying a spin-polarized current, with the elec-
trons flowing from the narrow to the broad section. Similar to subsection 3.2,
we make several simplifying assumptions and focus on the key ingredients to
estimate the critical current needed to depin the domain wall. We then use
micromagnetic simulations to refine the analytic picture.

Under the applied spin-polarized current the domain wall motion obeys
the LLG equation (1) generalized with the so-called adiabatic and non-
adiabatic spin torques [57]

T = −PµB

eMS

[(J · ∇) m− βm× (J · ∇) m] , (31)

with P the spin-polarization ratio of the current, µB the Bohr magneton, e
the (positive) elementary charge, β the non-adiabatic coefficient and J the
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Figure 14: (a)Illustration of the domain wall under applied current in a mod-
ulated diameter wire. (b) Spherical coordinate basis {er, eθ, eφ} for magne-
tization vector m and Cartesian spatial coordinates x, y and z. The magne-
tization vector is drawn in the particular position corresponding to θ = π/2,
so that eθ = −ez.(c) Critical current density value Jcrit versus the larger ra-
dius R2. The solid curve corresponds to the equation (35). Points correspond
to the micromagnetic simulations. (d) Domain wall rotation frequency f in a
pinned state vs. applied current density Japp for R2 = 10 nm. The solid curve
corresponds to the equation (36). Points correspond to the micromagnetic
simulations. Curves (c) and (d) are plotted for µ0MS = 1 T, R1 = 5 nm,
λ = 100 nm, α = 0.02, β = 0.04 and P = 0.7.

electron current density. It is convenient to express the magnetization vector
and the effective field in the spherical coordinates basis {er, eθ, eφ} [figure
14(b)] with m = er, Heff = Hrer+Hθeθ+Hφeφ and ṁ = θ̇eθ+sin θφ̇eφ. The
circular symmetry of the nanowire leads to the energy rotational invariant,
which implies ∂/∂φ = 0 and thus Hφ = 0. Moreover, for simplicity we
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neglect any azimuth distortion of the domain wall, which corresponds to the
1-dimensional spin chain and implies ∇φ = 0. We name Japp the current
density in the narrow part of the wire, and assume that the electron current
is parallel to the z axis Japp = Jappez (figure 14(a)). This approximation is
suitable for a smooth cross-section. Similarly, the electron current density
is considered uniform in a cross-section and is related to the applied current
density through Jz(z) = R2

1Japp/R
2(z).

After some algebra the LLG equation (1) augmented by the spin-torque
(Eq.(31)) takes the form

θ̇ =
γ0

1 + α2
αHθ −

1 + αβ

1 + α2

sin θ

∆

PµB

eMS

Jz(z), (32)

sin θφ̇ = − γ0

1 + α2
Hθ +

β − α
1 + α2

sin θ

∆

PµB

eMS

Jz(z), (33)

where Hθ = −(µ0MSV )−1δE/δθ, θ̇ = v sin θ/∆, v is the forward domain wall
velocity and φ̇ = 2πf is the angular domain wall velocity. Here we applied
the useful property of a 1-dimensional domain wall profile ∂θ/∂z = sin θ/∆,
where ∆ is the wall-width parameter [31, 43].

For simplicity in the following we omit the internal domain wall structure
and study the behavior of the magnetization vector in its center of the domain
wall, where θ = π/2. Let us assume that the domain walls settles at a given
position zDW, for a given value of applied current Japp. This corresponds to
θ̇ = 0, which from Eq.(32) implies:

Hθ =
PµB

eMS

(1 + αβ)R2
1Japp

αγ0R2(z)∆
. (34)

In the center of the domain wall, where eθ = −ez, Hθ is parallel to the
z axis and is pointed to the negative z direction, so that Hθ = −Heff . From
Eq.(3), Hθ = −H0 is the internal field, reflecting the z-dependence of the
domain wall energy, which we calculated at any position in the field-driven
model. From this, for a given Japp we can solve Eq.(34) to search for a z
value allowing an equilibrium position. Thus, by combining equations (27),
(28) and (34), we obtain a relation linking the applied current (Japp) and the
resulting steady-state position of the domain wall zeq. Such a position exists
for moderate current, however not for very large current. The cross-over
determines the depinning current Jcrit in a smoothly-varying modulation:
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Jcrit =
9αγ0eM

2
S

20PµB

(R1 +R2)3(R2 −R1)

R2
1λ

(
1 +

10l2exπ
2

27(R1 +R2)2

)
. (35)

Here, similar to subsection 3.2, we have assumed zcrit
∼= 0, and ∆ ∼=

2R(zcrit) = R1 + R2. This law is plotted in figure 14. If we compare the
domain wall behavior under applied field (figure 11(d)) and under applied
current (figure 14(c)) in a smooth modulation, there is a major difference
in the efficiency of the driving force in both cases. The critical field Hcrit is
almost linear with growing larger diameter whereas the growth of Jcrit follows
the power low of R2. The reason is the decrease of local current density when
the section broadens: not only does the domain wall energy increase, but the
efficiency of spin torque decreases. Besides, Jcrit is proportional to the domain
wall width-parameter which grows in the larger cross-section.

Figure 14(c) compares the analytical solution with micromagnetic sim-
ulations. The tendencies are similar, with even an excellent quantitative
agreement in the limit of gentle modulation. This validates the model, and
the above conclusion.

The model also predicts the frequency of precession of the transverse
component of magnetization of the wall, at the pinned position:

f =
PµB

2πeMS

R2
1Japp

αR2(z)∆
. (36)

The dominant effect is that of the internal field and not of the non-adiabatic
spin torque, resulting in the 1/(α∆) coefficient in this equation. This fre-
quency is plotted in figure 14(c), for which similar to subsection 3.2, we
estimated the wall-width parameter ∆ as ∆ ∼= 2R(z). Again, an excellent
agreement is found with numerical simulation.

5 Conclusion and perspective

We have derived analytical models to describe how a magnetic domain wall
may go through a modulation of diameter in a cylindrical nanowire, under
the stimulus of either a magnetic field or a spin-polarized current. Scaling
laws are derived, which may be used to quickly design a modulation to reach
specific properties. While the depinning field scales with MS and the slope
of the modulation (R2 −R1)/λ, the depinning current increases much faster
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with the geometrical strength of the modulation, due to the decrease of local
current density, and the increase of wall width. The relevance of these laws
are are confirmed by micromagnetic simulations, which reveal an excellent
quantitative agreement for smoothly-varying modulations.

The quantitative investigation of experimental domain-wall pinning in
modulations of diameter is still in its infancy. It has been carried-out under
magnetic field so far, with scattered results, however pointing at the moder-
ate strength of pinning compared with extrinsic pinning on material defects,
when considering smoothly-varying modulations. The drastically higher ef-
ficiency of pinning under current, raises hope that modulations of diameter
can be designed efficiently for spin-torque fundamental or applied devices.
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