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Abstract

By identifying Hamiltonian flows with geodesic flows of suitably chosen Riemannian manifolds,

it is possible to explain the origin of chaos in classical Newtonian dynamics and to quantify its

strength. There are several possibilities to geometrize Newtonian dynamics under the action of

conservative potentials and the hitherto investigated ones provide consistent results. However, it

has been recently argued that endowing configuration space with the Jacobi metric is inappropriate

to consistently describe the stability/instability properties of Newtonian dynamics because of the

non-affine parametrization of the arc length with physical time. To the contrary, in the present

paper it is shown that there is no such inconsistency and that the observed instabilities in the case

of integrable systems using the Jacobi metric are artefacts.
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I. INTRODUCTION

Elementary tools of Riemannian differential geometry can be successfully used to explain

the origin of chaos in Hamiltonian flows or, equivalently, in Newtonian dynamics. Natural

motions of Hamiltonian systems can be viewed as geodesics of the configuration-space man-

ifold M equipped with the Riemannian metric gJ , known as the Jacobi metric (or kinetic

energy metric). The stability/instability properties of such geodesics can be investigated

by means of the Jacobi–Levi-Civita (JLC) equation for geodesic spread. It has been shown

that chaos in physical geodesic flows does not stem from hyperbolicity of M : phase space

trajectories/geodesics are destabilized both by regions of negative curvature and by para-

metric instability caused by positive curvature varying along the geodesics [1–3]. Another

remarkable fact is that the JLC equation written for a geometrization of Hamiltonian sys-

tems in an enlarged configuration space-time endowed with a metric due to Eisenhart [4]

yields the standard tangent dynamics equation commonly used in numerical computations

of the largest Lyapunov exponent (LLE). These two different geometric framework have

been proven to give the same information about order and chaos and about the strength

of chaos as well. This has been checked in the case of two-degrees of freedom Hamiltonian

systems, for the Hénon-Heiles model and for two coupled quartic oscillators, respectively

[5, 6], and in the case of a large number of degrees of freedom (from 150 up to 1000) [7]. It

has been found that the JLC equation stemming from the Jacobi metric gives exactly the

same quantitative results of the tangent dynamics equation.

This notwithstanding, in Ref. [8] it has been argued that the non-affine parametrization

of the arc-length with time in configuration space endowed with the Jacobi metric leads to

nonphysical instabilities. More precisely, the JLC equation written for the Jacobi metric

seems to give chaos also for a system of harmonic oscillators. Moreover, such alleged non-

physical instabilities are found to be stronger in systems with few degrees of freedom. Such

an argument seems to radically exclude the use of Jacobi metric in configuration space to

consistently investigate Hamiltonian chaos; in fact, the non-affine parametrization of the arc

length with respect to physical time is an unavoidable consequence of the way Jacobi metric

is derived from Maupertuis’ least action principle. Some mathematical works [9–11], partly

motivated by the results reported in Ref.[8], have investigated the behaviour of the geodesics

in configuration space endowed with the Jacobi metric near the so called Hill’s boundaries,
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i.e. the regions in configuration space where E = V (q) and where the Jacobi metric is

singular (gJ = 0). In particular, all these works emphasized the phenomenon of geodesic

reflection near Hill’s boundaries and the relevance of these reflections to characterize periodic

orbits, with, among the others, an original proposal dating back to Ref. [12]. Finally,

other authors [13] have tackled the geometrization of Hamiltonian dynamical systems by

lifting the Jacobi metric from configuration space M to its cotangent bundle T ∗M , i.e.

to the phase space. In this framework JLC equations are rewritten as a system of first

order linear differential equations on the tangent bundle TT ∗M of phase space: this allows

to identify the adequate degrees of freedom to compute the Geometric Largest Lyapunov

Exponent(GLLE). Within this framework, the GLLE (JLC equations) and LLE (tangent

dynamics) are found in very good agreement to characterize the chaotic regime (strong/weak

chaos) of the Hénon-Heiles model. All these studies, together with the manifest contradiction

among the outcomes of Ref.[8] and those of Refs. [5, 6] have motivated the present work.

The present paper is organized as follows. In Section II we briefly discuss some aspects

of the construction of the Jacobi metric, with emphasis on the consequences of non-affine

parametrization of the arc length with time for the JLC equation, and on the presence

of boundaries where the metric is singular. In Section III, the JLC equation is rewritten

by introducing a parallel transported frame for which explicit expressions are then given in

Subsections III.1 and III.3 for N = 2 and N = 3, respectively. Then in Subsections III.2 and

III.4 the results of the corresponding numerical simulations are reported for two and three

(resonant) harmonic oscillators, respectively, using the most critical values of the parameters

which, according to Ref.[8], should yield non physical instabilities. It is shown that this is

not the case. In Section IV, we discuss how the measure concentration phenomenon, which

takes place at a large number of degrees of freedom, completely removes any problem making

unnecessary even resorting to a parallel transported frame. Some conclusions are drawn in

Section V.

II. EFFECTS OF NON-AFFINE PARAMETRIZATION OF THE ARC LENGTH

WITH JACOBI METRIC

Among the different possibilities of rephrasing Newtonian dynamics in geometric terms,

as reported in [2, 3], the Jacobi metric in configuration space leads to the mathematically
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richest structure [(M, gJ) is geodesically complete in the sense of the Hopf-Rinow theorem].

Let us consider a thorough investigation of the geometrization of Newtonian dynamics by

means of (M, gJ) for systems described by a Lagrangian of the form

L(q̇, q) =
1

2
gij(q)q̇

iq̇j − V (q) , (1)

where

q̇i(t) =
dqi

dt
(t) (2)

gij are the components of the kinetic energy metric on configuration space M with the

associated Levi-Civita connection ∇ specified by the Christoffel coefficients Γ
i

jk, and V (q) is

the potential energy. It is well known that, given a chart (U, φ) on the configuration space

M and a curve γ : I ⊂ R −→M , the natural motions φ(γ(t)) = γ(t) = q(t) are the class of

curves that make stationary the action functional

S[q(t)] =

∫ t1

t0

L(q̇(t), q(t))dt (3)

on the class of curves with q(t0) = a and q(t1) = b fixed, i.e.

δS[γ] = 0 with γ(t0) = a and γ(t1) = b . (4)

The Newton equations are derived from the Euler-Lagrange equations, i.e.

∇γ̇ γ̇ = −gradV (5)

where grad
i
f(q) = gik∂kf is the gradient. Natural motions γ(t) belong to a class of curves

of configuration space satisfying the ”physical” variational principle (4), therefore these

curves can be identified with geodesics of configuration space which also satisfy a variational

principle but in this case of a ”geometrical” kind. In fact, geodesics γ̃(s) are curves of

a Riemannian manifold (M, g̃) endowed with a metric g̃ that makes stationary the length

functional between two fixed points, i.e.

δl [γ̃] = 0 with l [γ̃(s)] =

∫ s1

s0

√
g̃ij

dqi

ds

dqj

ds
ds γ̃(s0) = a γ̃(s1) = b . (6)

One possible way to provide an identification of natural motion with geodesics is provided by

the introduction of the Jacobi metric on a subspace of configuration space. Let us consider

the total energy function

H(q̇, q) =

(
q̇i
∂L

∂q̇i
− L

)
=

1

2
gij(q)q̇

iq̇j + V (q) (7)
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which is obviously a conserved quantity along the natural motions, i.e. dH(q̇(t), q(t))/dt = 0.

Since the Lagrangian is a homogeneous function in q̇i it follows that H(q̇, q) = 2W−L where

W =
1

2
gij q̇

iq̇j = H(q̇, q)− V (q) (8)

is the kinetic energy. If we consider a class of isoenergetic trajectories q(t;E) in configuration

space, that is having the same total energy value H(q̇(t;E), q(t;E)) = E, as the kinetic

energy is non negative, the trajectories of the system in configuration space are confined in

the region MV <E = {q ∈M |V (q) < E}. Moreover, for isoenergetic trajectories the kinetic

energy can be expressed as a function of the coordinates, i.e.

W (q(t;E)) = E − V (q) (9)

thus the action functional of Eq. (3) can be rewritten in the form

SE[q(t;E)] =

∫ t1

t0

L(q̇(t;E), q(t;E)) dt =

∫ t1

t0

[E + 2W (q(t;E))] dt

= (t1 − t0)E +

∫ t1

t0

2W (q(t;E)) dt .

(10)

as we are interested in the variational principle and t0, t1, E are fixed quantities, the first

term in the last equality can be neglected. The integral in Eq.(10) can be interpreted as a

length integral in configuration space, in fact

SE[q(t;E)] =

∫ t1

t0

2W (q(t;E)) dt

=

∫ t1

t0

√
2W (q(t;E))

√
2W (q(t;E)) dt =

∫ t1

t0

√
2 [E − V (q)]

√
ḡij(q)q̇iq̇j dt =

=

∫ t1

t0

√
2 [E − V (q)] ḡij q̇iq̇j dt =

∫ t1

t0

√
gij q̇iq̇j dt =

∫ t1

t0

√(
ds

dt

)2

dt

=

∫ s1

s0

ds

(11)

where the new metric

gij := 2W (q)gij, W (q) := E − V (q) (12)

called also Jacobi metric, has been introduced with the associated the arc-length element

ds2 = gijdq
idqj = 2 [E − V (q)] gijdq

idqj = 4[W (q)]2dt2 . (13)
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A central point of the following discussion is related to the non-affine parametrization of the

arc-length s with respect to the physical time t, which is clearly a necessary consequence of

the construction of Jacobi metric. Moreover, we observe that the Jacobi metric is related

to kinetic energy metric gij through a conformal rescaling via a factor proportional to the

kinetic energy [E − V (q)] preserving the signature of the metric only in the interior of

MV≤E, i.e. MV <E = ME = {q ∈M |V (q) < E}, the so called Hill’s region. By endowing

the region ME with the Jacobi metric g the natural motions with fixed energy E are the

same as geodesics γ(s) of the manifold (ME, g).

This approach has remarkable consequences, as it is discussed in the following. In fact,

the geometric description of Newtonian dynamics, identifying the solutions of Newton equa-

tions with the geodesics of suitable Riemannian manifolds, provides a powerful conceptual

and mathematical framework to study the stability/instability of dynamics in terms of the

stability properties of a geodesic flow, described by the geodesic spread equation relating

stability/instability with geometry.

The standard observable to define the presence of dynamical chaos and to measure its

strength is the largest Lyapunov exponent, and, as we will see in the following, in the geo-

metrical framework a Geometrical Lyapunov exponent can be defined.

Now, a key point in derivation of Jacobi metric from Maupertuis’ principle is to set the

relation between the physical time t and the arc-length s as

ds2 = 4W 2(q)dt2 . (14)

It follows that a generic geodesic parametrized by the arc-length s, i.e. q̇(s) = {q̇i(s)}i∈[1,n]

has a unit velocity

gJ(q̇(s), q̇(s)) = 2W
dqi

ds
δij
dqj

ds
= 1

while if parametrized with respect to the physical time

dqi

dt
gij
dqj

dt
= 2W . (15)

So, in general, the physical time is a non-affine parametrization of the geodesics of Jacobi

metric. We derive in what follows the effect of the reparametrization (14) on the geodesic

equation. Let us introduce the vector fields

Y i :=
dqi

ds
(16)
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and

X i :=
dq̃i

dt
=

ds

dt

dqi

ds
= 2WY i (17)

defined along the geodesic qi(s) = qi(s(t)) = q̃i(t). Using the definition of geodesic for the

vector field Y

∇Y Y = 0 (18)

it is possible to derive the equations for the vector field X = αY (with α = (2W )−1)

∇αX (αX) = α (∇Xα) + α2X = 0 (19)

that implies

∇XX = −∇X(logα)X = X∇X (log 2W ) . (20)

In a natural coordinate system {qi}i=1,...,N the equation (20) reads

d2qi

dt2
+ Γijk

dqj

dt

dqk

dt
= δik

dqk

dt

dqj

dt
∂j log(2W ) . (21)

The Christoffel symbols in Jacobi metric take the form

Γijk =Γ
i

jk +
1

2

[
δij∂k log(2W ) + δik∂j log(2W )− gjkgrad

i
log(2W )

]
(22)

where Γ
i

jk are Christoffel symbols of the kinetic energy metric gij and grad
i
f := gik∂if is

the gradient with respect to kinetic energy metric. Substituting (22) in (21) and using (15)

we obtain

∇XX =
d2qi

dt2
+ Γ

i

jk

dqj

dt

dqk

dt
=

1

2
grad

i
(2W ) = −grad

i
V (23)

i.e. the Newton’s equations of the dynamical system. As already mentioned above, dy-

namical chaos can now be investigated by means of the equation for the geodesic spread

describing the stability of a geodesic flow of a Riemannian manifold. The geodesic spread is

measured by a vector field J which locally gives the distance between nearby geodesics. This

vector field evolves along a reference geodesic according to the Jacobi-Levi Civita equation

which, in components, reads

∇2J i

ds2
+Ri

jkl

dqj

ds
Jk
dql

ds
= 0 (24)

where

Ri
jkl = ∂kΓ

i
jl − ∂lΓijk + ΓmljΓ

i
km − ΓmkjΓ

i
ml (25)
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is the Riemann curvature tensor. In Jacobi metric we have

∇2X i

ds2
=

1

2W

∇
dt

(
1

2W

∇X i

dt

)
=

1

4W 2

∇2X i

dt2
+

1

4W

∇X i

dt

d

dt

(
1

W

) (26)

that substituted into (24) yields to

∇2J i

ds2
+Ri

jkl

dqj

ds
Jk
dql

ds
= 0 7→ ∇

2J i

dt2
+Ri

jkl

dqj

dt
Jk
dql

dt
=
∇J i

dt

d

dt
lnW . (27)

Every non-affine parametrization in Jacobi metric can be reduced to a relation between the

physical time and the arc-length parameter of the form t 7→ ds = f(q)dt, where f(q) is

a function of the point and generates a term proportional to the derivative of f(q) into

each equations. Thus, the JLC equation written for the Jacobi metric is not invariant for

time reparametrization. We can rephrase the main point raised by the work in Ref.[8] as

attributing to the right hand-side of Eq.(27) the origin of chaotic-like instabilities even for

integrable systems, that is, the origin of non-physical artifacts. In Ref. [8] it has been

surmised that the larger the fluctuations of kinetic energy W the more dramatic the occur-

rence of non-physical instabilities stemming from Eq.(27). Remarkably, the geometrization

of Newtonian dynamics in an enlarged configuration space-time equipped with the Eisenhart

metric tensor [1] yields the JLC equation in the form of the Tangent Dynamics Equation

which is commonly used to compute the Largest Lyapunov Exponent (LLE) [1, 3], therefore

the authors of Ref. [8] claim that this is the only consistent geometrization of Newtonian

dynamics to investigate chaos, while the Jacobi metric would be unsuitable for the same

task.

II.1. Geometrical Lyapunov exponent

We conclude the present Section by giving a definition of a Geometrical Lyapunov expo-

nent. Of course, the starting point is the JLC which, in intrinsic notation, is

∇2
ξJ +R(J, ξ)ξ = 0 . (28)

By defining Y = ∇ξJ and RξJ := R(ξ, J)ξ the above equation becomes

∇ξJ = Y

∇ξY = RξJ .
(29)
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Then, by putting

A :=

 0 11

Rξ 0

 , J :=

J
Y


the JLC equation reads

∇ξJ = AJ . (30)

A Geometrical Lyapunov exponent, in analogy with the definition of the standard Lyapunov

exponent, can be defined after having expressed as a function of physical time the solution

of Eq. (30) as

λG := lim
t−→∞

1

t

‖J (t)‖g
‖J (0)‖g

. (31)

where the norm of J is

‖J (t)‖2
g = 2W (q)δij{J i(t)J j(t) + (∇q̇J)i(t)(∇q̇J)j(t)} .

Let us note that throughout the literature, [1], [3], [5] and [7], the geometrical Lyapunov

exponent has been expressed as a function of physical time t, whereas in [8] the Geometrical

Lyapunov exponent is defined as a function of the arc-length. As a final comment, let us

remark that the existence of many different frameworks to rephrase Newtonian dynamics in

geometric terms [3] can lead, a-priori, to different quantitative evaluations of the strength

of chaos, to the contrary, the use of different geometric frameworks must lead to the same

qualitative description of the stability/instability properties of the dynamics. For example,

the transition from weak to strong chaos must be at least qualitatively and coherently re-

produced in any geometric framework, as is for example actually shown for high dimensional

Hamiltonian flows in Ref. [7].

III. PARALLEL TRANSPORTED FRAME FOR A SYSTEM OF N PARTICLES

IN JACOBI MANIFOLD

Let us now work out the JLC equation for a parallel transported orthonormal frame

along a reference geodesic. The advantage of this representation with respect to the use of

standard local coordinates is that by making parallel transported frames to ”incorporate”

the geodesics reflection, when they approach the Hill’s boundaries in configuration space,
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eliminates a source of artefacts in the numerical solution of the JLC equation. In fact, the

sharp reflection of geodesics close to the Hill’s boundary of a mechanical manifold would

require a prohibitively high numerical precision to avoid the introduction of an error am-

plification mimicking chaos even for integrable systems. To the contrary, with respect to a

parallel transported frame - ”incorporating” the geodesic reflection - nearby geodesics are

no longer affected by the fake error amplification due to the reflection. As a matter of fact,

we will show that the solutions of the JLC equation - written for the Jacobi metric - have

the correct physical meaning also in the ”pathological” cases where unphysical instabilities

were found in Ref.[8].

The parallel transported frame is built by requiring that the covariant derivative ∇ξX

of all vectors X with respect to the geodesic flow ξ is orthogonal to ξ. Let us introduce a

reference frame ei := ∂/∂qi on the tangent bundle TM and the corresponding dual frame

θi := dqi such that θi(ej) = δij. The Jacobi metric tensor is the multi-linear map gJ :

TM × TM −→ R such that, if written with respect to the natural basis, is given by

gJ := gijθ
i ⊗ θj (32)

the components of which are

gij := g(ei, ej) = 2(E − V (q))δij

with the differential arc-length

ds2 = gijθ
iθj . (33)

To build a parallel transported frame we consider a geodesic γ : I ⊂ R −→M , with tangent

vector field ξ : I −→ TM and the Jacobi vector field J : I −→ TM such that respect to the

natural basis {ei}i∈[1,n] they are written as

J = J iei

ξ = ξiei

where the Jacobi field, by definition, verifies

∇2
ξJ +R(J, ξ)ξ = 0 (34)

We shall show that there exist reference frames parallel transported along any geodesic. Such

systems exist if an orthogonal tensor field Ω : I −→ SON(γ(I)) is defined at each point
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along the geodesic flow. This tensor field allows to define the required frame where the basis

on TM is given by {Ei}i=i,··· ,N and dual frame on T ∗M {Θi}i=i,··· ,N and, by definition of

dual frame we have Θi(Ej) = δij. Therefore, the parallel transported frame is defined by

Ei = Ω · ei, ∇ξEi = 0, g(Ei, Ej) = δij

Θi = θi ·Ω−1, ∇ξΘi = 0, g∗(Θi,Θj) = δij
(35)

In the Jacobi-Levi Civita equation, written in (34), we can define the Ricci tensor along the

geodesic flow Ric(ξ) : γ(I) −→ T 1
1 (γ(I)) by

Ric(ξ) := R(·, ξ)ξ . (36)

A canonical isomorphism exists between the rank-two tensor Ric(ξ) and a symmetric matrix

N × N , that we shall denote with R. For every ω ∈ T ∗M and X ∈ TM , such a matrix is

given by

Ric(ξ)(X,ω) := Ric(ξ)i jX
jωi = g(Yω,R(X)) (37)

where Yω := g−1ω. We note the following symmetry properties of Ric(ξ)

Ric(ξ) = Rjkl
iξkξlei ⊗ θj = Rjkliξ

kξlθi ⊗ θj

= Rilkjξ
kξlθi ⊗ θj = Rilk

jξkξjej ⊗ θi
(38)

and by redefining the indices j 
 i and l 
 k the symmetry of Ric(ξ) is evident. Hence

the associated matrix can be diagonalized at each point along the flow. Let note that the

symmetry of Riemann tensor entails

Ric(ξ)ξ = R(ξ, ξ)ξ = 0 . (39)

Then, the tangent vector to the geodesic ξ is an eigenvector of the matrix R associated to

Ric(ξ) with vanishing eigenvalue. A posteriori, one observes that for harmonic oscillators -

geometrized through the Jacobi metric - the eigenbasis of the matrix R coincides with the

parallel transported frame. In general, this is not true and we have two different orthogonal

matrices, that one which diagonalises R and another one which transforms the natural basis

into the parallel transported frame. Fortunately, in the present case, given the natural frame

{ei}i∈[1,N ] on the tangent bundle TM , there exists an orthogonal transformation Ω : I −→

SON(γ(I)) such that

Ei = Ω · ei (40)
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namely, such that it transforms the natural basis into the parallel transported frame

{Ei}i∈[1,N ] and, moreover, such that it diagonalises the matrix R:

Rd = Ω−1 ◦R ◦Ω (41)

This allows to write the Jacobi field with respect to such a basis and thus

J = J iei = J i(Ω−1)kiΩ
l
kel

= [(Ω−1)ki J
i][Ωl

kel] = J̃kEk .
(42)

Let us consider the JLC equation (34) and proceed to substitute J 7→ J̃ then

∇2
ξJ̃ +Ric(ξ)J̃ = 0

d2J̃ i

ds2
Ei + J̃kRic(ξ)l kEl = 0(

d2J̃k

ds2
+ J̃kΛk

)
Ek = 0

(43)

where now the repeated indices do not stand for summation. In this way, we obtain N − 1

second order differential equations in the unknown functions {J̃k}i∈[1,N−1], and the N -th

equation is that for the vector tangent to the reference geodesic, equation which corresponds

to the geodesic equation thus, by denoting with J̃1 the function for this equation, we have

d2J̃1

ds2
= 0

d2J̃k

ds2
+ J̃kΛk = 0

(44)

It is interesting to remark that {Λk} are just sectional curvatures, i.e the principal directions

of curvature identified by the vectors {Ek}k∈[1,N ], i.e

Λk := 〈Ek, R(Ek, E1)E1〉

Now, passing from the arc-length parameter s to the physical time t the equations (44)

become
d2J̃k

dt2
(t)− d

dt
log(W (q(t)))

dJ̃k

dt
(t) + 4W (q(t))2J̃k(t)Λk(t) = 0 (45)

whence

J̈k(t)− a(t)J̇k(t) + b(t)Jk(t) = 0 k ∈ [2, N ]

J̈1(t)− a(t)J̇1(t) = 0

a(t) :=
d

dt
log(W (q(t)))

bk(t) := 4W (q(t))2Λk .

(46)
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The second equation in 46 can be immediately solved by setting h(t) := J̇1(t) and then

tackling the differential equation

ḣ(t) + a(t)h(t) = 0 =⇒ h(t) = W (q(t))

giving

J1(t) =

∫ t

t0

W (q(η)) dη . (47)

The other equations can be written in canonical form, namely, by redefining the function J̃

as follows

J̃ = A(t)f(t) (48)

and substituting it into (46) we obtain

f̈(t) + ḟ(t)

(
−a(t) + 2

Ȧ(t)

A(t)

)
+ f(t)

(
−a(t)

Ȧ(t)

A(t)
+
Ä(t)

A(t)
+ b(t)

)
= 0 . (49)

By choosing A(t) such that the coefficient of ḟ(t) vanishes, we get the following conditions

for A(t)

Ȧ

A
=
a(t)

2
Ä

A
=
a(t)2

4
+
ȧ(t)

2

(50)

thus giving

A(t) = exp

(
1

2

∫
a(t) dt

)
= exp

(
1

2

∫
d

dt
log(W (q(t))) dt

)
= exp

(
1

2
log(W (q(t)))

)
=
√
W (q(t)) .

(51)

The equation (49) becomes

f̈(t) + f(t)

(
−a(t)2

4
+
ä(t)

2
+ b(t)

)
= 0

f̈(t) + f(t)

−3

4

(
Ẇ

W

)2

+
1

2

Ẅ

W
+ b(t)

 = 0

(52)

To apply this procedure to the equations (44), we set

J̃k := A(t)fk(t) (53)

13



and for every k ∈ [2, N ] we obtain the final form for the components of the Jacobi-Levi

Civita equation

f̈k + ω(k)(t)f
k(t) = 0 (54)

where the functions in the second term of the l.h.s. can be interpreted as time dependent

frequencies

ω(k)(t) = 4W (q(t))2Λk(t)−
3

4

(
Ẇ

W

)2

+
1

2

Ẅ

W
(55)

where

Ẇ = −V̇ = −〈ξ,∇Rn

V 〉Rn

Ẅ = −V̈ = −HessV (ξ, ξ) + ‖∇Rn

V ‖2
Rn

(56)

III.1. Parallel Transported Frame for a system of 2 harmonic oscillators

In Refs. [5, 6] it has been shown that for the Hnon-Heiles model and for two coupled

quartic oscillators, respectively, the geometrization through the Jacobi metric perfectly dis-

criminates between ordered and chaotic motions by investigating the stability/instability of

geodesics through the JLC equation expressed in a parallel transported frame. In this sec-

tion, we are going to show that for two harmonic oscillators (of course an integrable system)

the norm of the geodesic separation vector remains bounded, in spite of the fluctuations

of kinetic energy which, according to the claim of Ref.[8], should have entailed apparent

instability of the regular motions of this system. The Hamiltonian of this system is

H(p1, p2, q1, q2) =
1

2
(p2

1 + p2
2) +

κ

2
(q2

1 + q2
2) (57)

and the associated Jacobi metric, having set W (q) := E − V (q1, q2), is

gJ = 2W (q)(dq1 ⊗ dq1 + dq2 ⊗ dq2) . (58)

The Ricci tensor along the geodesic flow is

[Ric(ξ)]i j =
Eκ

W 2

 ξ2ξ2 −ξ1ξ2

−ξ1ξ2 ξ1ξ1 .

 (59)

The eigenvectors of this matrix are

E1 = (ξ1, ξ2)t

E2 = (−ξ2, ξ1)t
(60)

14



with the corresponding eigenvalues:

Λ1 = 0

Λ2 =
Eκ

2W 3
.

(61)

With these eigenvectors the matrix for the basis transformation is simply obtained in the

form

Ω =

ξ1 −ξ2

ξ2 ξ1

 (62)

so that the JLC equation for the components of the parallel transported Jacobi vector field

J̃ is written as

d2J̃1

ds2
= 0

d2J̃2

ds2
+

Eκ

2W 3
J̃2 = 0

(63)

which, written for the physical time t and with the notations of the preceding Section, read

d2J1

dt2
− Ẇ

W

dJ1

dt
= 0

d2f 2

dt2
+ ω̃2f

2 = 0

(64)

where

ω̃2(t) =
2Eκ

W
− 3

4

(
Ẇ

W

)2

+
1

2

Ẅ

W (65)

III.2. Numerical results

In Ref.[8], it has been claimed that there exists a set of initial conditions for which the

JLC equations written for the Jacobi metric lead to unstable solutions even in the case of

two harmonic oscillators because of the affine parametrization of the arc-length with time

and the consequent fluctuations of the kinetic energy. By starting from the general solutions

for a system of two harmonic oscillators given by

q1(t) = A1 cos(ωt+ φ1)

q2(t) = A2 cos(ωt+ φ2)
(66)

15



where A1, A2 and φ1, φ2 are determined by the initial conditions, the authors of Ref.[8] used

polar coordinates to rewrite the previous equations in the compact form

r(t) = R2 + ∆2 cos(2ω t)

where

R2 =
A2

1 + A2
2

2
, ∆2 =

A2
1 − A2

2

2
, (67)

then they have reported that every initial condition fulfilling the condition

I =

(
∆

R

)4

>
4

7
(68)

yields unstable solutions. We have adopted the same initial conditions for two harmonic

oscillators and representing the solutions of the JLC equations with respect to a parallel

transported frame, already used in [5], and we have found that the equations (64) with the

frequencies (65) display stable solutions. We have solved the equations by using two different

conditions both fulfilling Eq. (68). These are

I0 =

(
∆

R

)4

=
56

81
(69)

I1 =

(
∆

R

)4

=
21

25
(70)

Let us consider the condition (69). This is obtained by plugging through Eqs.(66) the

initial condition

A1 →
1

2
, A2 →

1

10

(
9 + 2

√
14
)
, φ1 → 0, φ2 →

π

2
(71)

into the frequency (65). The time variation of ω̃2(t) is reported in Figure 1. Correspondingly,

the time dependence of the Geometric Lyapunov Exponent, λ(t), reported in Figure 2, clearly

displays the typical time dependence found for regular trajectories, that is, λ(t) ∼ 1/t.

Coming now to the second condition given in (70), again this is implemented by plugging

through Eqs.(66) the initial condition

A1 →
1

2
, A2 →

1

4

(
−5 +

√
21
)
, φ1 → 0, φ2 →

π

3
(72)

into the frequency (65).

The time variation of ω̃2(t) is now reported in Figure 3. The corresponding time variation

of the Geometric Lyapunov Exponent, λ(t), is now reported in Figure 4. Again it is found

that λ(t) decays as 1/t, as expected for regular motions.
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FIG. 1. Time dependence of the function ω̃2(t) defined in (65), for the condition (69).
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FIG. 2. Time dependence of the Geometric Lyapunov Exponent λ(t) associated to the f2(t) solution

of Eqs.(64), for the condition (69). Log-Log scale is used to evidence the 1/t decay represented by

the red line.
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FIG. 3. Time dependence of the function ω̃2(t) defined in (65), for the condition (70).
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FIG. 4. Time dependence of the Geometric Lyapunov Exponent λ(t) associated to the f2(t) solution

of Eqs.(64), for the condition (70). Log-Log scale is used to evidence the 1/t decay represented by

the red line.
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III.3. Parallel Transported Frame for a system of 3 harmonic oscillators

A relevant step forward is now obtained by considering three degrees of freedom because

now the geodesic separation vector has two nontrivial components (since the component

parallel to the velocity vector does not accelerate). Therefore, we consider 3 harmonic

oscillators described by the Hamiltonian

H(p1, p2, p3, q1, q2, q3) =
1

2
(p2

1 + p2
2 + p2

3) +
κ

2
(q2

1 + q2
2 + q2

3) (73)

and the corresponding Jacobi metric, again with W (q) := E − V (q1, q2, q3), is

gJ = 2W (q)(dq1 ⊗ dq1 + dq2 ⊗ dq2 + dq3 ⊗ dq3) (74)

The eigenvectors of the Ricci tensor Ric(ξ, ξ) are

Ẽ1 = ξ =


ξ1

ξ2

ξ3



Ẽ2 =


ξ1(q2ξ

2 + q3ξ
3)− q1(ξ2ξ2 + ξ3ξ3)

ξ2(q1ξ
1 + q3ξ

3)− q2(ξ1ξ1 + ξ3ξ3)

ξ3(q1ξ
1 + q2ξ

2)− q3(ξ1ξ1 + ξ2ξ2)



Ẽ3 =


q3ξ

2 − q2ξ
3

q1ξ
3 − q3ξ

1

q2ξ
1 − q1ξ

2



(75)

with the associated eigenvalues

Λ1 = 0

Λ2 =
Eκ

2W 3

Λ3 = − κ

4W 2

(
ξ1ξ1(−4E + 3κq2

2 + 3κq2
3)

+ ξ2ξ2(−4E + 3κq2
1 + 3κq2

3)− 6κq2q3ξ
2ξ3

+ ξ3ξ3(−4E + 3κq2
1 + 3κq2

2)− 6κq1ξ
1(q2ξ

2 + q3ξ
3)
)
,

(76)

respectively.
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With these eigenvectors the matrix for the basis transformation now is

Ω =


ξ1 ξ1(q2ξ

2 + q3ξ
3)− q1(ξ2ξ2 + ξ3ξ3) q3ξ

2 − q2ξ
3

ξ2 ξ2(q1ξ
1 + q3ξ

3)− q2(ξ1ξ1 + ξ3ξ3) q1ξ
3 − q3ξ

1

ξ3 ξ3(q1ξ
1 + q2ξ

2)− q3(ξ1ξ1 + ξ2ξ2) q2ξ
1 − q1ξ

2

 . (77)

In order to make the parallel transported reference frame orthonormal, we have to orthog-

onalise the above eigenvectors with respect to the Jacobi metric, thus for i = 1, 2, 3 we

have

n2
igJ(Ẽi, Ẽi) = 1 (78)

namely

ni =
1√

2WδαβEα
i E

β
i

(79)

These factors are

n2
1 =

1

2W (q)

n2
2 =

1

(q2
2 + q2

3)(ξ1)2 − 2q1q2ξ1ξ2 + (q2
1 + q2

3)(ξ2)2 − 2q1q3ξ1ξ3 − 2q2q3ξ2ξ3 + (q2
1 + q2

2)(ξ3)2

n2
3 =

(ξ1)2 + (ξ2)2 + (ξ3)2

((ξ1)2 + (ξ2)2)q2
3 − 2q1q3ξ1ξ3 − 2q2ξ2(q1ξ1q3ξ3) + q2

2((ξ1)2 + (ξ3)2) + q2
1((ξ2)2 + (ξ3)2)

(80)

The reference frame is composed by the normalized vectors

Ei = niẼi (81)

and by representing the Jacobi vector field as J = J iEi, we write the Jacobi-Levi Civita

equations for the three components as

d2J1

ds2
= 0

d2J2

ds2
+ Λ2J

2 = 0

d2J3

ds2
+ Λ3J

3 = 0

(82)

Finally, passing to the physical time and by using Eq. (53) we get

f̈k + ω(k)(t)f
k(t) = 0
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with, again,

ω(k)(t) = 4W (q(t))2Λk(t)−
3

4

(
Ẇ

W

)2

+
1

2

Ẅ

W
.

The results reported in the following are worked out by numerically integrating the following

equations

d2J1

dt2
− Ẇ

W

dJ1

dt
= 0

d2f 2

dt2
+ ω(2)f

2 = 0

d2f 3

dt2
+ ω(3)f

3 = 0

(83)

with the following expressions for ω(2)(t) and ω(3)(t) :

ω(2)(t) :=
2Eκ

W
− 3

4

(
Ẇ

W

)2

+
1

2

Ẅ

W

ω(3)(t) := 4W 2Λ3 −
3

4

(
Ẇ

W

)2

+
1

2

Ẅ

W

(84)

III.4. Numerical results

In Ref. [8], the alleged definitive argument to rule out the use of Jacobi metric to consis-

tently describe the stability/instability of Hamiltonian dynamics was given by considering

N decoupled harmonic oscillators. The claim was that non-vanishing fluctuations of kinetic

energy (due to the non affine parametrization of the arc length with time) entail paramet-

ric resonance in the JLC equation mimicking chaos for an integrable system. The authors

considered the solutions of this system in the form

qk(t) = cos (ωt+ θk) , k = [1, N ] , (85)

where θk = k
2πf

N
, with the phases θk distributed on a fraction f of the interval 2π. It has

been reported that the smaller f the larger fluctuation of kinetic energy and the larger the

Lyapunov exponent. The fluctuation of kinetic energy
√
σ is given in [8] by

√
σ =

(
sin(2πf)√

2N sin(2πf/N)

)
. (86)

Notice that in the N →∞, the kinetic energy fluctuation magnitude
√
σ has a non-vanishing

value, so that the authors claim that any dimension this basic integrable system would
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display non-physical instabilities. In the next Section we will argue against this claim on

the basis of an argument related with the concentration of measure at high dimension.

As shown in the preceding Section, and before in Refs.[5, 6], a consistent description of

order and chaos is obtained using the Jacobi metric and writing the JLC equation for a

parallel transported frame which is quite simple to be found for N = 2, while the first non

trivial extension is given by the N = 3 case. The JLC equation for the three dimensional

case is given by Eqs.(83). There are three principal directions of curvature, namely, the

sectional curvatures [Eqs. (76)], identified by the planes generated by the velocity vector

along a geodesic, E1 = ξ, and the parallel transported basis vectors Ek with k = 2, 3.

These sectional curvatures coincide with the eigenvalues of the operator Ric(ξ, ξ) = R(·, ξ)ξ;

one of these is obviously zero because Ric(ξ, ξ)ξ = 0 while the other two are given by

Λk = g(Ek, Ric(ξ, ξ)Ek).

In Figure 6 of Ref.[8], the largest value of λ corresponds to a kinetic energy fluctuation

level
√
σ ' 0.7 which can be obtained with different values of N and f . The Geometri-

cal Lyapunov exponent and the norm of the Jacobi vector field have been worked out by

numerically integrating Eqs.(83) for the following cases: N = 3, f = 0.05 corresponding

to
√
σ(0.05) = 0.6968; for N = 3, f = 0.1 corresponding to

√
σ(0.05) = 0.6663; and for

N = 3, f = 0.45 corresponding to
√
σ(0.45) = 0.0900. The outcomes are reported in

Figures 5 and 6, in Figures 7 and 8, and in Figures 9 and 10, respectively.

Equations (83) have been integrated with a fourth-order Runge-Kutta algorithm along

the qk(t) given by (85) and setting the phases θk uniformly distributed on a fraction f of

the interval 2π. It is well evident that the norm of the Jacobi geodesic separation vector is

always bounded, coherently with the decay with 1/t of the running value of λ(t). The JLC

equation written for the Jacobi metric and with a parallel transported frame provides the

correct result: no instability of the trajectories of an integrable system is found, contrary to

the claim of Ref.[8].

IV. CONCENTRATION OF MEASURE OF THE VOLUME OCCUPIED BY AC-

CESSIBLE CONFIGURATIONS WITH JACOBI METRIC

We know from the work in Ref.[7] that the Jacobi-Levi Civita equation, written in the

natural reference frame for a large number of degrees of freedom, appropriately works by
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FIG. 5. Comparison between the GLE (blue

curve) and 1/t (red straight line). f = 0.05,√
σ(0.05) = 0.6968.
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FIG. 6. Norm of the Jacobi vector field. f =

0.05,
√
σ(0.05) = 0.6968.
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FIG. 7. Comparison between the GLE (blue

curve) and 1/t (red straight line). f = 0.1,√
σ(0.1) = 0.6663.
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FIG. 8. Norm of the Jacobi vector field. f =

0.1,
√
σ(0.1) = 0.6663.

producing Geometrical Lyapunov exponents in both qualitative and quantitative agreement

with the standard Lyapunov exponents.

In view of the above discussed problems due to the bouncing of phase trajectories/geodesics
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FIG. 9. Comparison between the GLE (blue

curve) and 1/t (red straight line). f = 0.45,√
σ(0.45) = 0.090.
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FIG. 10. Norm of the Jacobi vector field.

f = 0.45,
√
σ(0.45) = 0.090.

on the Hill’s boundary, let us see why at large N (large meaning just a few tens) the non

physical divergencies are not found in spite of the use of the natural reference frame, in place

of the parallel transported one, and in spite of the presence of kinetic energy fluctuations.

Consider a system composed by a large number of harmonic oscillators, denote by Q =

{q1, · · · , qN} and P = {p1, · · · , pN} the conjugate momenta, with κ = 1 for simplicity, the

Hamiltonian is

H(P ,Q) =
‖P ‖2

RN

2
+
‖Q‖2

RN

2
=

N∑
i=1

1

2

(
|pi|2 + |qi|2

)
(87)

and the Jacobi metric in the Hill’s region ME is

gJ = 2

[
E −

‖Q‖2
RN

2

]
δij dq

i ⊗ dqj . (88)

The associated Riemannian volume form is

νJ =
√
det gJ dq

1 ∧ · · · ∧ dqN (89)

where the determinant of the metric is

det gJ = 2N
(
E −

‖Q‖2
RN

2

)N
. (90)

Therefore, the total volume of ME is given by the following integral

VN(E) = 2N/2
∫
ME

(
E −

‖Q‖2
RN

2

)N/2
dq1 · · · dqN (91)
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It is worth noticing a remarkable property of the Jacobi metric, its associated volume is

proportional (up to an N -dependent factor) to the microcanonical ensemble measure

ΩN,µ(E) =

∫
ME

|dp1 ∧ . . . ∧ dpN ∧ dq1 ∧ . . . ∧ dqN | (92)

where ME = {(P ,Q) ∈ T ∗ME |H(P ,Q) = E}. Due to the quadratic form of the kinetic

energy 2W = R2, the integral (92) can be rewritten as

ΩN,µ(E) =

∫
ME

A(SN−1)

∫
R≤
√

2(E−V (Q))

R(N−1)dR dq1 . . . dqN =

=
A(SN−1)

N

∫
ME

[2 (E − V (Q))]N/2 dq1 . . . dqN =
A(SN−1)

N
VN(E) ,

(93)

where A(SN−1) is the area of the unitary sphere. Let us now consider the volume of ME

given by integral VN(E) and show that it concentrates around an N−1-dimensional manifold

ΣV̄ =
{
Q ∈ME |V (Q) = V̄

}
, in other words, the overwhelming contribution to the volume

integral is given by microscopic configurations far from the boundary of ME. Although it

could be questionable to provide a statistical argument for an integrable system for which

ergodic hypothesis does not hold, the statistical averaging is intended as an averaging over

all the possible configurations compatible with the constraint H(P ,Q) = E. It is convenient

to rewrite the integral (91) with the volume element expressed in spherical coordinates

|dq1 ∧ · · · ∧ dqN | = QN−1 sinN−2(φ1) sinN−3(φ2) · · · sin(φN−2)dφ1 · · · dφN−2 dQ (94)

where Q = ‖Q‖RN =
√

2V (Q), because integrating over the angular variables one obtains

VN(E) = 2N/2A(SN−1)

∫ √2E

0

exp

[
N

2
ln

(
E − Q2

2

)
+ (N − 1) lnQ

]
dQ

= 2(N−1)/2A(SN−1)

∫ E

0

dV exp

[
N

(
1

2
ln (E − V ) +

(
1

2
− 1

N

)
lnV

)]
= 2(N−1)/2A(SN−1)EN

∫ 1

0

dx exp [−NF (x)]

(95)

where x = V/E is the relative value of the potential energy with respect to the total energy

and

F (x) = −1

2
ln (1− x)−

(
1

2
− 1

N

)
lnx . (96)

As we are interested in the limit of large N , we can apply the Laplace approximation to

evaluate the previous integral, i.e. we consider the Taylor expansion around the minimum
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with respect to x of F in the interval (0, 1),∫ 1

0

exp [−NF (x)] dx ≈ exp [−NF (x̄)]

∫ 1

0

exp

[
−(x− x̄)2

2σ2

]
dx . (97)

where σ2 = (F ′′(x̄)N)
−1
> 0. For a generic value of N , the solution of F ′(x) = 0 is

x̄ =
1

2

N − 2

N − 1
, (98)

which is actually a minimum since

F ′′(x̄) =
4(N − 1)3

N2(N − 2)
> 0 for N > 2 . (99)

This means that the largest part of the volume VN(E) is concentrated around the hyper-

surface at constant potential energy Σx̄E, a result very close to what is expected from the

virial theorem [14].

From (99) and σ2 = (F ′′(x̄)N)
−1

, it follows that the largest part of the volume (∼ 99.7%)

is concentrated around Σx̄E in the interval [x̄− 3σ, x̄+ 3σ] with

σ =
1

2
√
N


(

1− 2

N

)
(

1− 1

N

)


1/2

≈ 1

2
√
N

. (100)

This statistical argument shows that in the case of a large number of degrees of freedom the

volume of the manifold is concentrated around a submanifold constant energy hypersurface

V = E/2, far from the boundary of the Hill region where Jacobi metric is singular.

For example, withN = 100 kinetic energy fluctuations of absolute value of 10% occur with

a probability of 68% while the probability of configurations hitting the boundary (E−V = 0)

is ∼ 5.52× 10−88.

V. DISCUSSION

Even though the point raised in Ref.[8] is interesting, the conclusion put forward by the

authors is incorrect. The fluctuations of kinetic energy along a trajectory/geodesic of the

Jacobi metric associated with an integrable system, like a collection of harmonic oscillators,

are by no means responsible for the activation of parametric instability mimicking a chaotic

behaviour. When the number of degrees of freedom of a Hamiltonian system is small,
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the associated geodesics can often approach the boundary ∂ME = {q ∈ M |V (q) = E}

of the mechanical manifold ME, and, in so doing, the geodesics bounce on ∂ME. The

sharp reflection of the geodesics on the so-called Hill’s boundaries [9–12] are at the origin

of numerical instabilities which in principle could be perhaps avoided by a prohibitively

high precision of the integration algorithm for the Jacobi–Levi-Civita equation describing

the geodesic spread. However, throughout this paper we have shown that this problem can

be fixed by choosing a parallel transported coordinate system. The stability/instability of

geodesics is an intrinsic property thus in principle independent of the choice of the coordinate

system, however, not all the coordinate systems are necessarily equivalent from the point of

view of their numerical implementation and reliability of the corresponding outcomes. And,

in fact, the sharp reflection of the geodesics by the boundaries ∂ME is accounted for by a

sudden reflection of the coordinate axes of the parallel transported frames thus separating

the true geometric origin of stability/instability of geodesics from the source of numerical

artefacts related with their peculiar shape.

We have then shown that when the number of degrees of freedom increases, then the

probability of approaching the boundary of the corresponding mechanical manifold ME gets

lower and lower and, even if at finite N the kinetic energy fluctuates it does not affect the

strength of chaos measured through the outcomes of the JLC equation written for both the

Jacobi and Einsenhart metrics which are in perfect agreement, as shown in Ref.[7]. Thus

already for a few tens of degrees of freedom the JLC equation for (ME, gJ) written in natural

chart [3, 7]

d2Jk

dt2
+

1

E − V

(
∂kV δij

dqi

dt
− ∂jV

dqk

dt

)
dJ j

dt
+ [∂2

kjV ] J j

+
1

E − V

[
(∂kV )(∂jV )−

(
∂2
ijV +

(∂iV )(∂jV )

E − V

)
dqi

dt

dqk

dt

]
J j = 0 .

can be safely used, at most with the exclusion of a zero measure set of initial conditions.

For very weakly coupled harmonic oscillators and N = 128 these equations give λ as small

as 2× 10−6 .

In conclusion, the study of order and chaos of Hamiltonian flows - identified as geodesic

flows of the Jacobi metric in configuration space - is legitimate and coherent, although not
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Boltzmann prescription for the microcanonical partition function

ΩN,Bol(E) =

∫
δ(E−H(P ,Q)) |dp1∧. . .∧dpN∧q1∧. . .∧dqN | ∝

∫
[2(E − V (Q)]

N
2
−1 |dq1∧. . .∧dqN | .

This fact stands on the edge of a long standing debate about the ”correct” prescription for the

microcanonical partition function. Such a debate is out of the scope of the present work: we

just report that Boltzmann prescription gives a result more consistent with the virial theorem

in the considered case.
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