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Abstract: In this INRIA Research Report, the fundamental limits of simultaneous information
and energy transmission (SIET) are studied in the non-asymptotic block-length regime. The focus
is on the case of a transmitter simultaneously sending information to a receiver and energy to an
energy harvester through the binary symmetric channel. Given a finite number of channel uses
(latency constraint) as well as tolerable average decoding error probability and energy shortage
probability (reliability constraints), two sets of information and energy transmission rates are
presented. One consists in rate pairs for which the existence of at least one code achieving such
rates under the latency and reliability constraints is proved (achievable region). The second one
consists in a set whose complement contains the rate pairs for which there does not exist a code
capable of achieving such rates (converse region). These two sets approximate the information-
energy capacity region, which allows analyzing the trade-offs among performance, latency, and
reliability in SIET systems.
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Résumé : Dans ce rapport, les limites fondamentales de la transmission simultanée d’information
et d’énergie dans le canal binaire symétrique sont déterminées. L’ensemble des débits atteignables
de transmission d’information et d’énergie (en bits par utilisation canal et en unités d’énergie
par utilisation canal respectivement) est identifié.

Mots-clés : Canal binaire symétrique , régime non-asymptotique, transmission simultanée
d’information et d’énergie
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1 Notation
Throughout this research report, sets are denoted with uppercase calligraphic letters, e.g., X .
Random variables are denoted by uppercase letters, e.g., X, and their realizations are denoted
by lower case letters, e.g., x. The probability distribution of X is denoted PX . Whenever a
second random variable Y is involved, PXY and PY |X , denote, respectively the joint probability
distribution of (X,Y ) and the conditional probability distribution of Y given X. Let n be a
fixed natural number. An n-dimensional vector of random variables is denoted by bold upper
case letters, e.g., X , (X1, X2, . . . , Xn)T, and its corresponding realization by bold lower case
letters, e.g., x , (x1, x2, . . . , xn)T. Let x be a binary vector. Then, the number of zeros and ones
in x are denoted by N(0|x) and N(1|x), respectively. Given a binary vector y, the Hamming
distance between x and y is denoted by d(x,y) and

d(x,y) =
n∑
t=1

1{xt 6=yt}. (1)

The expected value and the variance with respect to a random variable X is denoted by EX [·]
and VX [·], respectively. The notation SX [·] denotes the third absolute moment with respect to
the random variable X. The binary logarithm and natural logarithm functions are denoted by
log and ln, respectively. The complementary cumulative distribution function Q : R → [0, 1] of
the standard Gaussian distribution is

Q(t) =
1√
2π

∫ ∞
t

exp

Å
−x

2

2

ã
dx, (2)

and the functional inverse of Q is Q−1 : [0, 1] → R. Given two integers n and t, the coefficient
of the term xt in the expansion of the binomial power (1 + x)n is denoted by

(
n
t

)
. Therefore, for

all t < 0 or t > n, it is assumed that
(
n
t

)
= 0.

2 Introduction
Simultaneous information and energy transmission (SIET) refers to systems in which at least
one transmitter aims to simultaneously send information to a set of information receivers (IRs)
and energy to a set of energy harvesters (EHs). This idea traces back to Nikola Tesla, who
proposed SIET in 1914 [1]. In modern communications systems, SIET is one of the central ideas
for wirelessly powering up devices with low-energy consumption [2].

The fundamental limits of SIET are characterized by the information-energy capacity region
[3]. This region consists in the set of all information and energy transmission rates that can be
simultaneously achieved. In general, it can be characterized in two different regimes: (i) the
asymptotic block-length regime; and (ii) the non-asymptotic block-length regime. The former
refers to a case in which the block length is assumed to be infinitely long, while the decoding
error probability (DEP) and the energy-shortage probability (ESP) are assumed to be arbitrarily
close to zero. From this perspective, the asymptotic block-length regime does not capture the
constraints on latency. Essentially, these limits apply only to the scenarios in which the duration
of the transmission is arbitrarily long. The non-asymptotic regime, on the other hand, refers to
the case in which the block length is assumed to be finite and both the DEP and the ESP are
bounded away from zero. In this case, the information-energy capacity region is parametrized
by a finite block length, an upper bound on the DEP, and an upper bound on the ESP. This
allows taking into account the constraints on latency in terms of channel uses, and reliability in
terms of DEP and ESP.

RR n° 9261
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The information energy capacity region in the asymptotic regime was characterized for point-
to-point memoryless channels in [3, 4], and [5]. Alternatively, in multi-user channels, characteri-
zations of the information-energy capacity region of multiple access channels were presented in [6]
and [7]. A characterization of this region in the context of the interference channel was presented
in [8]. In the non-asymptotic regime, however, the information-energy capacity region in point-
to-point channels is not well-investigated. A first attempt to characterize it was made in [9],
building upon the existing results on the fundamental limits on information transmission in the
non-asymptotic block-length regime in [10] and [11]. In multi-user channels, a characterization
of the information-energy capacity region is unknown.

The focus of this reseqrc is on a system in which a transmitter simultaneously sends infor-
mation to an information receiver and energy to an energy harvester through binary symmetric
channels. The main contribution is characterizing the information-energy capacity region. This
characterization is achieved by providing a set that is confined by the information-energy capac-
ity region and another set that contains it. The inner set contains the information and energy
transmission rates for which there always exists at least one code achieving such rates (achiev-
able region). The outer set is a set whose complement contains the information and energy
transmission rates that cannot be achieved by any code (converse region).

The report is organized as follows. Section 3 formulates the problem and introduces the notion
of the information-energy capacity region in the non-asymptotic block-length regime. Section 4
presents the main results. Section 5 concludes this work.

3 System Model
Consider a three-party communication system in which a transmitter aims at simultaneously
sending information to an IR and energy to an EH through a binary symmetric channel. Such a
system can be modeled by a random transformation

({0, 1}n, {0, 1}n × {0, 1}n, PY Z|X), (3)

where n ∈ N is the block length. Given an input x
4
= (x1, x2, . . . , xn) ∈ {0, 1}n, the outputs

y
4
= (y1, y2, . . . , yn) ∈ {0, 1}n and z

4
= (z1, z2, . . . , zn) ∈ {0, 1}n are observed at the IR and at

the EH, respectively, with probability

PY Z|X(y, z|x) =
n∏
t=1

PY |X(yt|xt)PZ|X(zt|xt), (4)

where for all (x, y, z) ∈ {0, 1}3,

PY |X(y|x)=α11{x 6=y} + (1− α1)1{x=y}, (5)
PZ|X(z|x)=α21{x 6=z} + (1− α2)1{x=z}, (6)

and α1 ∈ [0, 1
2 ) and α2 ∈ (0, 1

2 ). In this context, two tasks are carried out by the transmitter:
(a) the information transmission task; and (b) the energy transmission task.

3.1 Information Transmission Task
The purpose of this task is to send a message from the transmitter to the IR. The message index
is a realization of a random variable uniformly distributed in {1, 2, . . . ,M}, with M ∈ N. To
carry out this task within n channel uses, the transmitter uses an (n,M)-code.

RR n° 9261
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Definition 1 ((n,M)-code) An (n,M)-code for the random transformation in (3) is a system

{(u(1),D1), (u(2),D2), . . . , (u(M),DM )} , (7)

where for all (i, j) ∈ {1, 2, . . . ,M}2, with i 6= j,

u(i) , (u1(i), u2(i), . . . , un(i)) ∈ {0, 1}n, (8a)
Di ∩ Dj = ∅, and (8b)
M⋃
i=1

Di ⊆ {0, 1}n. (8c)

Given the system in (7), for all i ∈ {1, 2, . . . ,M}, to transmit the message with index i, the
transmitter inputs the symbol ut(i) to the channel at time t ∈ {1, 2, . . . , n}. The IR observes
the output yt at the end of channel use t. At the end of n channel uses, the IR decides that the
symbol i was transmitted if it satisfies the rule

(y1, y2, . . . , yn) ∈ Di. (9)

The decoding error probability associated with the transmission of message index i, denoted by
λi ∈ [0, 1], is

λi , Pr [Y ∈ Dc
i | X = u(i)] , (10)

where the probability is with respect to the marginal PY |X , and Dc
i represents the complement

of Di with respect to {0, 1}n. The average probability of error, denoted by λ, is

λ ,
1

M

M∑
m=1

λm. (11)

Information transmission is said to be reliable if the average or maximum DEP is controlled.
This leads to the following refinements of Definition 1.

Definition 2 ((n,M, ε)-code with maximum DEP) Let ε ∈ [0, 1] be fixed. An (n,M)-code
that satisfies λi < ε, for all i ∈ {1, 2, . . . ,M}, is said to be an (n,M, ε)-code with maximum DEP.

Definition 3 ((n,M, ε)-code with average DEP) Let ε ∈ [0, 1] be fixed. An (n,M)-code
that satisfies λ < ε is said to be an (n,M, ε)-code with average DEP.

Note that any (n,M, ε)-code with maximum DEP is also a (n,M, ε)-code with average DEP.
Nonetheless, the converse is not necessarily true.

3.2 Energy Transmission Task
Let g : {0, 1} → R+ be a positive real-valued function that determines the energy harvested from
the channel output symbols. Let

b0
4
= g(0), and (12a)

b1
4
= g(1) (12b)

be the energy harvested when the channel outputs at the EH are 0 and 1, respectively. At
the end of n channel uses, the average energy delivered to the EH by the channel outputs
z = (z1, z2, . . . , zn) is given by the function Bn : {0, 1}n → R+, with

Bn(z),
1

n

n∑
t=1

g(zt) = (b0 − b1)
N(0|z)

n
+ b1. (13)

RR n° 9261
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The objective of the transmitter is to ensure that energy is harvested at the EH at a rate not
smaller than b energy units per channel use, with b > 0. An energy-shortage event occurs when
the energy harvested at the EH is less than b at the end of the transmission. The case in which
b0 = b1 is trivial, since for all channel outputs z ∈ {0, 1}n, it holds that Bn(z) = b0 = b1. That
is, the average energy rate at the input of the EH is independent of the codebook, and either
an energy shortage is never observed if b > b0 = b1; or the the system is always under energy
shortage if b < b0 = b1. Hence, to avoid these trivial cases, the following assumption is adopted
without loss of generality:

b1 < b0. (14)

The probability of energy-shortage when transmitting the message with index i ∈ {1, 2, . . . ,M}
is

θi , Pr [Bn(Z) < b | X = u(i)] , (15)

where the probability is with respect to the marginal PZ|X . The average probability of energy-
shortage, denoted by θ, is

θ ,
1

M

M∑
i=1

θi. (16)

Note that for all z ∈ Zn, Bn(z) is bounded according to

b1 6 Bn(z) 6 b0. (17)

The inequalities in (17) imply that there exists a case in which energy transmission might occur
with zero (maximal or average) ESP for all energy transmission rates b 6 b1. This is because
the event Bn(Z) < b1 is observed with zero probability. Alternatively, any energy transmission
rate b > b0 cannot be achieved with an average or maximal energy-shortage probability strictly
smaller than one.

Energy transmission is said to be reliable if the average or maximum ESP is controlled. This
leads to the following refinements of Definition 1.

Definition 4 ((n,M, ε, δ, b)-code with maximum ESP) Let δ ∈ [0, 1] and b ≥ 0 be fixed. An
(n,M, ε)-code that satisfies θi < δ, for all i ∈ {1, 2, . . . ,M}, is said to be an (n,M, ε, δ, b)-code
with maximum ESP.

Definition 5 ((n,M, ε, δ, b)-code with average ESP) Let δ ∈ [0, 1] and b ≥ 0 be fixed. An
(n,M, ε)-code that satisfies θ < δ is said to be an (n,M, ε, δ, b)-code with average ESP.

Note that any (n,M, ε, δ, b)-code with maximum ESP is also a (n,M, ε, δ, b)-code with average
ESP. Nonetheless, the converse is not necessarily true.

4 Fundamental Limits
The non-asymptotic fundamental limits of the system described in Section 3 are described by
the notion of information-energy capacity region. That is, the set of all information and energy
transmission rates that are achievable within a given block length subject to an average or
maximum DEP and an average or maximum ESP. Note that an average or maximum DEP
constraint leads to different definitions of the information-energy capacity region, and so does an
average or maximum ESP constraint.

RR n° 9261
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Definition 6 (Information-Energy Capacity Region) The information-energy capacity re-
gion C(n, ε, δ) with average or maximum DEP and average or maximum ESP of the random trans-
formation in (3) is the set of all pairs

Ä
log2(M)

n , b
ä
for which there exists an (n,M, ε, δ, b)-code

with average or maximum DEP and average or maximum ESP, respectively.

4.1 Bounds on the Energy Transmission Rate
This section provides some upper-bounds on the energy transmission rate for any given (n,M, ε, δ, b)-
code with either maximum or average ESP constraints. These bounds are expressed in terms of
the parameters of the code (Definition 1), the parameters of the random transformation in (3)
and the empirical input distributions induced by the code.

Definition 7 (Empirical Distributions) Consider an (n,M)-code described by the system in
(7). For all i ∈ {1, 2, . . . ,M}, the empirical probability distribution of the channel input symbols
induced by the codeword u(i) is

P̄
(i)
X (0)

4
=

1

n
N(0|u(i)) = 1− P̄ (i)

X (1), (18)

The empirical distribution of the channel input symbols jointly induced by all codewords is denoted
by

P̄X(0)
4
=

1

nM

M∑
i=1

N(0|u(i)) = 1− P̄X(1). (19)

Often, the vector
Ä
P̄

(i)
X (0), P̄

(i)
X (1)

ä
is referred to as the type of the codeword u(i) [12].

Using the empirical distributions in Definition 7, some upper bounds on the energy transmis-
sion rate can be described. These upper bounds are obtained from the analysis of the ESP in (15).
The following proposition provides the exact value of the ESP for any given (n,M, ε, δ, b)-code.

Proposition 1 (Ground-Truth ESP) Consider an (n,M, ε, δ, b)-code described by the system
in (7) for the random transformation in (3) satisfying (14). Then, for all i ∈ {1, 2, . . . ,M}, the
ESP in (15) satisfies

θi=

⌊
n(b−b1)

b0−b1

⌋∑
k=0

k∑
s=0

Ç
N (0|u(i))

s

åÇ
N (1|u(i))

k − s

å
(1− α2)N(1|u(i))−k+2sα

N(0|u(i))+k−2s
2 . (20)

Proof: The proof of Proposition 1 is presented in Appendix B.
The equality in (20) together with Definition 4 and Definition 5 provide the first bounds on

the energy transmission rate of any given code. The following corollary describes these bounds.

Corollary 1 Consider an (n,M, ε, δ, b)-code described by the system in (7) for the random trans-
formation in (3) satisfying (14). Then, subject to a maximal ESP constraint, it holds that,

b < B̃ (21)

where B̃ is the largest real that satisfies for all i ∈ {1, 2, . . . ,M},ö
n(B̃−b1)

b0−b1

ù∑
k=0

k∑
s=0

Ç
N (0|u(i))

s

åÇ
N (1|u(i))

k − s

å
(1− α2)N(1|u(i))−k+2sα

N(0|u(i))+k−2s
2 < δ, (22)
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and subject to an average ESP constraint, the energy rate b satisfies

b < B̆ (23)

where B̆ is the biggest positive real that satisfies

1

M

M∑
i=1

ö
n(B̆−b1)

b0−b1

ù∑
k=0

k∑
s=0

Ç
N (0|u(i))

s

åÇ
N (1|u(i))

k − s

å
(1− α2)N(1|u(i))−k+2sα

N(0|u(i))+k−2s
2 < δ. (24)

The bounds in Corollary 1 are not in closed-form and thus, are difficult to calculate. Moreover,
they bring very little insight to obtain a bound on the energy rate b at which an (n,M, ε, δ, b) code
can transmit energy. Therefore, it would be desirable to approximate the individual ESP in order
to obtain an upper bound on the energy transmission rate in a closed form expression, probably,
at the expense of some precision. The following proposition provides some approximations on
the ESP using tools from large deviations theory [13].

Proposition 2 Consider an (n,M, ε, δ, b)-code described by the system in (7) for the random
transformation in (3) satisfying (14). Then, for all i ∈ {1, 2, . . . ,M}, the ESP in (15) satisfies

θi >1− exp

(
− n

(
b−b1
b0−b1 −

(
(1−2α2) P̄

(i)
X (0)+α2

))2

b−b1
b0−b1 +

(
(1−2α2) P̄

(i)
X (0)+α2

) )
, (25)

and

θi <exp

(
− n

(
b−b1
b0−b1 −

(
(1−2α2) P̄

(i)
X (0)+α2

))2

2
(

(1−2α2) P̄
(i)
X (0)+α2

) )
. (26)

Proof: The proof of Proposition 2 is presented in Appendix C.
Using Proposition 2, the energy transmission rate of an (n,M, ε, δ, b)-code can be upper-bounded.

Proposition 3 (Large Deviation Bound) Consider an (n,M, ε, δ, b)-code described by the
system in (7) for the random transformation in (3) satisfying (14). Then, subject to a max-
imal ESP constraint, it holds that for all i ∈ {1, 2, . . . ,M},

b<(b0 − b1)
(

(1−2α2) P̄
(i)
X (0)+α2

)
+b1 +

b0 − b1√
n

√
−2
Ä
(1−2α2) P̄

(i)
X (0)+α2

ä
log(1− δ)

−b0 − b1
n

log(1− δ). (27)

and subject to an average ESP constraint, the energy rate b satisfies

b < B̂, (28)

where B̂ is the biggest positive real that satisfies

1− δ < 1

M

M∑
i=1

exp

(
−n

(
b−b1
b0−b1−

(
(1−2α2) P̄

(i)
X (0)+α2

))2

b−b1
b0−b1 +

(
(1−2α2) P̄

(i)
X (0)+α2

) )
. (29)
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Proof: The proof of Proposition 3 is presented in Appendix D.
Another approximation to the ESP in (15) is obtained from the Berry-Esseen theorem (Theorem
3 in Appendix A). The following lemma presents this approximation.

Lemma 1 Consider an (n,M, ε, δ, b)-code described by the system in (7) for the random trans-
formation in (3) satisfying (14). Then, for all i ∈ {1, 2, . . . ,M}, the ESP in (15) satisfies

θi≥Q

Ñ
n
Ä
(1− 2α2)P̄

(i)
X (0) + α2 − b−b1

b0−b1

ä√
nα2(1− α2)

é
−
n
[
α2(1− α2)3 + (1− α2)α3

2

]
2 (nα2(1− α2))

3/2
(30)

and

θi≤Q

Ñ
n
Ä
(1− 2α2)P̄

(i)
X (0) + α2 − b−b1

b0−b1

ä√
nα2(1− α2)

é
+
n
[
α2(1− α2)3 + (1− α2)α3

2

]
2 (nα2(1− α2))

3/2
. (31)

Proof: The proof of Lemma 1 is presented in Appendix E.
Using Lemma 1, the energy transmission rate of an (n,M, ε, δ, b)-code can be upper-bounded.

Proposition 4 (Gaussian Approximation Bound) Consider an (n,M, ε, δ, b)-code described
by the system in (7) for the random transformation in (3) satisfying (14). Then, subject to a
maximal ESP constraint, it holds that for all i ∈ {1, 2, . . . ,M},

b 6 (b0 − b1)
(

(1−2α2) P̄
(i)
X (0)+α2

)
+b1−

 
(b0 − b1)2α2(1−α2)

n
Q−1

(
δ+

(1−α2)2+α2
2

2
√
nα2(1−α2)

)
, (32)

and subject to an average ESP constraint, the energy rate b satisfies

b 6 B̂, (33)

where B̂ is the biggest positive real that satisfies

1

M

M∑
i=1

Q

(
n
Ä
(1− 2α2)P̄

(i)
X (0) + α2 − B̂−b1

b0−b1

ä√
nα2(1− α2)

)
− (1− α2)2 + α2

2

2
√
nα2(1− α2)

< δ. (34)

Proof: The proof of Proposition 4 is presented in Appendix F.
Note that the upper bound in (32), is valid when the following condition is satisfied

0 < δ +
(1− α2)2 + α2

2

2
√
nα2(1− α2)2

< 1, (35)

given that the domain of the function Q−1 is (0, 1). In general, the bounds presented in Propo-
sition 4 are tighter than those presented in Proposition 3 for small values of the block length
n. Nonetheless, the bounds in Proposition 3 are easier to calculate and perform equally well for
large n.

Note that the input distribution that achieves the largest information transmission rate,
without any energy constraint, is the uniform distribution [10]. That is, P̄ (i)

X (0) = 1−P̄ (i)
X (1) = 1

2 .
Hence, Proposition 4 provides an outer bound on the energy rate that can be transmitted by
an (n,M, ε)-code that possesses an empirical input distribution that is uniform. The following
corollary describes this observation.

RR n° 9261
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Corollary 2 Consider an (n,M, ε, δ, b)-code for the random transformation in (4) satisfying
(14). Assume that such a code exhibits an information-rate optimal empirical distribution. Then,
it follows that b < b(n, δ), with b : N× [0, 1]→ R, such that

b(n, δ)
4
=
b0 + b1

2
−

 
(b0 − b1)2α2(1− α2)

n
Q−1

(
δ +

(1− α2)2 + α2
2

2
√
nα2(1− α2)

)
. (36)

Essentially, Corollary 2 determines a threshold on the energy rate b beyond which an (n,M, ε, δ, b)-
code, if it exists, exhibits a conflict between the energy transmission task and the information
transmission task. More specifically, if there exists an (n,M, ε, δ, b)-code whose energy transmis-
sion rate b is beyond the threshold b in Corollary 2, it exhibits an empirical input distribution
for which P̄X(0) > P̄X(1). This implies than a zero is transmitted more often than a one, which
is not information-rate optimal.

Proposition 4 also provides upper bounds on the largest energy rate that can be transmitted
by any (n,M, ε, δ, b)-code. Note that the largest energy-transmission rate is achieved by a zero
information-rate code whose codewords contain only zeros, i.e., P̄X(0) = 1 − P̄X(1) = 1. The
following corollary describes this observation.

Corollary 3 Consider an (n,M, ε, δ, b)-code for the random transformation in (3) satisfying
(14). Then, it follows that: b < b̄(n, δ), with b̄ : N× [0, 1]→ R, such that

b̄(n, δ)
4
= (1− α2)b0 + α2b1 −

 
(b0 − b1)2α2(1− α2)

n
Q−1

(
δ +

(1− α2)2 + α2
2

2
√
nα2(1− α2)

)
. (37)

From Corollary 2 and Corollary 3, it might be expected that the energy transmission task and
the information transmission task exhibit a conflicting interaction. The following section explores
this particular interaction.

Let ρ∗ : [b1, b0]→ [0, 1] be defined as

ρ∗(b) , min
(
1, ρ+(b)

)
, (38)

with ρ+ : [b1, b0]→ R+ such that

ρ+(b) ,
(b− b1)− α2(b0 − b1)

(b0 − b1)(1− 2α2)
+

√
α2(1− α2)√
n(1− 2α2)

Q−1

(
δ +

(1− α2)2 + α2
2

2
√
nα2(1− α2)

)
.

Note that for a fixed b > 0, ρ+(b) describes the empirical input distribution that saturates the
inequality in (32). The following corollary from Proposition 4 highlights this observation.

Corollary 4 Consider an (n,M, ε, δ, b)-code described by the system in (7) for the random trans-
formation in (3) satisfying (14). Then, subject to a maximal energy-shortage probability con-
straint, for all i ∈ {1, 2, . . . ,M}, the empirical input distribution P̄ (i)

X satisfies

P̄
(i)
X (0)>ρ∗(b), (39)

where ρ∗(b) is defined in (38).

Corollary 4 leads to interesting conclusions by noticing that ρ∗(b) is a lower bound on the
fraction of zeros in each codeword (maximal energy-shortage probability) when energy is trans-
mitted at an average energy rate b. This is natural from the perspective of the assumption in
(14), which implies that the symbol zero carries more energy that the symbol one.

An interesting class of codes is that of homogeneous codes. A formal definition of these codes
is hereunder.
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Definition 8 (Homogeneous Codes) A code C described by the system in (7) is said to be
homogeneous if the following conditions hold:

N(0|u(1)) = N(0|u(2)) = . . . = N(0|u(M)) and (40)
N(1|u(1)) = N(1|u(2)) = . . . = N(1|u(M)). (41)

The interest in this class of codes stems from the fact that an average ESP constraint or a
maximum ESP constraint leads to the same fundamental limits on the energy rate.

Corollary 5 Consider an (n,M, ε, δ, b)-code described by the system in (7) for the random trans-
formation in (3) satisfying (14), and assume it is a homogeneous code. Then, the bounds on the
energy rate b subject to a maximum ESP and average ESP are identical. That is, the bound in
(21) is identical to (23); the one in (27) is identical to (28); and the one in (32) is identical to
(33).

4.2 Bounds on the Information Transmission Rate
Given an (n,M, ε, δ, b)-code, the following lemma describes a bound on M , which does not take
into account the decoding error probability ε and thus, it might be loose. However, it plays an
important role when b(n, δ) < b < b̄(n, δ).

Lemma 2 Consider an (n,M, ε, δ, b)-code for the random transformation in (3) satisfying (14).
Then, subject to a maximal energy-shortage probability constraint, it holds that

M 6

Ç
n

dnρ∗(b)e

å
2(n−dnρ∗(b)e), (42)

where ρ∗(b) is defined by (38).

Proof of Proposition 2: Corollary 4 provides an approximation to the minimum number of
zeros in each codeword in any given (n,M, ε, δ, b)-code with maximal energy-shortage probability.
That is, for all i ∈ {1, 2, . . . ,M} if follows that

N(0|u(i)) > dnρ∗(b)e. (43)

This immediately provides an upper-bound on M given that all codewords must contain at least
dnρ∗(b)e zeros. Hence, the right-hand side of (42) is the maximum number of codewords of
length n for which at least dnρ∗(b)e symbols are zeros. This completes the proof.

Note that ρ∗(b) is monotonically increasing with the energy rate b. Interestingly, when ρ∗(b) ∈
( 1

2 , 1], the right-hand sides of (42) is monotonically decreasing with b. This highlights the existing
trade-off between the information transmission task and the energy transmission task. That is, in
the regime in which ρ∗(b) ∈ ( 1

2 , 1], increasing the energy rate would necessarily imply decreasing
the information rate.

4.3 Information-Energy Capacity Region
Given a fixed block length n and a pair (ε, δ) ∈ [0, 1]2, the information-energy capacity region
C(n, ε, δ) (Definition 6) of the random transformation in (3) subject to (14) is approximated by
a set C(n, ε, δ) that is contained in C(n, ε, δ) (Theorem 1) and another set C(n, ε, δ) that contains
C(n, ε, δ) (Theorem 2). That is,

C(n, ε, δ) ⊆ C(n, ε, δ) ⊆ C(n, ε, δ). (44)
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This approximation is obtained by considering an average DEP constraint and a maximum
ESP constraint. The following notation is used to describe the set C(n, ε, δ). Let functions
φ : N× [0, 1]→ [0, 1], and χ : R+ × [0, 1]→ [0, 1] be defined as,

φ(m, ρ)
4
=min

{
1,
(
m−1

) n∑
`0=0

n∑
`1=0

min{`0,`1}∑
`2=0

`0+`1−2`2∑
`3=0

`3∑
`4=0

Ç
n

`0

åÇ
`0
`2

åÇ
n− `0
`1 − `2

åÇ
`0
`4

åÇ
n− `0
`3 − `4

å
·α`0+`1−2`2

1 (1− α1)n−`0−`1+2`2ρ`3+`0−2`4+`1(1− ρ)2n−(`3+`0−2`4+`1)

}
, (45)

and

χ(s, ρ)
4
=

n∑
t=0

Ç
n

t

å
ρt(1− ρ)n−tQ

Ñ
(1− 2α2)t+ n

Ä
α2 − s−b1

b0−b1

ä√
nα2(1− α2)

é
+

(1− α2)2 + α2
2

2
√
nα2(1− α2)

. (46)

Let the functions M?
1 : [0, 1]→ N, and B? : [0, 1]→ R+ be defined as

M?
1 (ρ)

4
=

{
argmax
m∈N

φ(m, ρ)

s.t. φ(m, ρ) < ε
, (47)

and

B?(ρ)
4
=

{
argmax
s∈R+

χ(s, ρ)

s.t. χ(s, ρ) < δ
. (48)

Note that functions φ in (45), χ in (46), M?
1 in (47), and B? in (48) depend on the block length

n, the parameters of the random transformation in (3), i.e., α1 and α2, and the energy harvested
from symbols 0 and 1, i.e., b0 and b1 in (12). Nonetheless, none of these parameters is put as
an argument of these functions given that they remain constant during this analysis. Using this
notation, given a fixed block length n and a pair (ε, δ) ∈ [0, 1]2, the following theorem introduces
the set C(n, ε, δ), that is contained in the information-energy capacity region C(n, ε, δ).

Theorem 1 The information-energy capacity region C(n, ε, δ) of the random transformation in
(3) subject to (14), contains the set

C(n, ε, δ) 4=
ß

(M, b) ∈ N×R+ : ∃ρ ∈ [0, 1],M < M?
1 (ρ)and b < B∗(ρ)

™
, (49)

where M?
1 : [0, 1]→ N is defined in (47) and B? : [0, 1]→ R+ is defined in (48).

Proof of Theorem 1: The proof of Theorem 1 is presented in Appendix G.
The description of the set C(n, ε, δ) uses the following notation. Consider the function γ : [0, 1]2 →
[0, 1], such that

γ(ρ, q)=
n∑

`0=0

n∑
`1=0

min{`0,`1}∑
`2=0

Ç
n

`0

åÇ
`0
`2

åÇ
n− `0
`1 − `2

å
ρ`1(1− ρ)n−`1q`0 (1− q)n−`0 (50)Å

1{
(`0+`1−2`2) log

α1
1−α1

+`0 log 1−q
q >L

} + λ1{
(`0+`1−2`2) log

α1
1−α1

+`0 log 1−q
q =L

}ã
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where λ ∈ [0, 1] and L ∈ R are chosen to satisfy

1− ε=
n∑

`0=0

n∑
`1=0

min{`0,`1}∑
`2=0

Ç
n

`0

åÇ
`0
`2

åÇ
n− `0
`1 − `2

å
(1− α1)n−(`0+`1−2`2)α`0+`1−2`2

1 ρ`1(1− ρ)n−`1

·
Å
1{

(`0+`1−2`2) log
α1

1−α1
+`0 log 1−q

q >L
} + λ1{

(`0+`1−2`2) log
α1

1−α1
+`0 log 1−q

q =L
}ã .

Consider also the function Γ : [b1, b0]→ R+ defined as

Γ(b) , sup
ρ>ρ∗(b)

inf
q∈[0, 12 ]

1

γ(ρ, q)
. (51)

Finally, let also B+ ∈ R+ be defined as,

B+ , (1− α2)b0 + α2b1 −

 
(b0 − b1)2α2(1− α2)

n
·Q−1

(
δ +

(1− α2)2 + α2
2

2
√
nα2(1− α2)

)
. (52)

Using this notation, given a fixed block length n and a pair (ε, δ) ∈ [0, 1]2, the following theorem
introduces a set, denoted by C̄(n, ε, δ), that contains the information-energy capacity region
C(n, ε, δ).

Theorem 2 The information-energy capacity region C(n, ε, δ) of the random transformation in
(3) subject to (14), is contained in the set

C̄(n, ε, δ) 4=
{

(M, b) ∈ N×R+ : M < Γ(b) and b < B+
}
, (53)

where Γ : R+ → [0, 1] is defined in (51) and B+ is defined in (52).

Proof: The proof of Theorem 2 is presented in Appendix H.

5 Conclusions
In this research report, the fundamental limits of SIET have been studied under the assumption
that the transmission occurs during a finite number of channel uses at the expense of strictly
positive DEP and ESP. From this perspective, a non-asymptotic fundamental limit has been
introduced: the information-energy capacity region, that is, the largest set of jointly achievable
energy and information rates. The focus has been on the case of one transmitter, one IR and
one EH communicating via binary symmetric memoryless channels. In this case, given a finite
block length, a DEP, and an ESP, four scenarios have been observed depending on whether an
average or maximal constraint is imposed on the DEP and the ESP. These results have revealed
the competitive interaction between the information transmission task and energy transmission
task. In particular, a certain regime in which increasing the information rate necessarily implies
decreasing the energy rate and vice versa has been identified.

Appendices
A Preliminary Results
This section introduces some auxiliary results that play a key role in the following appendices.
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Definition 9 (Moment Generating Function) Given a random variable X, its moment gen-
erating function is denoted by φX : R→ R and

φX(λ) = EX
[
eλX

]
. (54)

The following lemmas highlight some properties of the moment generating function.

Lemma 3 Let Z =
∑n
i=1Xi be a random variable formed by the sum of n independent random

variables X1, X2, . . . , Xn. Then , for all λ ∈ R,

φZ(λ) =
n∏
t=1

φXt(λ). (55)

Proof:

φZ(λ) = EZ
[
eλZ
]

(56)

= EX1,X2,...,XN

î
eλ
∑n

t=1
Xt
ó

(57)

= EX1,X2,...,XN

n∏
t=1

eλXt (58)

=
n∏
t=1

EXt
[
eλXt

]
(59)

=
n∏
t=1

φXt(λ). (60)

Lemma 4 Let X be a Bernoulli random variable with PX(1) = 1 − PX(0) = ρ. Then, for all
λ ∈ R

φX(λ) = 1 + ρ
(
eλ − 1

)
. (61)

Proof:

EX
[
eλX

]
= PX(1)eλ + PX(0) (62)
= ρeλ + (1− ρ) (63)
= 1 + ρ

(
eλ − 1

)
. (64)

Theorem 3 (Berry-Esseen Theorem, [14]) Let X1, X2, . . ., Xn be independent random
variables such that for all t ∈ {1, 2, . . . , n},

µt= EXt [Xt] , (65)
σ2
t= EXt

[
X2
t

]
− µ2

t , (66)

φt= EXt

î
|Xt − µt|3

ó
. (67)

Then, it holds for all λ ∈ R that∣∣∣∣∣Pr

[
n∑
t=1

Xt − µt > σλ

]
−Q(λ)

∣∣∣∣∣ 6 c0φ

σ3
, (68)
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where

µ=
n∑
t=1

µt, σ2 =
n∑
t=1

σ2
t , and φ =

n∑
t=1

φt. (69)

The best value of the constant c0 is c0 = 0.4748 [15].

B Proof of Proposition 1
Consider the definition of the ESP in (15). Hence, for all i ∈ {1, 2, . . . ,M},

θi=Pr

[
n∑
t=1

1{Zt=0}<

Å
n(b− b1)

b0 − b1

ã ∣∣∣∣∣X = u(i)

]
. (70)

Assume that the Transmitter uses an (n,M, ε, δ, b)-code and it aims at sending the message index
i ∈ {1, 2, . . . ,M}. Then, for all t ∈ {1, 2, . . . , n}, the random variable 1{Zt=0} in (70) follows a
Bernoulli distribution and the probability of a “one” is

PZ|X(0|ut(i)) =

ß
α2 if ut(i) = 1
1− α2 if ut(i) = 0

. (71)

This implies that the random variable
∑n
t=1 1{Zt=0} can be expressed as the sum of two random

variables with binomial distributions B (N(0|u(i)), 1− α2) and B (N(1|u(i)), α2), respectively.
That is,

n∑
t=1

1{Zt=0} =
∑

t∈{m:um(i)=0}

1{Zt=0} +
∑

t∈{m:um(i)=1}

1{Zt=0}. (72)

Hence,

θi=

⌊
n(b−b1)

b0−b1

⌋∑
m=0

Pr

[ ∑
t∈{m:um(i)=0}

1{Zt=0} +
∑

t∈{m:um(i)=1}

1{Zt=0} = m

∣∣∣∣∣X = u(i)

]

=

⌊
n(b−b1)

b0−b1

⌋∑
k=0

k∑
s=0

Pr

[ ∑
t∈{m:um(i)=0}

1{Zt=0} = s

∣∣∣∣∣X = u(i)

]

Pr

[ ∑
t∈{m:um(i)=1}

1{Zt=0} = k − s
∣∣∣∣∣X = u(i)

]

=

⌊
n(b−b1)

b0−b1

⌋∑
k=0

k∑
s=0

Ç
N (0|u(i))

s

å
(1− α2)sα

N(0|u(i))−s
2

Ç
N (1|u(i))

k − s

å
(1− α2)N(1|u(i))−k+sαk−s2

=

⌊
n(b−b1)

b0−b1

⌋∑
k=0

k∑
s=0

Ç
N (0|u(i))

s

åÇ
N (1|u(i))

k − s

å
(1− α2)N(1|u(i))−k+2sα

N(0|u(i))+k−2s
2 , (73)

which completes the proof.
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C Proof of Proposition 2
For all i ∈ {1, 2, . . . ,M}, let Vi be the following random variable:

Vi =
∑

t∈{m:um(i)=0}

1{Zt=0} +
∑

t∈{m:um(i)=1}

1{Zt=0}. (74)

From Lemma 3 and Lemma 4, the following holds,

φVi(λ) =
n∏

t∈{m:um(i)=0}

1 + (1− α2)(eλ − 1)
n∏

t∈{m:um(i)=1}

1 + α2(eλ − 1) (75)

≤
n∏

t∈{m:um(i)=0}

exp
(
(1− α2)(eλ − 1)

) n∏
t∈{m:um(i)=1}

exp
(
α2(eλ − 1)

)
(76)

≤ exp
(
N(0|u(i))(1− α2)(eλ − 1) +N(1|u(i))α2(eλ − 1)

)
(77)

= exp
(
(eλ − 1) (N(0|u(i))(1− α2) +N(1|u(i))α2)

)
(78)

= exp
Ä
n(eλ − 1)

Ä
P̄

(i)
X (0)(1− α2) + (1− P̄ (i)

X (0))α2

ää
(79)

= exp
Ä
n(eλ − 1)(P̄

(i)
X (0)(1− 2α2) + α2)

ä
, (80)

where (76) follows from the fact that for all x ∈ R, 1 + x ≤ ex. In order to ease the notation, let
µ be

µ
4
= n
Ä
P̄

(i)
X (0)(1− 2α2) + α2

ä
. (81)

From Markov’s inequality, it holds that for all (λ, γ) ∈ R2,

Pr [Vi > (1 + γ)µ] = Pr
î
eλVi > eλ(1+γ)µ

ó
(82)

≤
EVi

[
eλVi

]
eλ(1+γ)µ

(83)

=
φVi(λ)

eλ(1+γ)µ
(84)

≤
exp

(
(eλ − 1)µ

)
eλ(1+γ)µ

(85)

= exp
(
(eλ − 1)µ− λ(1 + γ)µ

)
(86)

= exp
(
µ(eλ − 1− λ(1− γ))

)
. (87)

Note that the choice of λ can be improved to tight the bound in (87). Note that,

d

dλ
eλ − (1 + γ)λ = eλ − (1 + γ). (88)

Then, the optimal λ is the solution to eλ − (1 + γ) = 0. That is, λ = log(1 + γ). This implies:

Pr [Vi > (1 + γ)µ] ≤ exp (µ (1 + γ − 1− (1 + γ) log(1 + γ))) (89)
= exp (µ (γ − (1 + γ) log(1 + γ))) (90)

=

Ç
eλ

(1 + γ)(1+γ)

åµ
(91)

< exp

Å
− γ2

2 + γ
µ

ã
, (92)
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where (92) follows from the fact that

log

ÇÇ
eλ

(1 + γ)(1+γ)

åµå
= µ log(exp γ)− µ(1 + γ) log(1 + γ) (93)

≤ µ
Å
γ − 2(1 + γ)γ

2 + γ

ã
(94)

= µ

Å
− γ2

2 + γ

ã
, (95)

and the inequality in (94) is due to the fact that for all x > 0, log(1 + x) ≥ x
1+ x

2
. Hence, it

follows that

Pr

[
n∑
t=1

1{Zt=0} >
n(b− b1)

b0 − b1

]

= Pr

[
n∑
t=1

1{Zt=0} >

Ñ
1 +

Ñ
b− b1Ä

P̄
(i)
X (0)(1− 2α2) + α2

ä
(b0 − b1)

é
− 1

é
n
Ä
P̄

(i)
X (0)(1− 2α2) + α2

ä
(b0 − b1)

]
(96)

≤ exp

á
−n
Å

b−b1(
P̄

(i)

X
(0)(1−2α2)+α2

)
(b0−b1)

− 1

ã2 Ä
P̄

(i)
X (0)(1− 2α2) + α2

ä
b−b1(

P̄
(i)

X
(0)(1−2α2)+α2

)
(b0−b1)

ë
(97)

= exp

Ñ
−n

Ä
b−b1
b0−b1 −

Ä
P

(i)
X (0)(1− 2α2) + α2

ää2Ä
b−b1
b0−b1 +

Ä
P

(i)
X (0)(1− 2α2) + α2

ää é . (98)

This completes the proof of (25).
On the other hand, from Markov’s inequality, it holds that for all (λ, γ) ∈ R2,

Pr [Vi < (1− γ)µ] = Pr
î
e−λVi > e−λ(1−γ)µ

ó
(99)

≤
EVi

[
e−λVi

]
eλ(1−γ)µ

(100)

=
φVi(−λ)

e−λ(1−γ)µ
(101)

≤
exp

(
(e−λ − 1)µ

)
e−λ(1−γ)µ

(102)

= exp
(
µ(e−λ − 1 + λ(1− γ))

)
. (103)

Note that the choice of λ can be improved to tight the bound in (103). Note that,

d

dλ

(
e−λ + (1− γ)λ

)
= −e−λ + (1− γ). (104)

Then, the optimal λ is the solution to −e−λ + (1 − γ) = 0. That is, λ = − log(1 − γ). This
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implies:

Pr [Vi < (1− γ)µ] ≤ exp
(
µ(e−λ − 1 + λ(1− γ))

)
(105)

≤ exp

Å
−µ
Å
γ + (1− γ)

Å
−γ +

γ2

2

ããã
(106)

= exp

Å
−µ(

γ2

2
+ γ2(1− γ3

2
))

ã
(107)

≤ exp

Å
−µγ

2

2

ã
(108)

Then,

Pr

[
n∑
t=1

1{Zt=0} <
n(b− b1)

b0 − b1

]

= Pr

[
n∑
t=1

1{Zt=0} <

Ñ
1−

Ñ
1− b− b1Ä

P̄
(i)
X (0)(1− 2α2) + α2

ä
(b0 − b1)

éé
n
Ä
P̄

(i)
X (0)(1− 2α2) + α2

ä
(b0 − b1)

]

≤ exp

Ö
−n

Ä
P̄

(i)
X (0)(1− 2α2) + α2

ä
(b0 − b1)

2

Ñ
1− b− b1Ä

P̄
(i)
X (0)(1− 2α2) + α2

ä
(b0 − b1)

é2
è

= exp

Ñ
−n

Ä
b−b1
b0−b1 −

Ä
P̄

(i)
X (0)(1− 2α2) + α2

ää2
2
Ä
P̄

(i)
X (0)(1− 2α2) + α2

ä é
. (109)

This completes the proof of (26).

D Proof of Proposition 3
From Proposition 2, it follows that

Pr

[
n∑
t=1

1{Zt=0} >
n(b− b1)

b0 − b1

]
< exp

Ñ
−n

Ä
b−b1
b0−b1 −

Ä
P

(i)
X (0)(1− 2α2) + α2

ää2Ä
b−b1
b0−b1 +

Ä
P

(i)
X (0)(1− 2α2) + α2

ää é , (110)

and thus subject to a maximal ESP constraint, it holds that for all i ∈ {1, 2, . . . ,M},

δ > θi > 1− exp

Ñ
−n

Ä
b−b1
b0−b1 −

Ä
P

(i)
X (0)(1− 2α2) + α2

ää2Ä
b−b1
b0−b1 +

Ä
P

(i)
X (0)(1− 2α2) + α2

ää é . (111)

Hence, it follows that

exp

Ñ
−n

Ä
b−b1
b0−b1 −

Ä
P

(i)
X (0)(1− 2α2) + α2

ää2Ä
b−b1
b0−b1 +

Ä
P

(i)
X (0)(1− 2α2) + α2

ää é > 1− δ, (112)
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which impliesÅ
b− b1
b0 − b1

ã2

−
Å

2
Ä
P

(i)
X (0)(1− 2α2) + α2

ä
− 1

n
log (1− δ)

ãÅ
b− b1
b0 − b1

ã
+
Ä
P

(i)
X (0)(1− 2α2) + α2

ä
·
ÅÄ
P

(i)
X (0)(1− 2α2) + α2

ä
+

1

n
log (1− δ)

ã
< 0. (113)

Denote Γ1 and Γ2 the roots of the quadratic function in the left-hand side of (113). Then,

Γ1 =
1

2

Å
2
Ä
P

(i)
X (0)(1− 2α2) + α2

ä
− 1

n
log (1− δ)

ã
+

1

2

…
− 8

n

Ä
P

(i)
X (0)(1− 2α2) + α2

ä
log(1− δ) +

1

n2
log(1− δ)2 (114)

=
Ä
P

(i)
X (0)(1− 2α2) + α2

ä
− 1

2n
log (1− δ) (115)

+

 
− log(1− δ)

n

…
2
Ä
P

(i)
X (0)(1− 2α2) + α2

ä
− 1

4n
log (1− δ) (116)

Γ2 =
1

2

Å
2
Ä
P

(i)
X (0)(1− 2α2) + α2

ä
− 1

n
log (1− δ)

ã
(117)

−1

2

…
− 8

n

Ä
P

(i)
X (0)(1− 2α2) + α2

ä
log(1− δ) +

1

n2
log(1− δ)2 (118)

=
Ä
P

(i)
X (0)(1− 2α2) + α2

ä
− 1

2n
log (1− δ) (119)

−

 
− log(1− δ)

n

…
2
Ä
P

(i)
X (0)(1− 2α2) + α2

ä
− 1

4n
log (1− δ) (120)

From (113), it follows that
Ä
b−b1
b0−b1

ä
must satisfy:

Γ2 <

Å
b− b1
b0 − b1

ã
< Γ1. (121)

This implies that:Å
b− b1
b0 − b1

ã
≤
Ä
P

(i)
X (0)(1− 2α2) + α2

ä
− 1

2n
log (1− δ) (122)

+

 
− log(1− δ)

n

…
2
Ä
P

(i)
X (0)(1− 2α2) + α2

ä
− 1

4n
log (1− δ) (123)
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Thus,

b ≤
Ä
P

(i)
X (0)(1− 2α2) + α2

ä
(b0 − b1) + b1 −

(b0 − b1)

2n
log (1− δ)

+

 
−(b0 − b1) log(1− δ)

n

 
2
Ä
P

(i)
X (0)(1− 2α2) + α2

ä
(b0 − b1)− (b0 − b1)

4n
log (1− δ)

≤
Ä
P

(i)
X (0)(1− 2α2) + α2

ä
(b0 − b1) + b1 −

(b0 − b1)

2n
log (1− δ)

+

√
2
Ä
P

(i)
X (0)(1− 2α2) + α2

ä
(b0 − b1)2 log( 1

1−δ )

n
+

√
(b0 − b1)2

Ä
log
Ä

1
1−δ

ää2
4n2

(124)

=
Ä
P

(i)
X (0)(1− 2α2) + α2

ä
(b0 − b1) + b1 −

(b0 − b1)

n
log (1− δ)

+
(b0 − b1)√

n

√
−2
Ä
P

(i)
X (0)(1− 2α2) + α2

ä
log (1− δ), (125)

and this completes the proof of (27). The proof of (28) follows immediately from (16) and (125).

E Proof of Lemma 1
For all t ∈ {1, 2, . . . , n}, consider the first moment, the second moment, and the third ab-
solute moment of the random variable 1{Zt=0} given that the channel input is u(i), with
i ∈ {1, 2, . . . ,M}:

EZ|X=ut(i)

[
1{Zt=0}

]
=PZ|X(0|ut(i)) (126a)

VZ|X=ut(i)

[
1{Zt=0}

]
=EZ|X=ut(i)

î
12
{Zt=0}

ó
− EZ|X=ut(i)

[
1{Zt=0}

]2
=EZ|X=ut(i)

[
1{Zt=0}

]
− EZ|X=ut(i)

[
1{Zt=0}

]2
=PZ|X(0|ut(i))− PZ|X(0|ut(i))2

=PZ|X(0|ut(i))
(
1− PZ|X(0|ut(i))

)
=PZ|X(0|ut(i))PZ|X(1|ut(i)), and (126b)

SZ|X=ut(i)

[
1{Zt=0}

]
=EZ|X=ut(i)

î∣∣(1{Zt=0} − PZ|X(0|ut(i))
)∣∣3ó

=PZ|X(0|ut(i))
∣∣1− PZ|X(0|ut(i))

∣∣3 + PZ|X(1|ut(i))PZ|X(0|ut(i))3

=PZ|X(0|ut(i))PZ|X(1|ut(i))3 + PZ|X(1|ut(i))PZ|X(0|ut(i))3. (126c)
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Using the equalities above, the following holds,
n∑
t=1

EZ|X
[
1{Zt=0}

]
=nPZ|X(0|0)P̄

(i)
X (0) + nPZ|X(0|1)P̄

(i)
X (1)

=n
Ä
(1− 2α2)P̄

(i)
X (0) + α2

ä
, (127a)

n∑
t=1

VZ|X=ut(i)

[
1{Zt=0}

]
=

n∑
t=1

PZ|X(0|ut(i))PZ|X(1|ut(i))

=N(0|u(i))PZ|X(0|0)PZ|X(1|0) +N(1|u(i))PZ|X(0|1)PZ|X(1|1)

=N(0|u(i))(1− α2)α2 +N(1|u(i))α2(1− α2)

=n (α2(1− α2)) , and (127b)
n∑
k=1

SZ|X=ut(i)

[
1{Zt=0}

]
=

n∑
t=1

PZ|X(0|ut(i))PZ|X(1|ut(i))3 + PZ|X(1|ut(i))PZ|X(0|ut(i))3

=N(0|u(i))
(
PZ|X(0|0)PZ|X(1|0)3 + PZ|X(1|0)PZ|X(0|0)3

)
+N(1|u(i))

(
PZ|X(0|1)PZ|X(1|1)3 + PZ|X(1|1)PZ|X(0|1)3

)
=N(0|u(i))

(
α3

2(1− α2) + α2(1− α2)3
)

+N(1|u(i))
(
α3

2(1− α2) + α2(1− α2)3
)

=n
(
α3

2(1− α2) + α2(1− α2)3
)
. (127c)

Using (127), it follows that for all i ∈ {1, 2, . . . ,M},

θi=Pr [Bn(Z) < b|X = u(i)]

=Pr

[
n∑
k=1

1 {Zk = 0} < n(b− b1)

b0 − b1

∣∣∣∣∣X = u(i)

]

=Pr

[
n∑
t=1

(
1 {Zt = 0} − PZ|X(0|ut(i))

)
≤
»
nα2(1− α2)

( n(b−b1)
b0−b1 − n

Ä
(1− 2α2)P̄

(i)
X (0) + α2

ä√
nα2(1− α2)

)∣∣∣∣∣X = u(i)

]
.

From the Berry-Esseen theorem (Theorem 3 in Appendix A), it follows that

θi≥Q

Ñ
n
Ä
(1− 2α2)P̄

(i)
X (0) + α2 − b−b1

b0−b1

ä√
nα2(1− α2)

é
−
n
[
α2(1− α2)3 + (1− α2)α3

2

]
2 (nα2(1− α2))

3/2

=Q

Ñ
n
Ä
(1− 2α2)P̄

(i)
X (0) + α2 − b−b1

b0−b1

ä√
nα2(1− α2)

é
−

(α2(1− α2))
(
(1− α2)2 + α2

2

)
2
√
n (α2(1− α2))

3/2
(128)

=Q

Ñ
n
Ä
(1− 2α2)P̄

(i)
X (0) + α2 − b−b1

b0−b1

ä√
nα2(1− α2)

é
− (1− α2)2 + α2

2

2
√
nα2(1− α2)

, (129)

and

θi≤Q

Ñ
n
Ä
(1− 2α2)P̄

(i)
X (0) + α2 − b−b1

b0−b1

ä√
nα2(1− α2)

é
+

(1− α2)2 + α2
2

2
√
nα2(1− α2)

.

This completes the proof.
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F Proof of Proposition 4
Using the fact that Q−1(·) is a decreasing function, it follows from Lemma 1 that

n
Ä
(1− 2α2)P̄

(i)
X (0) + α2)− b−b1

b0−b1

ä√
nα2(1− α2)

> Q−1

Ç
δ +

(1− α2)2 + α2
2

2
√
nα2(1− α2)

å
. (130)

From (130), it holds that

n(b − b1)

b0 − b1
6 n
Ä
(1− 2α2)P̄

(i)
X (0) + α2

ä
−
»
nα2(1− α2)Q−1

Ç
δ +

(1− α2)2 + α2
2

2
√
nα2(1− α2)

å
.(131)

Finally, the energy rate b is upper bounded as the following

b ≤ (b0 − b1)
Ä
(1− 2α2)P̄

(i)
X (0) + α2

ä
+ b1 −

 
(b0 − b1)2α2(1− α2)

n
Q−1

(
δ +

(1− α2)2 + α2
2

2
√
nα2(1− α2)

)
,

which ends the proof of the energy bound (27). The proof of (28) follows immediately by following
the definition of θ in (16) and using (129). This completes the proof.

G Proof of Theorem 1
The proof of Theorem 1 is based on the random coding arguments.
Codebook Generation: Let ρ ∈ [0, 1] be a fixed parameter. Consider a probability distribution
PX that satisfies

PX(0) = 1− PX(1) = ρ. (132)

Let also M ∈ N and b ∈ R+ be fixed parameters. An (n,M)-code is randomly generated
as follows: first, the codewords u(1),u(2), . . . ,u(M) are realizations of a random variable X
following a distribution PX such that for all x ∈ Xn,

PX(x) = ρN(0|x)(1− ρ)n−N(0|x). (133)

Second, the decoding sets D1,D2, . . . ,DM are defined using the information density function
ı : X × Y → R, such that

ı(x,y) = log

Å
PY |X(y|x)

PY (y)

ã
. (134)

Using this notation, for all ` ∈ {1, 2, . . . ,M − 1}:

D`
4
=
{
y ∈ Yn : ` ∈ arg max

k∈{1,2,...,M}
ı (u(k),y)

}
\
`−1⋃
j=1

Dj , and (135a)

DM
4
= Yn \

M−1⋃
j=1

Dj . (135b)

Given a generated (n,M)-code, the transmitter inputs the symbol ut(i) at channel use t, with
t ∈ {1, 2, . . . , n} to transmit the message index i ∈ {1, 2, . . . ,M}. After n channel uses, the IR
observes an n-dimensional channel output vector y. The IR decides upon the index i following
the rule in (9).
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Decoding Error Probability Analysis: Let λ̄ be the average over all possible codebooks of
the DEP λ in (11). An immediate consequence of the random coding union bound [10] is that
the average DEP λ̄ is upper bounded by:

λ̄ < EXY

[
min

ß
1, (M − 1)Pr

[
ι(X̄;Y ) > ι(X;Y )

]™]
=
∑

x∈Xn

∑
y∈Yn

PX(x)PY |X(y|x) min

ß
1, (M − 1)Pr

[
ι(X̄;y) > ι(x;y)

]™
, (136)

where the probability in (136) is with respect to the random variable X̄, whose probability mass
function is PX in (133). Note that for all (x,y) ∈ Xn × Yn, the following holds

1{ι(x̄;y)≥ι(x;y)} = 1¶
log

PY |X (y|x̄)

PY (y)
≥log

PY |X (y|x)

PY (y)

©
= 1{d(x̄,y) logα1+(n−d(x̄,y)) log(1−α1)≥d(x,y) logα1+(n−d(x,y)) log(1−α1)}

= 1{(d(x̄,y)−d(x,y)) logα1−(d(x̄,y)−d(x,y)) log(1−α1)}

= 1{
(d(x̄,y)−d(x,y)) log

(
α1

1−α1

)
≥0
} (137)

= 1{d(x̄,y)≤d(x,y)}, (138)

where (137) follows from the fact that log
Ä

α1

1−α1

ä
< 0 for all α1 ∈

[
0, 1

2

)
. Now, from (138) it

holds that for all (x,y) ∈ Xn × Yn:

Pr
[
ι(X̄;y) ≥ ι(x;y)

]
=
∑

x̄∈Xn
1{d(x̄,y)≤d(x,y)}PX(x̄) (139)

= Pr
[
d
(
X̄,y

)
≤ d(x,y)

]
=

d(x,y)∑
`=0

Pr
[
d
(
X̄,y

)
= `
]
, (140)

where,

Pr
[
d
(
X̄,y

)
= `)

]
=Pr

[
n∑
t=0

1{X̄t 6=yt} = `

]

=Pr

 ∑
t∈{m:ym=0}

1{X̄t=1} +
∑

t∈{m:ym=1}

1{X̄t=0} = `

 , (141)

with ` ∈ {0, 1, . . . , n}. Note that for all y ∈ {0, 1}n,∑
t∈{m:ym=0}

1{X̄t=1} ∼ Binomial(N(0|y), 1− ρ), and (142)

∑
t∈{m:ym=1}

1{X̄t=0} ∼ Binomial(n−N(0|y), ρ). (143)
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Therefore, it holds that

Pr
[
d
(
X̄,y

)
= `
]
=
∑̀
s=0

Pr

 ∑
t∈{m:ym=0}

1{X̄t=1} = s

Pr

 ∑
t∈{m:ym=1}

1{X̄t=0} = `− s


=
∑̀
s=0

Ç
N(0|y)

s

å
(1− ρ)sρN(0|y)−s

Ç
n−N(0|y)

`− s

å
ρ`−s(1− ρ)n−N(0|y)−`+s

=
∑̀
s=0

Ç
N(0|y)

s

åÇ
n−N(0|y)

`− s

å
ρ`+N(0|y)−2s(1− ρ)n−(`+N(0|y)−2s). (144)

Plugging (144) in (140) yields

Pr
[
ι(X̄;y) ≥ ι(x;y)

]
=

d(x,y)∑
`1=0

Pr
[
d
(
X̄,y

)
= `1

]
=

d(x,y)∑
`1=0

`1∑
`2=0

Ç
N(0|y)

`2

åÇ
n−N(0|y)

`1 − `2

å
ρ`1+N(0|y)−2`2(1− ρ)n−(`1+N(0|y)−2`2).

(145)

The term EXY

ï
Pr
[
ι(X̄;Y ) ≥ ι(X;Y )

] ò
in (136) can be calculated as follows:

EXY

ï
Pr
[
ι(X̄;Y ) ≥ ι(X;Y )

] ò
(146)

=
∑
y∈Yn

∑
x∈Xn

PY |X(y|x)PX(x)Pr
[
ι(X̄;y) ≥ ι(x;y)

]
=
∑
y∈Yn

∑
x∈Xn

(1− α1)d(x,y)α
n−d(x,y)
1 ρN(0|x)(1− ρ)n−N(0|x)Pr

[
d
(
X̄,y

)
≤ d(x,y)

]
.

There are 2n vectors in Xn and such a number can be written as follows for all y ∈ Yn:

2n =
n∑
`=0

Ç
n

`

å
=

n∑
`1=0

`1∑
`2=0

Ç
N(0|y)

`2

åÇ
n−N(0|y)

`1 − `2

å
, (147)

where the second equality follows from the Vandermonde’s inequality. Hence, given an ` 6 n,
(
n
`

)
can be interpreted as the number of vectors in Xn with ` zeros. Then,

∑n
`=0

(
n
`

)
is the number of

all vectors in Xn. To continue with this analysis, given a vector y ∈ Yn and a vector x ∈ Xn, let
`1 be the number of zeros in x; and let also `2 be the number of zeros in x that are in the same
components in which the vector y also has zeros. Hence, the number

(
N(0|y)
`2

)(
n−N(0|y)
`1−`2

)
can be

interpreted as the number of vectors x that contain exactly `1 zeros among which `2 zeros are
placed on components in which y also contains zeros. Therefore,

∑`1
`2=0

(
N(0|y)
`2

)(
n−N(0|y)
`1−`2

)
=
(
n
`1

)
is the number of vectors in Xn with exactly `1 zeros. Using these interpretations, it holds that

N(0|x) = `1 and (148)
d(x,y) = N(0|y)− `2 + `1 − `2 (149)

= N(0|y) + `1 − 2`2, (150)
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and

EXY

ï
Pr
[
ι(X̄;Y ) ≥ ι(X;Y )

] ò
(151)

=
∑
y∈Yn

n∑
`1=0

min{N(0|y),`1}∑
`2=0

Ç
N(0|y)

`2

åÇ
n−N(0|y)

`1 − `2

å
α
N(0|y)+`1−2`2
1 (1− α1)n−N(0|y)−`1+2`2

·ρ`1(1− ρ)n−`1Pr
[
d(X̄,y) ≤ N(0|y) + `1 − 2`2

]
=
∑
y∈Yn

n∑
`1=0

min{N(0|y),`1}∑
`2=0

Ç
N(0|y)

`2

åÇ
n−N(0|y)

`1 − `2

å
α
N(0|y)+`1−2`2
1 (1− α1)n−N(0|y)−`1+2`2

·ρ`1(1− ρ)n−`1
N(0|y)+`1−2`2∑

`3=0

`3∑
`4=0

Ç
N(0|y)

`4

åÇ
n−N(0|y)

`3 − `4

å
ρ`3+N(0|y)−2`4(1− ρ)n−(`3+N(0|y)−2`4)

=
n∑

`0=0

n∑
`1=0

min{`0,`1}∑
`2=0

Ç
n

`0

åÇ
`0
`2

åÇ
n− `0
`1 − `2

å
α`0+`1−2`2

1 (1− α1)n−`0−`1+2`2ρ`1(1− ρ)n−`1

·
`0+`1−2`2∑
`3=0

`3∑
`4=0

Ç
`0
`4

åÇ
n− `0
`3 − `4

å
ρ`3+`0−2`4(1− ρ)n−(`3+`0−2`4) (152)

=
n∑

`0=0

n∑
`1=0

min{`0,`1}∑
`2=0

`0+`1−2`2∑
`3=0

`3∑
`4=0

Ç
n

`0

åÇ
`0
`2

åÇ
n− `0
`1 − `2

åÇ
`0
`4

åÇ
n− `0
`3 − `4

å
·α`0+`1−2`2

1 (1− α1)n−`0−`1+2`2ρ`3+`0−2`4+`1(1− ρ)2n−(`3+`0−2`4+`1). (153)

Replacing (153) into (136), leads to λ̄ < φ(m, ρ). This completes the proof of the bound on
the information rate. The proof continues with the proof of the bound on the energy rate.

Energy-Shortage Probability Analysis: Consider an (n,M)-code described by the sys-
tem in (7) generated using the probability mass function in (132). Hence, at an energy trans-
mission rate b, it follows from Lemma 1 that for all i ∈ {1, 2, . . . ,M},

θi≤Q

Ñ
(1− 2α2)N(0|u(i)) + n

Ä
α2 − b−b1

b0−b1

ä√
nα2(1− α2)

é
+

(1− α2)2 + α2
2

2
√
nα2(1− α2)

.

Let θ̄i be the average over all possible codebooks of the energy-shortage probability θi in (15)
while transmitting at an energy rate b. Hence, the following holds:

θ̄i=
∑

x∈Xn
PX(x)Pr [Bn(Z) < b | X = x]

6
∑

x∈Xn
PX(x)Q

Ñ
(1− 2α2)N(0|x) + n

Ä
α2 − b−b1

b0−b1

ä√
nα2(1− α2)

é
+

(1− α2)2 + α2
2

2
√
nα2(1− α2)

=
n∑
t=0

Ç
n

t

å
ρt(1− ρ)n−tQ

Ñ
(1− 2α2)t+ n

Ä
α2 − b−b1

b0−b1

ä√
nα2(1− α2)

é
+

(1− α2)2 + α2
2

2
√
nα2(1− α2)

=χ(b, ρ). (154)
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Hence from (154), it follows that for all i ∈ {1, 2, . . . ,M}, θ̄ < χ(b, ρ). This completes the proof.

H Proof of Theorem 2
Consider an (n,M, ε, δ, b)-code with maximum ESP described by the system in (7) and empirical
input distribution

P̄X(0) = 1− P̄X(1)
4
= ρ. (155)

The proof is based on the notion of the meta converse introduced in [10]. Consider the following
hypotheses:

H0 : (X,Y ) ∼ P̄XQY and (156a)
H1 : (X,Y ) ∼ P̄XPY |X , (156b)

where for all (x,y) ∈ Xn × Yn

QY (y) = qN(0,y) (1− q)n−N(0,y)
, (157)

P̄X(x) = ρN(0|x)(1− ρ)n−N(0|x), and (158)

PY |X(y|x) = α
d(x,y)
1 (1− α1)n−d(x,y). (159)

The goal of the binary hypothesis test in (156) is to determine, based on the observation of
x ∈ Xn and y ∈ Xn, whether these vectors are realizations of the random variables in hypothesis
H0 or H1. Consider a random transformation PT |XY from Xn × Yn → {0, 1}. Note that this
transformation can be a randomized test for the hypothesis test in (156). More specifically,
PT |X,Y (1|x,y) = 1 − PT |X,Y (0|x,y) is the probability with which H1 is accepted given x and
y. Define the function β1−ε : ∆(Xn × Yn)2 → [0, 1] by

β1−ε(PXY , P̄XQY ) =

inf
PT |XY :

∑
y∈Yn

∑
x∈Xn

PT |XY (1|x,y)PY |X(y|x)P̄X(x) ≥ 1− ε

ï ∑
y∈Yn

∑
x ∈Xn

PT |XY (1|x,y)P̄X(x)QY (y)

ò
,

(160)

that is, the minimum probability of falsely rejecting H0 given that the probability of successfully
accepting H1 is lower bounded by 1 − ε. Note that the corresponding log-likelihood ratio for
these hypotheses is for all (x,y) ∈ Xn × Yn,

log
PY |X(y|x)

QY (y)
=log

(1− α1)n−d(x,y)α
d(x,y)
1

qN(0,y)
(
1− q

)n−N(0,y)

=(n− d(x,y)) log(1− α1) + d(x,y) logα1 −N(0|y) log
(
q
)
− (n−N(0|y)) log

(
1− q

)
=n log

Å
1− α1

1− q

ã
+ d(x,y) log

α1

1− α1
+N(0|y) log

1− q
q

.

Hence, from the Neyman-Pearson lemma [16], it follows that the optimal test is of the form

P ∗T |XY (1|x,y) =


0 if d(x,y) log α1

1−α1
+N(0|y) log 1−q

q < L

λ if d(x,y) log α1

1−α1
+N(0|y) log 1−q

q = L

1 if d(x,y) log α1

1−α1
+N(0|y) log 1−q

q > L,

(161)
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where the constants λ ∈ [0, 1], and L ∈ R are chosen to satisfy:

1− ε=
∑
y∈Yn

∑
x ∈Xn

P ∗T |XY (1|x,y)PY |X(y|x)P̄X(x)

=
∑
y∈Yn

∑
x ∈Xn

(1− α1)n−d(x,y)αd(x,y)ρN(0|x)(1− ρ)N(0|x)

·
Å
1{

d(x,y) log
α1

1−α1
+N(0|y) log 1−q

q >L
} + λ1{

d(x,y) log
α1

1−α1
+N(0|y) log 1−q

q =L
}ã. (162)

The equality in (162) can be rewritten by noting that there are 2n vectors in Xn and for all
y ∈ Yn:

2n =
n∑
`=0

Ç
n

`

å
=

n∑
`1=0

`1∑
`2=0

Ç
N(0|y)

`2

åÇ
n−N(0|y)

`1 − `2

å
, (163)

where the second equality follows from the Vandermonde’s inequality. Given a vector y ∈ Yn
and a vector x ∈ Xn, let `1 be the number of zeros in x; and let also `2 be the number of
zeros in x that are in the same components in which the vector y also has zeros. Hence, the
number

(
N(0|y)
`2

)(
n−N(0|y)
`1−`2

)
can be interpreted as the number of vectors x that contain exactly `1

zeros among which `2 zeros are placed on components in which y also contains zeros. Therefore,∑`1
`2=0

(
N(0|y)
`2

)(
n−N(0|y)
`1−`2

)
=
(
n
`1

)
is the number of vectors in Xn with exactly `1 zeros. Using

these interpretations, it holds that

N(0|x) = `1 and (164)
d(x,y) = N(0|y)− `2 + `1 − `2 (165)

= N(0|y) + `1 − 2`2, (166)

and thus, the equality in (162) can be rewritten as follows:

1− ε=
∑
y∈Yn

n∑
`1=0

`1∑
`2=0

Ç
N(0|y)

`2

åÇ
n−N(0|y)

`1 − `2

å
(1− α1)n−(N(0|y)+`1−2`2)α

N(0|y)+`1−2`2
1 ρ`1(1− ρ)n−`1

·
Å
1{

(N(0|y)+`1−2`2) log
α1

1−α1
+N(0|y) log 1−q

q >L
} + λ1{

(N(0|y)+`1−2`2) log
α1

1−α1
+N(0|y) log 1−q

q =L
}ã

=
n∑

`0=0

n∑
`1=0

`1∑
`2=0

Ç
n

`0

åÇ
`0
`2

åÇ
n− `0
`1 − `2

å
(1− α1)n−(`0+`1−2`2)α`0+`1−2`2

1 ρ`1(1− ρ)n−`1

·
Å
1{

(`0+`1−2`2) log
α1

1−α1
+`0 log 1−q

q >L
} + λ1{

(`0+`1−2`2) log
α1

1−α1
+`0 log 1−q

q =L
}ã .
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Plugging (161) into (160) yields

β1−ε(PXY , P̄XQY )=
∑
y∈Yn

∑
x ∈Xn

P ∗T |XY (1|x,y)QY (y)P̄X(x)

=
∑
y∈Yn

∑
x ∈Xn

ρN(0|x)(1− ρ)n−N(0|x)qN(0|y) (1− q)n−N(0|y)Å
1{

d(x,y) log
α1

1−α1
+N(0|y) log 1−q

q >L
} + λ1{

d(x,y) log
α1

1−α1
+N(0|y) log 1−q

q =L
}ã

=
∑
y∈Yn

n∑
`1=0

`1∑
`2=0

Ç
N(0|y)

`2

åÇ
n−N(0|y)

`1 − `2

å
ρ`1(1− ρ)n−`1qN(0|y) (1− q)n−N(0|y)Å

1{
(N(0|y)+`1−2`2) log

α1
1−α1

+N(0|y) log 1−q
q >L

}
+λ1{

(N(0|y)+`1−2`2) log
α1

1−α1
+N(0|y) log 1−q

q =L
}ã

=
n∑

`0=0

n∑
`1=0

`1∑
`2=0

Ç
n

`0

åÇ
`0
`2

åÇ
n− `0
`1 − `2

å
ρ`1(1− ρ)n−`1q`0 (1− q)n−`0Å

1{
(`0+`1−2`2) log

α1
1−α1

+`0 log 1−q
q >L

} + λ1{
(`0+`1−2`2) log

α1
1−α1

+`0 log 1−q
q =L

}ã
,γ(ρ, q).

Finally, from Theorem 29 in [10], it follows that

M < Γ(b), (167)

where the function Γ is defined in (51) and the optimization domain over ρ is due to Corollary
4, which requires that ρ > ρ∗(b). This completes the proof of the information bound.

The proof continues with the proof of the bound on the energy rate. From Proposition 4,
subject to a maximum ESP constraint, it follows that for any (n,M, ε, δ, b)-code described by
the system in (7) for the random transformation in (3) satisfying (14), it holds that for all
i ∈ {1, 2, . . . ,M}:

b6(b0 − b1)
(

(1−2α2) P̄
(i)
X (0)+α2

)
+b1−

 
(b0 − b1)2α2(1−α2)

n
Q−1

(
δ+

(1−α2)2+α2
2

2
√
nα2(1−α2)

)
, (168)

=(1− α2)b0 + α2b1 −

 
(b0 − b1)2α2(1− α2)

n
·Q−1

(
δ +

(1− α2)2 + α2
2

2
√
nα2(1− α2)

)
(169)

=B+. (170)

From (167) and (170), it follows that the information rate logM
n and the energy rate b of any

(n,M, ε, δ, b)-code for the random transformation in (3) satisfying (14) subject to a maximum
ESP constraint are such that, M < Γ(b) and b < B+. This completes the proof of Theorem 2.
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