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Extracting Basic Graph Patterns from Triple
Pattern Fragment Logs

Georges Nassopoulos, Patricia Serrano-Alvarado, Pascal Molli, and
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Abstract. The Triple Pattern Fragment (TPF) approach is de-facto
a new way to publish Linked Data at low cost and with high server
availability. However, data providers hosting TPF servers are not able to
analyze the SPARQL queries they execute because they only receive and
evaluate queries with one triple pattern. In this paper, we propose LIFT:
an algorithm to extract Basic Graph Patterns (BGPs) of executed queries
from TPF server logs. Experiments show that LIFT extracts BGPs with
good precision and good recall generating limited noise.

Keywords: Linked Data, Triple Pattern Fragments, log analysis, Basic Graph
Patterns

1 Introduction

The Triple Pattern Fragment (TPF) approach is de-facto a new way to pub-
lish Linked Data at low cost and with high availability for data providers [15].
WarDrobe [1] provides more than 38 billions of triples distributed over 65 data-
sets. Following the TPF approach, most of the SPARQL query processing is now
executed on the client-side, TPF servers only receive and evaluate queries with
one triple pattern. Consequently, data providers of TPF servers do not know the
executed SPARQL queries and cannot analyze them as data providers do with
queries of SPARQL endpoints.

Knowing executed SPARQL queries is fundamental for data providers. Min-
ing logs of SPARQL endpoints allows to detect recurrent patterns in queries for
prefetching [4] or for benchmarking [8]. It provides the type of queries issued, the
complexity and the used resources/predicates [6, 10]. It allows also to distinguish
between man or machine made queries [11, 12]. Currently, such analysis cannot
be done on logs of TPF servers because they only contain information about
single triple patterns.

In this paper, we propose LIFT (LInked data Fragment Tracking): an algo-
rithm to extract Basic Graph Patterns (BGPs) from logs of TPF servers. Com-
pared to the state of art, [14] reported statistics from the logs of the DBpedia’s
TPF server. In previous work [9], we proposed an algorithm to extract BGPs
of federated SPARQL queries from logs of a federation of SPARQL endpoints.



Here, we address a similar scientific problem but in the context of a single TPF
server.

The main challenge to extract BGPs is the concurrent execution of SPARQL
queries on one TPF server. If we find a function f , to extract BGPs from isolated
traces of one SPARQL query, is f able to extract the same BGP from traces of
concurrent SPARQL queries? LIFT faces this problem by tracking the bindings
among different triple pattern queries to detect joins. We experimented LIFT with
different levels of concurrency. We demonstrate in which conditions, it extracts
BGPs with good precision and good recall generating limited noise. Thanks to
LIFT, we were able to extract the frequent BGPs from the TPF log published in
the USEWOD 2016 dataset [5].

Next section introduces a motivating example and our problem statement.
Section 3 presents LIFT and Section 4 shows our experiments. Section 5 presents
related work. Finally, conclusions and future work are outlined in Section 6.

2 Motivating example and problem statement

In Figure 1, two clients, c1 and c2, execute concurrently queries Q1 and Q2
over the DBpedia’s TPF server. Q1 asks for movies starring Brad Pitt and Q2
for movies starring Natalie Portman.1 Both queries have one BGP composed of
several triple patterns (tpn).

SELECT ?movie ?title ?name WHERE {
?movie dbpedia-owl:starring ?actor . (tp1)
?actor rdfs:label "Brad Pitt"@en . (tp2)
?movie rdfs:label ?title . (tp3)
?movie dbpedia-owl:director ?director . (tp4)
?director rdfs:label ?name (tp5)

FILTER LANGMATCHES(LANG(?title), "EN")
FILTER LANGMATCHES(LANG(?name), "EN") }

c1(173.28.19.114) : Query Q1

SELECT ?titleEng ?title WHERE {
?movie dbpprop : starring ?actor . (tp′

1)
?actor rdfs : label ”Natalie P ortman”@en . (tp′

2)
?movie rdfs : label ?titleEng . (tp′

3)
?movie rdfs : label ?title (tp′

4)
FILTER LANGMATCHES(LANG(?titleEng), "EN")
FILTER (!LANGMATCHES(LANG(?title), "EN")) }

c2(173.28.19.114) : Query Q2

DBpedia’s TPF server

?predicate = rdfs : label
& ?object = ”Brad Pitt”@en . . .

?predicate = rdfs : label
& ?object = ”Natalie Portman”@en . . .

Fig. 1: Concurrent execution of queries Q1 and Q2.

TPF clients decompose SPARQL queries into a sequence of triple pattern
queries. Table 1 presents some traces of the TPF server for query Q1. Odd-
numbered lines represent received triple pattern queries and even-numbered ones
represent sent triples after evaluation on the RDF graph.

Lines 1 and 3, correspond to triple pattern queries for tp2 and tp1 of Q1.2
We can observe that the object in Line 3, comes from a mapping seen in Line
1 These queries come from http://client.linkeddatafragments.org/.
2 TPF clients only request bound parts of a triple patterns, variables are omitted.



IP Time Asked triple pattern/TPF
1 172... 11:24:19 ?predicate=rdfs:label & ?object="Brad Pitt"@en
2 172... 11:24:23 dbpedia:Brad_Pitt rdfs:label "Brad Pitt"@en ,
3 172... 11:24:24 ?predicate=dbpedia-owl:starring & ?object=dbpedia:Brad_Pitt
4 172... 11:24:27 dbpedia:A_River_Runs_Through_It_(film) dbpedia-

owl:starring dbpedia:Brad_Pitt
dbpedia:Troy_(film) dbpedia-owl:starring dbpedia:Brad_Pitt ...

5 172... 11:24:28 ?subject=dbpedia:A_River_Runs_Through_It_(film)
&?predicate=rdfs:label

Table 1: Excerpt of log of the DBpedia’s TPF server for query Q1.

2. This injection of a mapping obtained from a previous triple pattern query, is
clearly a join implemented in a nested-loop from tp2 towards tp1.

As the TPF server only sees triple pattern queries, the original queries e.g.,
Q1 and Q2 are unknown to the data provider. In this work, we address the
following research question: Can we extract the BGPs from a TPF server log?

In our example, we aim to extract two BGPs from the TPF server log, one
corresponding to Q1, BGP[1]= {tp1.tp2.tp3.tp4.tp5} and another corresponding
to Q2, BGP[2]= {tp′1.tp′2.tp′3.tp′4}. Before presenting our scientific problem, we
introduce the following definitions.

Definition 1 (BGP). A BGP (Basic Graph Pattern) is a set of triple patterns.
Any tuple ∈ (I ∪L∪V )× (I ∪V )× (I ∪L∪V ) is a triple pattern 〈s, p, o〉, where
I is the set of all IRIs, L the set of all literals and V the set of all variables
disjoint from L and I.3

Definition 2 (TPF server log). A TPF server log is a totally ordered sequence
of execution traces structured in tuples 〈ip, ts, tp, µo〉 where ip is the IP address
of the client, ts is the timestamp of the http request, tp is a triple pattern, and µo

is the set of RDF triples returned by the TPF server transformed in mappings.

We denote by E(Qi), the log produced by a TPF server when evaluating the
SPARQL query Qi and by E(Q1 ‖ ... ‖ Qn) the log of n concurrent queries.

Definition 3 (Approximation ≈ of BGPs). A BGP approximates another
(≈) if, to some extent, both contain same triple patterns and same joins.

To measure such approximation we can use precision and recall of triple
patterns and joins of one BGP against another. The average of precision and
recall can be used as a measure of global quality of the approximation.

Definition 4 (Problem of BGP reversing). Given a log corresponding to
the execution of one query, E(Qi), find a function f(E(Qi)) producing a set of
BGPs {BGP1, ..., BGPn}, such that:
3 We do not consider blank nodes in this paper.



Property 1. f(E(Qi)) approximates (≈) the BGPs existing in the original query.
If we consider that BGP (Qi) returns the set of BGPs of Qi then f(E(Qi)) ≈
BGP (Qi).

Property 2. f(E(Qi)) guarantees resistance to concurrency, i.e., BGPs obtained
from the log of isolated queries, approximate (≈) results obtained from the
log of concurrent queries: f(E(Q1))∪ ...∪ f(E(Qn)) ≈ f(E(Q1 ‖ ... ‖ Qn)).

We evaluate the BGPs extracted by f with the precision, recall and quality of
triple patterns and joins returned by f against those existing in original queries.
If f(E(Q1)) extracts the BGP= {tp1.tp2.tp3.tp4.tp5}, then precision, recall and
quality of triple patterns and joins are perfect according to the BGP present
in Q1, even if variables have different names. But if f(E(Q1)) misses one triple
pattern (e.g., tp5), then precision is 4/4, recall is 4/5 and quality is (1 + 4/5)/2.

In Figure 1, if c1 and c2 have different IP addresses, it is possible to separate
E(Q1 ‖ Q2) into E(Q1), E(Q2) and apply the reversing function to each trace.
However, in the worst case, c1 and c2 have the same IP address, i.e., a web
application running on the cloud that executes queries Q1 and Q2 in parallel.
Thus, we expect that f(E(Q1 ‖ Q2)) ≈ f(E(Q1)) ∪ f(E(Q2)).

3 LIFT: a reversing function

We propose LIFT as a system of heuristics to implement f . The idea is to detect
nested-loop joins. In Table 1, the mappings returned in Line 2 are reused in
the next triple pattern query at Line 3. We track such bindings in order to link
variables of different triple pattern queries. In this paper, we make the following
hypothesis: (i) we consider only bound predicates, (ii) we do not consider the
server’s web cache (this information can be easily obtained by data providers),
and (iii) we do not consider the client’s TPF cache. The first hypothesis can be
omitted, but we kept it because analysis of SPARQL queries show that predicates
are frequently bound [2].

ts tp µo

1 ?s p2 toto ?s c1 c2
3 c1 p1 ?o ?o a
5 c2 p1 ?o ?o b

(a) Log E(Q3).

ts tp µo

1 ?s p2 toto ?s c1 c2
2 ?s p3 titi ?s c3 c4
3 c1 p1 ?o ?o a
4 c3 p4 tata
5 c2 p1 ?o ?o b
6 c3 p1 ?o ?o c
7 c4 p4 tata
8 c4 p1 ?o ?o d
(b) Log E(Q3 ‖ Q4).

ts tp µo

2 ?s p3 titi ?s c3 c4
4 c3 p4 tata
6 c3 p1 ?o ?o c
7 c4 p4 tata
8 c4 p1 ?o ?o d

(c) Log E(Q4).

Fig. 2: Examples of simplified TPF logs.



Figure 2 presents a simplified log of E(Q3), E(Q4) and E(Q3 ‖ Q4) where:
Q3 = SELECT ∗ WHERE {?x p2 toto . ?x p1 ?y} and
Q4 = SELECT ∗ WHERE {?x p3 titi . ?x p1 ?y . ?x p4 tata}.

For the sake of simplicity, timestamps are transformed into integers. The IP
address of the TPF client is the same for Q3 and Q4, so we removed the ip
column. Variables are named ?s or ?o. µo represents the mappings of variables
resulting from the evaluation of tp. We call them output-mappings. Observe the
client first requests more selective triple patterns, i.e., 〈?x p2 toto〉 for Q3 and
〈?x p3 titi〉 for Q4, leaving at the end less selective ones i.e., 〈?x p1 ?y〉 for
both queries. Then mappings returned by selective patterns are bound into less
selective ones producing a nested-loop. See that mappings c1 and c2 are bound
in the variable ?x of the second triple pattern of Q3. Similarly, mappings c3 and
c4 are bound in the variable ?x of the other triple patterns of Q4. We call input-
mappings these injected mappings. Modified triple patterns are the inner part
of the nested-loop that we call inner loop. We call outer loop the triple patterns
whose mappings are used to bound variables, e.g., 〈?x p2 toto〉.

The basic intuition of LIFT is to detect if mappings obtained in a request
are bound in next requests. This can be challenging because mappings can be :
(i) bound several times (e.g., in star queries), (ii) bound partially as a side-effect
of LIMIT and FILTER clauses, (iii) or bound into a different concurrent query.

As a real log can be huge, LIFT analyzes the log on a sliding window defined
by a gap, i.e., a time interval. When LIFT reads an entry e in the log with a
timestamp ts, it considers only entries reachable within the gap i.e., ts ± gap.
Algorithm 1 shows the three phases of LIFT.

Algorithm 1: Global algorithm of LIFT
1 Function LIFT(log, gap) is

input : a TPF server log; a gap in time units (seconds)
output: a set of BGPs
data : CTP a list of ctps, DTP a graph of dtps

2 CTP ← ctpExtraction (log, gap)
3 DTP ← nestedLoopDetection (CTP, gap)
4 return BGP ← bgpExtraction(DTP )

1. First, LIFT merges triple pattern queries having same characteristics into
candidate triple patterns (ctp). This allows to gather triple pattern queries
that seem to be part of the same inner loop.

2. Next, LIFT looks for an inclusion relationship among output-mappings and
input-mappings of ctps. If such an inclusion exists a deduced triple pattern
(dtp) is created. If instead of inclusion an intersection exists, LIFT splits ctps
to obtain a dtp with inclusion. If neither inclusion nor intersection exists an
isolated dtp is created. This produces a DTP Graph where nodes are dtps
and edges are inclusion relationships between dtps.



3. Finally, LIFT extracts BGPs from the DTP graph. Ideally, LIFT(E(Q3 ‖
Q4), gap) should compute the 2 BPGs of Q3 and Q4:
{?s p2 toto . ?s p1 ?o}, {?s p3 titi . ?s p1 ?o . ?s p4 tata}.

Section 3.1 details the CTP extraction. Section 3.2 describes the nested-loop
detection. Finally, Section 3.3 presents the phase of extraction of BGPs.

3.1 Extraction of candidate triple patterns
The objective of ctpExtraction is to aggregate together log entries that seem to
participate in the same outer or inner loop. Aggregated entries are ctps. A ctp
is a tuple 〈ip, ts, tp, µo, µi〉 where ip is an IP address, ts is a pair of timestamps
(s.min, ts.max) representing a range; when creating a ctp both timestamps are
identical and correspond to the timestamp of the corresponding entry in the
log. tp is a triple pattern query, µo (output-mappings) is the list of solution
mappings for variables of tp. µi (input-mappings) is a set of mappings built
during the ctpExtraction. Basically, we replace any constant of tp by a variable,
we use σ for subject and ω for object. Replaced constants are regrouped in µi.

Algorithm 2: Extraction of Candidate Triple Patterns
1 Function ctpExtraction (log, gap) is

input : a TPF server log; a gap in time units (seconds)
output: a list CTP of ctp

2 CTP ←[ ]
3 foreach e ∈ log do
4 c ← read(e) as (ip,(ts,ts), tp, µo, µi) switch c.tp do
5 case ?s p o: do c.tp ← ?s p ?oin ; c.µi ← ?ω|o
6 case s p ?o: do c.tp ← ?sin p ?o ; c.µi ← ?σ|s
7 case s p o: do c.tp ← ?sin p ?oin ; c.µi ← ?σ|s, ?ω|o
8 if ∃ ck ∈ CTP | ingap(c,ck,gap) ∧ ck.ip = c.ip ∧ c.tp = ck.tp then
9 ck. µo ∪ c. µo ; ck. µi ∪ c. µi ; ck.ts.max=c.ts.max;

10 else CTP.add(c)
11 return CTP

Algorithm 2 outlines the extraction of a CTP List from a TPF log with a
particular gap. Figure 3 illustrates the effect of executing Algorithm 2 on log
E(Q3 ‖ Q4) with gap=8. The log is processed in sequential order. Lines 5 to
7 initialize input-mappings by replacing constants by variables σ or ω. Next,
Lines 9 to 10 merge (i.e., aggregate) current ctp with an existing and compatible
one. An existing ctp is compatible if it has the same tp, it is produced by the
same ip address, and fits in the gap. The ingap(c, ck, gap) function returns true
if c.ts.min− ck.ts.max ≤ gap. If the current ctp is compatible with an existing
one, output/input-mappings and timestamps are merged. When updating times-
tamps, the lower timestamp remains always the same, only the upper timestamp
can grow. A variable of tp cannot belong to µo and µi simultaneously.



ts tp µo

1 ?s p2 toto ?s c1 c2
2 ?s p3 titi ?s c3 c4
3 c1 p1 ?o ?o a
4 c3 p4 tata
5 c2 p1 ?o ?o b
6 c3 p1 ?o ?o c
7 c4 p4 tata
8 c4 p1 ?o ?o d

(a) Log of a TPF server.

id ts tp µo µi

1 1,1 ?s p2 ?ω ?s c1 c2 ?ω toto
2 2,2 ?s p3 ?ω ?s c3 c4 ?ω titi
3 3,8 ?σ p1 ?o ?o a b c d ?σ c1 c2 c3 c4

4 4,7 ?σ p4 ?ω ?σ c3 c4
?ω tata

(b) CTP List of candidate triple patterns ob-
tained by Algorithm 2.

Fig. 3: TPF log and CTP List produced by Algorithm 2 with E(Q3 ‖ Q4) and
gap = 8.

This algorithm can aggregate triple patterns that do not belong to the same
nested-loop as it is the case in our example of Figure 3, where CTP[3] aggregates
triple patterns of Q3 and Q4. We suppose that this case is not likely, especially
when the gap is small but if it is the case, next algorithm splits ctps to separate
these nested-loops.

3.2 Nested-loop join detection

Algorithm 3 describes how to link variables of different ctps produced by Algo-
rithm 2. It builds a DTP Graph of deduced triples patterns (dtp) where nodes
have the same structure as ctps and edges represent a relation of inclusion be-
tween input-mappings (µi) and output-mappings (µo) of 2 different dtps. Fig-
ure 4b presents the DTP Graph produced by Algorithm 3 with the CTP List of
Figure 4a. Dashed links represent linked variables deduced by Algorithm 3.

id ts tp µo µi

1 1,1 ?s p2 ?ω ?s c1 c2 ?ω toto
2 2,2 ?s p3 ?ω ?s c3 c4 ?ω titi
3 3,8 ?σ p1 ?o ?o a b c d ?σ c1 c2 c3 c4

4 4,7 ?σ p4 ?ω ?σ c3 c4
?ω tata

(a) CTP List of candidate triple patterns ob-
tained by Algorithm 2.

id ts tp µo µi

1 1,1 ?s p2 ?ω ?s c1 c2 ?ω toto
2 2,2 ?s p3 ?ω ?s c3 c4 ?ω titi
3 3,5 ?σ p1 ?o ?o a b ?σ c1 c2
4 6,8 ?σ p1 ?o ?o c d ?σ c3 c4

5 4,7 ?σ p4 ?ω ?σ c3 c4
?ω tata

(b) DTP Graph of deduced triple patterns
obtained by Algorithm 3.

Fig. 4: CTP List and DTP Graph produced by Algorithm 3 with gap = 8.

If the µi of a ctp is a subset of the µo of a previous ctp, then we consider
that the 2 corresponding variables can be linked. This happens in the example
described in Figure 4a with CTP[2] and CTP[4]. We consider that ?σ of CTP[4] is
linked to ?s of CTP[2]. We formalize this behavior at Lines 6 to 7 of Algorithm 3.



Algorithm 3: Detection of nested-loop joins
1 Function nestedLoopDetection (CTP, gap) is

input : a list CTP of ctps; a gap in time units (seconds)
output: An edge-labelled DTP Graph of dtps

2 foreach c ∈ CTP do
3 if split(c) 6= ∅ then CTP.insertAfter(c.id,split(c));
4 else DTP.addnode(c); foreach vo ∈ vars(c.µo) do
5 foreach (ck, vi) ∈ { (ck, vi) | ck ∈ CTP ∧ ck.id > c.id ∧

ingap(ck,c,gap) ∧ ∃ vi ∈ vars(ck.µi) | ck.µi(vi) ∩ c.µo(vo) 6= ∅ } do
6 if ck.µi(vi) ⊆ c.µo(vo) then
7 DTP.addnode(ck) ; DTP.addEdge(c,ck,(vo,vi));
8 else DTP.addnode(s=split(ck, vi, c, vo)) ; DTP.addEdge(c,s,(vo,vi));

9

10 return DTP;

A direct inclusion does not occur if Algorithm 2 aggregated too many log
entries as it is the case with CTP[3]. Q3 and Q4 have a common triple pattern
〈?x p1 ?y〉 and Algorithm 2 aggregates them. We solve this problem by splitting
a ctp. The idea is to produce a dtp from a ctp ck if it exists an intersection be-
tween the µo of a ctp cl and the µi of ck. In the example described in Figure 4a,
CTP[3] produces two splits: one when analyzing CTP[1] (DTP[3] is produced)
and another when analyzing CTP[2] (DTP[4] is produced) because both µo in-
tersect the µi of CTP[3]. Splitting affects input-mappings, but also timestamps
and output-mappings. After splitting, we obtain input-mappings that are sub-
sets of previous output-mappings. Intersection and splitting is shown in Lines 5
and 8 of Algorithm 3.

For lack of space, we do not detail the function split. It basically groups, from
the TPF log, values that belong to the intersection, this generates correct times-
tamps, output-mappings and input-mappings. We register the split relationship
with a split predicate that links a ctp with its produced dtps. In our example,
we have 2 split relations; split(3, 3) and split(3, 4). Splitting has an effect on
CTP traversal that we see in Line 3. Output-mappings of produced dtps must
be analyzed so when the nested-loop detection analyzes a splitted ctp, it inserts
in the CTP List, produced dtps. split(c) returns the set of dtps produced by
splitting c.

3.3 BGP Extraction

Figure 5 represents the connected components of the DTP Graph shown in
Figure 4b. From this representation, it is easy to compute the final BGPs with
a variable renaming and restitution of an IRI/literal in place of ω when there is
only one input mapping, e.g., toto, titi and tata. Detected joins are underlined.

In our example, LIFT rebuilds perfectly BGPs of queries Q3 and Q4. This
example is executed with gap = 8. If we reduce the gap, then some joins are not



DTP[1]
tp=?s p2 ?ω 
ω =toto  

DTP[3]
tp=?σ  p1 ?o

?s=?σ 
DTP[2]

tp=?s p3 ?ω
?ω=titi DTP[5]

tp=?σ  p4 ?ω
?ω=tata

DTP[4]
tp=?σ  p1 ?o?s=?σ 

?s=?σ 

(a) { ?s1 p2 toto . ?s1 p1 o3 }

(b) { ?s2 p3 titi . ?s2 p1 o4 . ?s2 p4 tata }

Fig. 5: Connected components of the DTP Graph produced by the execution of
Algorithm 3 for gap = 8.

detected and recall decreases. If we execute concurrently more queries having
same triple patterns, then LIFT can deduce joins that do no exist in original
queries and consequently precision will decrease. In Section 4, we measure ex-
perimentally the precision and recall of LIFT in different situations.

4 Experiments

The goals of the experiments are twofold, (i) to evaluate precision and recall of
LIFT’s results and (ii) to show that LIFT extracts meaningful BGPs from a real
TPF log.

First, we analyze a small set of queries taken from the TPF web site. We
evaluate precision and recall of LIFT deductions from logs of queries executed in
isolation in Section 4.1, and from logs of queries executed concurrently in Section
4.2. These two sections evaluate to which extent LIFT guarantees Properties 1
and 2 of our problem statement (cf. Definition 4), correspondingly.

Then, we analyze LIFT with an important number of real user queries taken
from logs of USEWOD 2016 [5]. In Section 4.3, we evaluate precision and recall of
14,259 queries coming from logs of the DBpedia’s SPARQL endpoint. In Section
4.4, we analyze 4,720,874 single triple pattern queries coming from logs of the
DBpedia’s TPF server.

4.1 Evaluation of LIFT with queries in isolation

We used 29 over 30 queries of the TPF web site4. Concerned datasets are DB-
pedia 2015-04, UGhent, LOV or VIAF. We captured http requests and answers
of queries using the webInspector 1.2 tool5. Source code of LIFT is available on
GitHub6 For each query Qi, we run LIFT(E(Qi),∞). Figure 6 presents preci-
sion and recall of LIFT deductions against original queries7, they show to which
4 http://client.linkeddatafragments.org/
5 https://sourceforge.net/p/webinspector/wiki/Home/
6 https://github.com/coumbaya/lift
7 Queries, TPF logs and LIFT results are available at:

https://github.com/coumbaya/lift/blob/master/experiments.md



extent LIFT(E(Qi)) ≈ BGP (Qi) (cf. Definition 4, Property 1). In average, LIFT
obtained 97% of recall and 75% of precision of joins. That gives a quality of
84.5%. LIFT deduces perfectly 15 of 30 BGPs: Q1 − Q6, Q9, Q11, Q15 − Q18,
Q22, and Q29 −Q30. Q28 was not analyzed because it needs two TPF servers.

Fig. 6: Precision and recall by query of the TPF web site.

LIFT does not detect UNION queries because they are processed on the
client side. Q9 is a query with a BGP like {(tp1 UNION tp2) . tp3}. In this case,
LIFT detects 2 BGPs, {tp1 . tp3} and {tp2 . tp3}. Q29 is also a UNION query
but without join, as there is no intersection between mappings, LIFT detects
two separate BGPs containing one triple pattern. We consider this behaviour
correct.

Figure 7 describes Q7 and its deduced BGPs. BGP[1] is correct, while BGP[2]
is not. This is due to traces of the first request made by TPF clients for each triple
pattern of each query to decide the join ordering (TPF servers send cardinalities
of concerned triples in their answers). Thus, when processingQ7, the client makes
a first request of each triple pattern and then decides to begin with the first triple
pattern. Then it binds resulting mappings into the ?book variable of the second
triple pattern to retrieve corresponding authors. This nested-loop is deduced in
BGP[1]. But as output mappings of the first request of the second triple pattern
intersects with the values of the inner loop, LIFT deduces BGP[2] with a self-join
that is very unlikely and that can be easily filtered in a post-processing. Such
situation appears in 6 of 29 queries: Q7, Q12−14, Q21 and Q25.

In some cases, LIFT deduces additional triple patterns and thus false joins
with well deduced triple patterns because of the intersection of mappings. This
is more challenging to filter. In Figure 7, Q8 has an additional triple pattern,
the last one, and a join with the second triple pattern. This is the case for Q8,
Q10, Q14, Q20, Q23−27.

In addition, LIFT merges triple patterns when they are very similar as it is
the case in Q19 and Q20 where some triple patterns have same predicate and
variables in the same position (subject/object).



ID Original query Deduced BGPs

Q7

SELECT DISTINCT
?book ?author

WHERE {
?book rdf:type dbpo:Book .
?book dbpo:author ?author
} LIMIT 100

BGP[1]:
{?s1 rdf :type dbpo:Book .
?s1 dbpo:author ?o2}
BGP[2]:
{?s3 dbpo:author ?o3 .
?s3 dbpo:author ?o4}

Q8

{SELECT ?award WHERE {
?award a dbpedia−owl:Award .
?award dbpprop:country ?language .
?language dbpedia−owl:language

dbpedia:Dutch_language}

{?s1 dbpedia−owl:language
dbpedia:Dutch_language .

?s2 dbpprop:country ?s1 .
?s2 rdf :type dbpedia−owl:Award .
?s1 rdf :type dbpedia−owl:Award}

Fig. 7: LIFT deductions for Q7 and Q8. Prefix dbpo corresponds to dbpedia-owl.

4.2 Does LIFT results resist to concurrency?

We implemented a tool to shuffle several TPF logs according to different param-
eters. Thus, given E(Q1), ..., E(Qn), we are able to produce different significant
representations of E(Q1 ‖ ... ‖ Qn). We grouped queries targeting the same
dataset into a set of randomly chosen queries as shown in Table 2. For each query
set, we evaluate how LIFT(E(Q1), gap) ∪ ... ∪ LIFT(E(Qn), gap) ≈ LIFT(E(Q1 ‖
... ‖ Qn), gap) in terms of precision and recall for different gap values (cf. Def-
inition 4, Property 2). Gap varies from 1% to 100% of the log duration. Each
query set was shuffled 4 times and we calculate the average of results by gap. In
Figure 8 we report results by join, (a) and (b) show precision whereas (c) and
(d) show recall.

Dataset Query sets

DBpedia 2015
DB1 = {Q1, Q8, Q14, Q22} DB4 = {Q4, Q12, Q24}
DB2 = {Q3, Q11, Q15, Q20} DB5 = {Q7, Q16, Q21, Q5}
DB3 = {Q6, Q13, Q19, Q27} DB6 = {Q9, Q10, Q29, Q30}

UGhent UG = {Q2, Q23, Q25, Q29, Q30}
LOV LV = {Q17, Q18, Q26, Q29, Q30}
VIAF V F = {Q29, Q30}

Table 2: Query sets executed concurrently over a TPF server.

Precision and recall globally improve when gap increases. When gap is small
(less than 50%) precision decreases significantly. A small gap leads LIFT to split
values of an inner loop i.e., the ctpExtraction algorithm cannot aggregate in one
ctp all triple patterns of the inner loop.

Concerning recall, LIFT is moderately impacted by concurrency. In some
cases, LIFT favours recall by producing all possible joins in the nested-loop de-
tection.



Concerning precision, LIFT is more impacted by concurrency and results de-
pend on concurrent executed queries. When executed queries have triple patterns
that are semantically or syntactically similar, then LIFT generates many false
joins that impact precision. A post-processing could filter these false joins.

Fig. 8: Precision and recall.

4.3 Evaluation of LIFT with real SPARQL queries

The goal of this experiment is to evaluate to which extent LIFT is able to deduce
BGPs of an important number of real user queries. We analyzed 10 hours of one
day (2015-10-30) of the log of the DBpedia SPARQL endpoint of USEWOD 2016
dataset [5]. From 380,834 http requests containing SPARQL queries, we analyzed
14,259 queries that represent our ground truth. We kept only SELECT queries
having BGPs with more than one triple pattern and that return not null results.
We made an aggregation of same queries and kept only one, by hour and by user.
That is because, if in a TPF log, the same query appears several times, LIFT
deduces only one query, i.e., LIFT(E(Q1) ‖ E(Q1), gap) ≈ BGP (Q1). Then, we
constraint to 200 the number of queries by user for each hour. The OPTIONAL



operator was transformed in a JOIN and we filter queries having a join over
predicates.8

We installed locally a TPF server with DBpedia 3.9 to execute and collect
the TPF server logs that were given as input to LIFT. Gap was set to one hour.
We calculate precision, recall and quality of deduced BGPs against the ground
truth. LIFT returned BGPs in xml files which were loaded in a MySQL database.
This allows us to make several analysis.

Globally, we obtained 69% of precision, 64% of recall and 66% of quality.
Results are better for recurrent queries (in particular for precision) for which we
obtained 85% of precision, 55% of recall and 70% of quality. That means that
queries executed frequently under different execution contexts (i.e., concurrent
queries) are better deduced than queries requested few times. We analyzed re-
sults by user and calculate their averages, we obtained 84% of precision, 74% of
recall and 78% of quality. From this analysis, we observed that there are partic-
ular users whose queries are less well deduced, but in general LIFT deductions
by user are good.9

4.4 Analysis of a real TPF log

The goal of this experiment is to extract BGPs from the log of the DBpedia’s
LDF server of USEWOD 2016 dataset [5]. This log contains http requests from
October 2014 to November 2015. We analyzed the first quarter of the log rep-
resenting 4,720,874 single triple pattern queries (until 27th February 2015). We
pruned 1% of the log corresponding to entries that are not well formed TPF
requests. LIFT needs not only received triple pattern queries but also corre-
sponding answers. To obtain answers, we executed the triple pattern queries of
the log using a TPF client 10. Then, we run LIFT with log slices of one hour with
a maximum gap (one hour).

We obtained 1236 BGPs containing more than one triple pattern. Table 9 de-
scribes the most recurrent queries. Unsurprisingly, some of them are the queries
available on the TPF web site. BGP[1] corresponds to Q1, BGP[2] is like BGP[1]
except that dbpedia-owl:starring is replaced by dbpprop:starring. BGP[3] corre-
sponds to the query used as the motivation example of [13], BGP[4] corresponds
to Q3, BGP[5] to Q6, etc. In this top 20 list, only few queries were unknown:
BGP[6], BGP[7], BGP[8], BGP[12] and BGP[13]. We can analyze deduced BGPs
to obtain some statistics, for instance, the most common type of join is subject-
subject (2693), followed by subject-object (1063), what is coherent with analysis
shown in [2]. LIFT’s deductions from the TPF log of USEWOD 2016 are available
in an xml document11.
8 All scripts to process logs of the DBpedia SPARQL endpoint are in Python and
available at https://github.com/edesmontils/BE4DBPedia/

9 These results are available at:
http://documents.ls2n.fr/lift/dbpedia-sparql-results.tar

10 https://github.com/LinkedDataFragments/Client.js
11 http://documents.ls2n.fr/lift/dbpedia-tpf-results.xml



BGP[1]- deduced 126 times BGP[2] - deduced 47 times
{?s_47 rdfs: label ?o_51 .
?s_47 dbpo:director ?o_52 .
?s_46 rdfs: label "Brad Pitt"@en .
?s_47 dbpo:starring ?s_46 .
?o_52 rdfs:label ?o_53 .}

{?s_8 dbpprop:starring ?s_7 .
?s_8 rdfs: label ?o_12 .
?s_7 rdfs: label "Brad Pitt"@en .
?o_13 rdfs:label ?o_14 .
?s_8 dbpo:director ?o_13 .}

BGP[3] - deduced 43 times BGP[4] - deduced 34 times

{?s_10 rdfs: label "York"@en .
?s_11 rdf:type dbpo:Artist .
?s_11 dbpo:birthPlace ?s_10 .}

{?s_6 dbpo:birthDate ?o_8 .
?s_6 dbpo:influencedBy dbpedia:Pablo_

Picasso .
?s_6 rdf:type dbpo:Artist .}

BGP[5] - deduced 34 times BGP[6] - deduced 20 times
{?s_9 dbpprop:cityServed dbpedia:Italy .
?s_9 rdf:type dbpo:Airport .}

{dbpo:Agent rdfs:subClassOf ?o_13 .
?o_13 rdfs:subClassOf ?o_14 .}

BGP[7] - deduced 17 times BGP[8] - deduced 16 times

{dbpo:Activity rdfs :subClassOf ?o_29 .
?o_29 rdfs:subClassOf ?o_30 .}

{?s_283 rdf:type dbpo:Writer .
?s_282 rdfs: label "Trinity College,

Dublin"@en .
?s_283 dbpo:almaMater ?s_282 .}

BGP[9] - deduced 15 times BGP[10] - deduced 13 times

{?s_17 rdf:type dbpo:Book .
?s_17 dbpo:author ?o_18 .}

{?s_20 dbpo:team ?o_21 .
?s_20 dbpo:birthPlace dbpedia:

Urbel_del_Castillo .}
BGP[11] - deduced 11 times BGP[12] - deduced 11 times

{?s_33 dbpo:ingredient ?o_33 .
?s_33 dbpo:kingdom dbpedia:Plant .}

{?s_20 rdf:type yago:Carpenter .
?s_20 rdf:type yago:PeopleExecuted

ByCrucifixion .}
BGP[13] - deduced 10 times BGP[14] - deduced 10 times

{?s_2 foaf:isPrimaryTopicOf ?o_3 .
?s_2 rdf:type foaf :Person .}

{?s_35 dbpo:ingredient ?o_36 .
?s_35 dbpo:type dbpedia:Dessert .
?o_36 dbpo:kingdom dbpedia:Plant .}

BGP[15] - deduced 9 times BGP[16] - deduced 8 times
{?s_18 dbpo:team ?s_15 .
?s_15 dbpo:ground dbpedia:Urbel_del_Castillo .
?s_18 rdfs: label ?o_22 .
?s_15 rdf:type dbpo:SoccerClub .
?s_15 rdfs: label ?o_17 .}

{?s_23 dbpprop:starring dbpedia:Brad
_Pitt .

?s_23 rdfs: label ?o_24 .
?s_23 dbpo:director ?o_25 .
?o_25 rdfs:label ?o_26 .}

BGP[17] - deduced 8 times BGP[18] - deduced 8 times

{?s_18 dbpo:developer ?s_16 .
?s_15 rdfs: label "Belgium"@en .
?s_16 dbpo:locationCountry ?s_15 .}

{dbpedia:Raspberry_Pi dbpo:operating
System ?o_16 .

?s_17 dbpo:operatingSystem ?o_16 .
?s_17 rdf:type dbpo:Device .}

BGP[19] - deduced 7 times BGP[20] - deduced 7 times
{?s_6 rdfs: label ?o_7 .
?s_6 dbpprop:starring dbpedia:Natalie_Portman .}

{dbpedia:Jesus dc:subject ?o_28 .
?s_29 dc:subject ?o_28 .}

Fig. 9: Recurrent BGPs extracted from the TPF log of USEWOD 2016.



5 Related Work

Compared to the state of art, [14] reports statistics on TPF logs that allow to
verify server availability, number of evaluated requests and cache usage. These
statistics are useful but can be obtained at triple pattern granularity. LIFT, is
able to extract BGPs from TPF logs, that can be subsequently analyzed to
retrieve other information, e.g., frequently executed BGPs as done in Sections
4.3 and 4.4.

Extracting information from logs is traditionally a data mining process [3].
Sequential pattern mining [7] focuses on discovering frequent subsequences from
an ordered sequence of events. However, searching for BGPs cannot be reduced
to searching for frequent episodes in a TPF log. Suppose, two queries Q1 :
{?x p1 o1 . ?x p2 ?y} and Q2 : {?x p1 ?y . ?y p3 ?z}. The TPF query engine
executes the joins with a nested-loop. So, ?x p1 o1 and ?x p1 ?y will appear
once in the log, while patterns with IRIs p2 ?y and IRIs p3 ?z will appear
many times according to the selectivity of the triple patterns on p1. Searching
for frequent episodes will raise up episodes with p2 and p3 but joins were between
p1, p2 and p1, p3. Clearly, TPF logs need to be pre-processed before analysis.

In previous work [9], we focused on analyzing SPARQL logs. We proposed
FETA, an algorithm to reverse BGPs of federated SPARQL queries from logs
collected from a set of SPARQL endpoints. LIFT and FETA share the problem
statement, but have several major differences. First, FETA analyzes a SPARQL
log gathered from many data providers in order to infer BGPs of federated
queries. LIFT analyzes a single TPF log of a single data provider to infer BGPs
of SPARQL queries. This makes possible to run LIFT on real available logs
as those published by USEWOD 2016 [5]. Second, the input log of FETA is
composed of SPARQL queries that are more complex than TPF queries. On
the other hand, SPARQL queries include variable names that can be used to
disambiguate some situations. In TPF logs, such variables are not available.
Next, TPFs contain metadata that helps clients to decide a join ordering. To
obtain the cardinality of a triple pattern, a client actually requests the triple
pattern making indistinguishable these requests from regular query processing.
This makes BGP extraction from TPF logs more challenging.

6 Conclusions and future work

LIFT extracts BGPs from TPF server logs. It tracks joins executed with nested-
loops following a strategy of merging and splitting compatible triple pattern
queries. LIFT deductions have good precision and good recall mainly when eval-
uating frequent queries. The main challenge for LIFT is the concurrent execution
of queries from the same client targeting exactly the same triples (queries sharing
IRIs).

LIFT opens several perspectives. First, LIFT focused on nested-loops. Clients
can also rely on symmetric hash to perform joins that can also be detected.
Detecting nested-loop and symmetric hash together from the server-side is chal-
lenging. Second, in LIFT, we favoured recall, mainly by splitting input mappings



for every intersection with output mappings. We can introduce more constraints
for splitting that should improve precision against recall, e.g., to separate re-
peated executions of identical queries which traces appear in the same TPF.
Third, LIFT is currently an algorithm that post-processes logs. We can trans-
form LIFT into a streaming algorithm able to extract BGPs in real-time. This
will also allow to process very large TPF logs. Finally, LIFT is able to process
logs on different datasets by just merging them. In this case, one data provider
is able to detect cross-join against different datasets hosted on the same server.
If different data providers are ready to collaborate by just sharing their logs,
they should be able to infer federated queries running across multiple servers.
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