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A Global multiplicity result for a very singular

critical nonlocal equation

J. Giacomoni∗, T. Mukherjee† and K. Sreenadh‡

Abstract

In this article, we show the global multiplicity result for the following nonlocal singular

problem

(Pλ) : (−∆)su = u−q + λu2
∗
s−1, u > 0 in Ω, u = 0 in Rn \ Ω,

where Ω is a bounded domain in Rn with smooth boundary ∂Ω, n > 2s, s ∈ (0, 1), λ >

0, q > 0 satisfies q(2s− 1) < (2s+ 1) and 2∗s = 2n
n−2s . Employing the variational method,

we show the existence of at least two distinct weak positive solutions for (Pλ) in X0 when

λ ∈ (0,Λ) and no solution when λ > Λ, where Λ > 0 is appropriately chosen. We also

prove a result of independent interest that any weak solution to (Pλ) is in Cα(Rn) with

α = α(s, q) ∈ (0, 1). The asymptotic behaviour of weak solutions reveals that this result

is sharp.

Key words: Fractional Laplacian, very singular nonlinearity, variational method, Hölder

regularity.

2010 Mathematics Subject Classification: 35R11, 35R09, 35A15.

1 Introduction

In this article, we prove the existence, multiplicity and Hölder regularity of weak solutions to

the following fractional critical and singular elliptic equation

(Pλ) : (−∆)su = u−q + λu2∗s−1, u > 0 in Ω, u = 0 in Rn \ Ω,

where Ω is a bounded domain in Rn with smooth boundary ∂Ω, n > 2s, s ∈ (0, 1), λ >

0, q > 0 satisfies q(2s−1) < (2s+1) and 2∗s = 2n
n−2s . The fractional Laplace operator denoted

by (−∆)s is defined as

(−∆)su(x) = 2Cns P.V.

∫
Rn

u(x)− u(y)

|x− y|n+2s
dy
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where P.V. denotes the Cauchy principal value and Cns = π−
n
2 22s−1s

Γ(n+2s
2

)

Γ(1−s) , Γ being the

Gamma function. The fractional power of Laplacian is the infinitesimal generator of Lévy

stable diffusion process and arise in anomalous diffusion in plasma, population dynamics,

geophysical fluid dynamics, flames propagation, chemical reactions in liquids and Ameri-

can options in finance, see [3] for instance. The theory of fractional Laplacian and elliptic

equations involving it as the principal part has been evolved immensely in recent years.

There is a vast literature available on it, however without giving an exhaustive list we cite

[7, 10, 14, 16, 19, 21, 22] for motivation to readers.

Nowadays, researchers are inspecting on various forms of singular nonlocal equations. We

cite [11, 8, 9] as some contemporary woks related to it. The fractional elliptic equations with

singular and critical nonlinearities was first studied by Barrios et al. in [5]. The authors

considered the problem

(−∆)su = λ
f(x)

uγ
+Mup, u > 0 in Ω, u = 0 in Rn \ Ω,

where n > 2s, M ≥ 0, 0 < s < 1, γ > 0, λ > 0, 1 < p < 2∗s − 1 and f ∈ Lm(Ω), m ≥ 1 is

a nonnegative function. Here, authors studied the existence of distributional solutions using

the uniform estimates of {un} which are solutions of the regularized problems with singular

term u−γ replaced by (u+ 1
n)−γ . Motivated by their results, Sreenadh and Mukherjee in [15]

studied the singular problem

(−∆)su = λa(x)u−q + u2∗s−1, u > 0 in Ω, u = 0 in Rn \ Ω,

where λ > 0, 0 < q ≤ 1 and θ ≤ a(x) ∈ L∞(Ω), for some θ > 0. They showed that although

the energy functional corresponding to this problem fails to be Fréchet differentiable, making

use of its Gâteaux differentiability the Nehari manifold technique can still be benefitted to

obtain existence of at least two solutions over a certain range of λ. The significance of q being

less than 1 is the Gâteaux differentiability of the functional corresponding to the problem.

Consider now the case q > 1. Let

X
def
=

{
u| u : Rn → R is measurable, u|Ω ∈ L2(Ω) and

(u(x)− u(y))

|x− y|
n
2

+s
∈ L2(Q)

}
,

where Q
def
= R2n \ (CΩ× CΩ) and CΩ := Rn \ Ω endowed with the norm

‖u‖X
def
= ‖u‖L2(Ω) + [u]X ,

where

[u]X =
def
=

(∫
Q

|u(x)− u(y)|2

|x− y|n+2s
dxdy

) 1
2

.

Let J : X0 → R be the functional defined by

J(u)
def
=

Cns
2
‖u‖2X0

− 1

1− q

∫
Ω
|u|1−q dx− λ

2∗s

∫
Ω
|u|2∗s dx
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for any u in the Hilbert space X0
def
= {u ∈ X : u = 0 a.e. in Rn \ Ω} equipped with the inner

product

〈u, v〉 def
=

∫
Q

(u(x)− u(y))(v(x)− v(y))

|x− y|n+2s
dxdy.

J may not be defined on the whole space nor it is even continuous on D(I) ≡ {u ∈ X0 :

I(u) <∞} and the approach used for q < 1 can not be extended. Besides this, one has that

the interior of D(I) = ∅ because of the singular term. But we notice that if we enforce the

condition q > 1 satisfies q(2s− 1) < (2s+ 1) then we can prove that D(I) is non empty and

Gâteaux differentiable on a suitable convex cone of X0.

The existence of weak solutions to (Pλ) when λ ∈ (0,Λ) and no solution when λ > Λ has

been already obtained by Giacomoni et al. in [12]. But here the multiplicity of solutions has

been achieved in L1
loc(Ω) only, by using non smooth critical point theory, so the questions of

existence of solutions in the energy space and of Hölder regularity were still pending. This

article is bringing answers to these two issues. For that, we followed the approach of [13] but

we notify that the adversity and novelty of this article lies in extending Haitao’s technique in

a nonlocal framework. The regularity of weak solution of the purely singular problem

(−∆)su = u−q, u > 0, in Ω, u = 0 in Rn \ Ω

plays a vital role in our study. This has been obtained by Adimurthi, Giacomoni and Santra

in [1] in recent times. In the present paper we extend the Hölder regularity results proved

in [1, Theorem 1.4] in our framework of weak solutions (see definition 1.1 below) rather

than the more restricted classical solutions framework (defined in [1]). It requires additional

L∞-estimates and the use of the weak comparison principle.

Our paper has been organized as follows. Section 2 contains some preliminary results used

in the subsequent sections. Section 3 and 4 contain the proof of existence of first and second

weak solution to (Pλ) respectively (Theorem 1.2). The proof of the Hölder regularity result

(Theorem 1.3) is done in Section 4 based on a priori estimates proved in Proposition 4.1. Now

we state the main results proved in the paper. First we define the notion of weak solutions.

Definition 1.1 A function u ∈ X0 is said to be a weak solution of (Pλ) if there exists a

mK > 0 such that u > mK in every compact subset K of Ω, and it satisfies

Cns

∫
Q

(u(x)− u(y))(φ(x)− φ(y))

|x− y|n+2s
dxdy =

∫
Ω

(u−q + u2∗s−1)φ dx, for all φ ∈ X0.

Given any φ ∈ C0(Ω) such that φ > 0 in Ω we define

Cφ(Ω)
def
= {u ∈ C0(Ω)| ∃ c ≥ 0 such that |u(x)| ≤ cφ(x), ∀x ∈ Ω}

with the usual norm

∥∥∥∥uφ
∥∥∥∥
L∞(Ω)

and the associated positive cone. We define the following

open convex subset of Cφ(Ω) as

C+
φ (Ω)

def
=

{
u ∈ Cφ(Ω)| inf

x∈Ω

u(x)

φ(x)
> 0

}
.
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In particular, C+
φ contains all those functions u ∈ C0(Ω) with k1φ ≤ u ≤ k2φ in Ω for some

k1, k2 > 0. Let φ1,s be the first positive normalized eigenfunction (‖φ1,s‖L∞(Ω) = 1) of (−∆)s

in X0. We recall that φ1,s ∈ Cs(RN ) and φ1,s ∈ C+
δs(Ω) where δ(x) = dist(x, ∂Ω) (see for

instance Proposition 1.1 and Theorem 1.2 in [17]). We then define the barrier function φq as

follows:

φq
def
=


φ1,s if 0 < q < 1,

φ1,s

(
ln
(

2
φ1,s

)) 1
q+1

if q = 1,

φ
2
q+1

1,s if q > 1.

We prove the following as the main results:

Theorem 1.2 There exists Λ > 0 such that

(i) (Pλ) admits at least two solutions in X0 ∩ C+
φq

(Ω) for every λ ∈ (0,Λ);

(ii) (Pλ) admits no solution for λ > Λ;

(iii) (PΛ) admits at least one positive solution uΛ ∈ X0 ∩ C+
φq

(Ω).

Theorem 1.3 Let λ ∈ (0,Λ], q > 0 satisfies q(2s− 1) < (2s+ 1) and u ∈ X0 is any positive

weak solution of (Pλ) then

(i) u ∈ Cs(Rn) when 0 < q < 1;

(ii) u ∈ Cs−ε(Rn) for any small enough ε > 0 when q = 1;

(iii) u ∈ C
2s
q+1 (Rn) when q > 1.

Remark 1.4 Here, the Hölder regularity for the weak solutions of (Pλ) obtained is optimal

because of the behavior of the solution near ∂Ω since we showed that any weak solution of

(Pλ) lies in C+
φq

(Ω).

Remark 1.5 It follows from Theorem 1.3 that the extremal solution (when λ = Λ), in case

of critical growth nonlinearities is a classical solution which extends the results in [1] where

in this regard only subcritical nonlinearities are considered.

2 Preliminaries

We start by some preliminary results. The energy functional corresponding to (Pλ) is given

by Iλ : X0 → R defined as

Iλ(u)
def
=


Cns ‖u‖2X0

2 − 1
1−q

∫
Ω |u|

1−q dx− 1
2∗s

∫
Ω |u|

2∗s dx if q 6= 1,
Cns ‖u‖2X0

2 −
∫

Ω ln |u| dx− 1
2∗s

∫
Ω |u|

2∗s dx if q = 1.
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Let q > 0 satisfies q(2s − 1) < (2s + 1). Then for any ϕ ∈ X0 and u ∈ C+
φq

(Ω), by Hardy’s

inequality (see [23, Lemma 3.2.6.1, p. 259]) we obtain

∫
Ω
u−qϕ ≤

∫
Ω

dx

(δ(x))
2s(q−1)
(q+1)

 1
2 (

ϕ2

(δ(x))2s

) 1
2

< K‖ϕ‖ < +∞ (2.1)

where K > 0 is a constant. If we define D(I) = {u ∈ X0 : Iλ(u) < ∞} then by virtue of

(2.1) we get that D(I) 6= ∅. This gives an importance of the inequality q(2s− 1) < (2s+ 1).

From the proof of [1, Theorem 1.2], we know that if 0 < q < 1 and u ∈ X0 satisfies u ≥ cδs

then Iλ is Gâteaux differentiable at u. In the proposition below, we show the same property

of Iλ when q ≥ 1 satisfies q(2s− 1) < (2s+ 1).

Proposition 2.1 If M = {u ∈ X0 : u1 ≤ u ≤ u2} where u1 ∈ C+
φq

(Ω) and u2 ∈ X0 then Iλ

is Gâteaux differentiable at u in the direction (v − u) where v, u ∈M .

Proof. We need to show that

lim
t→0

Iλ(u+ t(v − u))− Iλ(u)

t
= Cns

∫
Q

(v(x)− v(y))((v − u)(x)− (v − u)(y))

|x− y|n+2s
dxdy

−
∫

Ω
u−q(v − u) dx− λ

∫
Ω
u2∗s−1(v − u) dx.

It is enough to show this for the singular term; for the rest two terms, the proof is standard.

For any t ∈ (0, 1), u + t(v − u) ∈ M since M is convex. Consider F (u) =
1

1− q

∫
Ω
u1−q dx

then using Mean Value Theorem we get

F (u+ t(v − u))− F (u)

t
=

1

t(1− q)

∫
Ω

(
(u+ t(v − u))1−q − u1−q) (x) dx

=

∫
Ω

(u+ tθ(v − u))−q(x)(v − u)(x) dx

for some θ ∈ (0, 1). Since (u+ tθ(v − u)) ∈M and (2.1), we have∫
Ω

(u+ tθ(v − u))−q(v − u) dx ≤
∫

Ω
u−q1 (v − u) dx < +∞.

So using Lebesgue Dominated convergence theorem we pass through the limit t→ 0 and get

lim
t→0

F (u+ t(v − u))− F (u)

t
=

∫
Ω
u−q(v − u) dx.

This completes the proof. �

Let L(u) := (−∆)su − u−q. Then L forms a monotone operator. So we have the following

comparison principle:
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Lemma 2.2 Let u1, u2 ∈ X0 ∩ C+
φq

(Ω) are weak solutions to

L(u1) = g1 in Ω, L(u2) = g2 in Ω

with g1, g2 ∈ L2(Ω) such that g1 ≤ g2 a.e. in Ω. Then u1 ≤ u2 a.e. in Ω. Moreover if

g ∈ L∞(Ω) then the problem

L(u) = g in Ω, u = 0 in Rn \ Ω

has a unique solution in X0.

3 Existence result

Let us define

Λ := sup{λ > 0 : (Pλ) has a weak solution}.

Also let w ∈ C0(Ω) solves the purely singular problem

(−∆)sw = w−q, w > 0 in Ω, w = 0 in Rn \ Ω.

Then [1, Theorems 1.2 and 1.4] give us that w is unique, w ∈ X0 ∩ C+
φq

(Ω) and w ∈ Csq(Rn)

where sq
def
=


s if q < 1,

s− ε for any ε > 0 if q = 1,
2s
q+1 if 1 < q and q(2s− 1) < 2s+ 1.

For sake of clarity we basically focus on the case 1 ≤ q and q(2s− 1) < (2s+ 1). Indeed,

when q ∈ (0, 1), the case follows easily along the same line. In this context, the next result is

an important lemma for Λ.

Lemma 3.1 It holds 0 < Λ < +∞.

Proof. First we prove that Λ < +∞. Using φ1,s as the test function in (Pλ) we get∫
Ω

(u−qφ1,s + λu2∗s−1φ1,s) dx =

∫
Rn
φ1,s(−∆)su dx =

∫
Rn
u(−∆)sφ1,s dx = λ1,s

∫
Ω
uφ1,s dx.

(3.1)

If we choose a λ > 0 which satisfies t−q + λt2
∗
s−1 > 2λ1,st for all t > 0 then we get a

contradiction to (3.1). Therefore it must be Λ < +∞. Now to prove Λ > 0 we need sub

and supersolution for (Pλ). It is easy to see that uλ = w forms a subsolution of (Pλ) and

uλ = uλ + Mz for λ > 0 small enough and for a M = M(λ) > 0 forms a supersolution of

(Pλ), where 0 < z ∈ X0 solves (−∆)sz = 1 in Ω. Now we define the closed convex subset Mλ

of X0 as

Mλ := {u ∈ X0 : uλ ≤ u ≤ uλ}.

Consider the iterative scheme (k ≥ 1):

(Pλ,k)

{
(−∆)suk − u−qk = λu

2∗s−1
k−1 , uk > 0 in Ω

uk = 0 in Rn \ Ω
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with u0 = uλ. The existence of {uk} in X0 ∩Mλ ∩ C+
φq

(Ω) can be proved by considering

the approximated problem corresponding to (Pλ,k), for instance we refer [6, Proposition 2.3].

From Lemma 2.2, it follows that {uk} is increasing and uk ∈ Mλ for all k. Let lim
k↑∞

uk = uλ.

Then testing (Pλ,k) by uk we get

‖uk‖2 ≤ 2

∫
Ω
uλ

2dx+ λ

∫
Ω
uλ

2∗sdx+

∫
Ω
uλuλ

−q ≤ Kλ

where Kλ > 0 is a constant depending on λ. So, up to a subsequence, uk ⇀ uλ in X0. Finally

using Lebesgue dominated convergence Theorem we pass through the limit in (Pλ,k) to obtain

uλ solves (Pλ) weakly and obviously, uλ ∈Mλ. This proves that Λ > 0. �

In the next result, we prove the existence of a weak solution for (Pλ) whenever λ ∈ (0,Λ).

In the proof, we use a minimization on a conical shell argument similar as in [2, Lemma 4.1]

and in [6, Proposition 3.5]. But here we take advantage of the existence of a strict positive

subsolution to control the singular nonlinearity.

Proposition 3.2 For each λ ∈ (0,Λ), (Pλ) admits a weak solution w ∈ C+
φq

(Ω).

Proof. The proof goes along the line of Perron’s method adapted over a nonlocal framework

(see [13, Lemma 2.2]). Let λ ∈ (0,Λ) and λ′ ∈ (λ,Λ) then it is easy to see that uλ′ , a weak

solution of (Pλ′), forms a supersolution for (Pλ). Such a λ′ exists because of the definition of

Λ and Lemma 3.1. Let uλ be the same function as defined in Lemma 3.1 and consider the

closed convex subset Wλ of X0 as

Wλ = {u ∈ X0 : uλ ≤ u ≤ uλ′ .}

Then for each u ∈Wλ, because of fractional Sobolev embedding Iλ satisfies

Iλ(u) ≥

{
Cns ‖u‖2

2 − C
2∗s
‖u‖2∗s if q > 1,

Cns ‖u‖2
2 − C

2∗s
‖u‖2∗s − C(λ′) if q ≤ 1

where C(λ′) is a positive constant depending solely on λ′. Then Iλ is bounded from below

and coercive over Wλ. If {uk} ⊂ Wλ be such that uk ⇀ u0 in X0 as k → ∞ then since for

each k, uk ≥ uλ for q > 1 and uk ≤ uλ′ for q ∈ (0, 1],
∫

Ω u
1−q
k dx ≤

∫
Ω uλ

1−q dx, we can use

Lebesgue Dominated convergence theorem to get that∫
Ω
u1−q
k dx→

∫
Ω
u1−q

0 dx as k →∞.

Hence from weak lower semicontinuity of norms, it follows that Iλ is weakly lower semicon-

tinuous over Wλ. Moreover, Wλ is weakly sequentially closed subset of X0. Therefore there

exists a w ∈Wλ such that

inf
u∈Wλ

Iλ(u) = Iλ(w). (3.2)
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Claim- w is a weak solution of (Pλ).

Let ϕ ∈ X0 and ε > 0 then we define

vε = min{uλ′ ,max{uλ, w + εϕ}} = w + εϕ− ϕε + ϕε

where ϕε = max{0, w + εϕ − uλ′} and ϕε = max{0, uλ − w − εϕ}. By construction vε ∈ Wλ

and ϕε, ϕε ∈ X0 ∩ L∞(Ω). Since w + t(vε − w) ∈ Wλ for each t ∈ (0, 1), using (3.2) and

Proposition 2.1 we get that

0 ≤ lim
t→0+

Iλ(w + t(vε − w))− Iλ(w)

t

=

∫
Q

(vε − w)(−∆)sw dx−
∫

Ω
w−q(vε − w)dx−

∫
Ω
w2∗s−1(vε − w)dx.

This on simplification gives∫
Rn
ϕ(−∆)sw dx−

∫
Ω

(w−q + λw2∗s−1)ϕ dx ≥ 1

ε
(Eε − Eε) (3.3)

where

Eε =

∫
Rn
ϕε(−∆)swdx−

∫
Ω

(w−q + λw2∗s−1)ϕε dx

=

∫
Rn
ϕε(−∆)s(w − uλ′)dx+

∫
Rn
ϕε(−∆)suλ′dx−

∫
Ω

(w−q + λw2∗s−1)ϕε dx

Eε =

∫
Rn
ϕε(−∆)swdx−

∫
Ω

(w−q + λw2∗s−1)ϕε dx

=

∫
Rn
ϕε(−∆)s(w − uλ)dx+

∫
Rn
ϕε(−∆)suλdx−

∫
Ω

(w−q + λw2∗s−1)ϕε dx.

We define Ωε = {x ∈ Ω : (w + εϕ)(x) ≥ uλ′ > w(x)} so that L(Ωε) → 0 as ε → 0+ and

also CΩε:= Ω \ Ωε ⊂ {x ∈ Ω : (w + εϕ)(x) < uλ′(x)} which implies that L(Ωε × CΩε)→ 0 as
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ε→ 0+. Now we consider the term∫
Rn
ϕε(−∆)s(w − uλ′)dx

=

∫
Q

((w − uλ′)(x)− (w − uλ′)(y))(ϕε(x)− ϕε(y)

)
|x− y|n+2sdxdy

=

∫
Ωε

∫
Ωε

|(w − uλ′)(x)− (w − uλ′)(y)|2

|x− y|n+2s
dxdy

+ ε

∫
Ωε

∫
Ωε

((w − uλ′)(x)− (w − uλ′)(y))(ϕ(x)− ϕ(y))

|x− y|n+2s
dxdy

+ 2

∫
Ωε

∫
CΩε

(w − uλ′)2(x)

|x− y|n+2s
dxdy + 2ε

∫
Ωε

∫
CΩε

(w − uλ′)(x)ϕ(x)

|x− y|n+2s
dxdy

− 2

∫
Ωε

∫
CΩε

(w − uλ′)(x)(w − uλ′)(y)

|x− y|n+2s
dxdy + 2ε

∫
Ωε

∫
CΩε

(w − uλ′)(y)ϕ(x)

|x− y|n+2s
dxdy

+ 2

∫
Ωε

∫
CΩ

(w − uλ′)2(x)

|x− y|n+2s
dxdy + 2ε

∫
Ωε

∫
CΩ

(w − uλ′)(x)ϕ(x)

|x− y|n+2s
dxdy

≥ ε
∫

Ωε

∫
Ωε

((w − uλ′)(x)− (w − uλ′)(y))(ϕ(x)− ϕ(y))

|x− y|n+2s
dxdy

+ 2ε

∫
Ωε

∫
CΩε

(w − uλ′)(x)ϕ(x)

|x− y|n+2s
dxdy − 2ε2

∫
Ωε

∫
CΩε

ϕ(x)ϕ(y)

|x− y|n+2s
dxdy

+ 2ε

∫
Ωε

∫
CΩε

(w − uλ′)(y)ϕ(x)

|x− y|n+2s
dxdy + 2ε

∫
Ωε

∫
CΩ

(w − uλ′)(x)ϕ(x)

|x− y|n+2s
dxdy

where to obtain the last inequality, we use the fact that if (x, y) ∈ Ωε × CΩε then (w −
uλ′)(x)(w − uλ′)(y) ≤ ε2ϕ(x)ϕ(y). Therefore we get

1

ε

∫
Rn
ϕε(−∆)s(w − uλ′)dx ≥ o(1) as ε→ 0+.

Moreover using the fact that uλ′ is a supersolution of (Pλ), the other terms of 1
εE

ε can be

estimated as

1

ε

∫
Rn
ϕε(−∆)suλ′ dx−

1

ε

∫
Ω

(w−q + λw2∗s−1)ϕε dx

≥ 1

ε

∫
Ωε

(u−qλ′ − w
−q)ϕε dx+

1

ε

∫
Ωε

(u
2∗s−1
λ′ − w2∗s−1)ϕε dx

≥ −
∫

Ωε
|u−qλ′ − w

−q||ϕ|dx = o(1) as ε→ 0+.

Altogether we get
1

ε
Eε ≥ o(1) as ε→ 0+

and similarly we obtain
1

ε
Eε ≤ o(1) as ε→ 0+.
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Hence (3.3) gives that for all ϕ ∈ X0∫
Rn
ϕ(−∆)sw dx−

∫
Ω

(w−q + λw2∗s−1)ϕ dx ≥ o(1) as ε→ 0+

but since ϕ was arbitrary, this implies that w is a weak solution of (Pλ). This establishes the

proof. �

We now prove a special property of w, the weak solution of (Pλ) obtained in Proposition 3.2

following the proof in [6, Proposition 3.5]. We also refer [2, Proposition 5.2] where similar

ideas were already used.

Lemma 3.3 Let λ ∈ (0,Λ) and w denotes the weak solution of (Pλ) obtained in Proposition

3.2. Then w forms a local minimum of the functional Iλ.

Proof. We argue by contradiction, so suppose w is not a local minimum of Iλ. Then there

exists a sequence {uk} ⊂ X0 satisfying

‖uk − w‖ → 0 as k →∞ and Iλ(uk) < Iλ(w). (3.4)

We define u = uλ and u = uλ′ as sub and supersolution of (Pλ) as defined in the proof of

Proposition 3.2. Also we define

vk = max{u,min{uk, u}} =


u, if uk < u,

uk, if u ≤ uk ≤ u,

u, if uk > u,

and wk = (uk − u)−, wk = (uk − u)+. Correspondingly, we define the sets Sk = Supp(wk)

and Sk = Supp(wk). Then uk = vk − wk + wk and vk ∈ Wλ where Wλ has been defined in

Proposition 3.2. The main idea of the proof is to establish that the measures of Sk and Sk

tend to 0 as k →∞ which together with vk ∈Wλ force Iλ(uk) to be beyond Iλ(w). First, we

have that∫
Ω

(u+
k )1−qdx =

∫
Sk

(u+
k )1−qdx+

∫
Sk

(u+
k )1−qdx+

∫
u≤vk≤u

(vk)
1−qdx

=

∫
Sk

((u+
k )1−q − u1−q)dx+

∫
Sk

((u+
k )1−q − u1−q)dx+

∫
Ω

(vk)
1−qdx

and

∫
Ω

(u+
k )2∗sdx =

∫
Sk

(u+
k )2∗sdx+

∫
Sk

(u+
k )2∗sdx+

∫
u≤vk≤u

(vk)
2∗sdx

=

∫
Sk

((u+
k )2∗s − u2∗s )dx+

∫
Sk

((u+
k )2∗s − u2∗s )dx+

∫
Ω

(vk)
2∗sdx.

Then we can express Iλ(uk) as

Iλ(uk) = Iλ(vk) +
J0

2
− 1

1− q

(∫
Sk

((u+
k )1−q − u1−q)dx+

∫
Sk

((u+
k )1−q − u1−q)dx

)

− λ

2∗s

(∫
Sk

((u+
k )2∗s − u2∗s )dx+

∫
Sk

((u+
k )2∗s − u2∗s )dx

) (3.5)
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where J0 = Cns (‖uk‖2 − ‖vk‖2). While denoting Sk = {x ∈ Ω : u ≤ vk ≤ u} and hk(x, y) =

(uk(x)− uk(y))2 − (vk(x)− vk(y))2, we get

J0 =

∫
Sk

∫
Sk

hk(x, y)

|x− y|n+2s
dxdy +

∫
Sk

∫
Sk

hk(x, y)

|x− y|n+2s
dxdy + 2

∫
Sk

∫
Sk

hk(x, y)

|x− y|n+2s
dxdy

+ 2

∫
Sk

∫
Sk

hk(x, y)

|x− y|n+2s
dxdy + 2

∫
Sk

∫
Sk

hk(x, y)

|x− y|n+2s
dxdy.

Since uk = wk + u and vk = u in Sk and uk = u− wk and vk = u in Sk we get that∫
Sk

∫
Sk

hk(x, y)

|x− y|n+2s
dxdy =

∫
Sk

∫
Sk

(wk(x)− wk(y))2

|x− y|n+2s
dxdy

− 2

∫
Sk

∫
Sk

(wk(x)− wk(y))(u(x)− u(y))

|x− y|n+2s
dxdy∫

Sk

∫
Sk

hk(x, y)

|x− y|n+2s
dxdy =

∫
Sk

∫
Sk

(wk(x)− wk(y))2

|x− y|n+2s
dxdy

+ 2

∫
Sk

∫
Sk

(wk(x)− wk(y))(u(x)− u(y))

|x− y|n+2s
dxdy.

Also similarly we obtain∫
Sk

∫
Sk

hk(x, y)

|x− y|n+2s
dxdy =

∫
Sk

∫
Sk

(wk(x) + wk(y))2

|x− y|n+2s
dxdy

− 2

∫
Sk

∫
Sk

(wk(x) + wk(y))(u(x)− u(y))

|x− y|n+2s
dxdy,∫

Sk

∫
Sk

hk(x, y)

|x− y|n+2s
dxdy =

∫
Sk

∫
Sk

wk
2(x)

|x− y|n+2s
dxdy − 2

∫
Sk

∫
Sk

wk(x)(u(x)− uk(y))

|x− y|n+2s
dxdy,∫

Sk

∫
Sk

hk(x, y)

|x− y|n+2s
dxdy =

∫
Sk

∫
Sk

wk
2(x)

|x− y|n+2s
dxdy + 2

∫
Sk

∫
Sk

wk(x)(u(x)− uk(y))

|x− y|n+2s
dxdy.

Since CSk = Sk ∪ Sk, CSk = Sk ∪ Sk and

‖wk‖2 =

∫
Sk

∫
Sk

(wk(x)− wk(y))2

|x− y|n+2s
dxdy + 2

∫
Sk

∫
CSk

wk
2(x)

|x− y|n+2s
dxdy

‖wk‖2 =

∫
Sk

∫
Sk

(wk(x)− wk(y))2

|x− y|n+2s
dxdy + 2

∫
Sk

∫
CSk

wk
2(x)

|x− y|n+2s
dxdy,
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using all above estimates, we can express J0 as

J0 = Cns (‖wk‖2 + ‖wk‖2) + 2

(∫
Sk

∫
Sk

(wk(x) + wk(y))2

|x− y|n+2s
dxdy −

∫
Sk

∫
Sk

wk
2(x)

|x− y|n+2s

−
∫
Sk

∫
Sk

wk
2(x)

|x− y|n+2s
dxdy

)
− 2

∫
Sk

∫
Sk

(wk(x)− wk(y))(u(x)− u(y))

|x− y|n+2s
dxdy

+ 2

∫
Sk

∫
Sk

(wk(x)− wk(y))(u(x)− u(y))

|x− y|n+2s
dxdy − 4

∫
Sk

∫
Sk

(wk(x) + wk(y))(u(x)− u(y))

|x− y|n+2s
dxdy

− 4

∫
Sk

∫
Sk

wk(x)(u(x)− uk(y))

|x− y|n+2s
dxdy + 4

∫
Sk

∫
Sk

wk(x)(u(x)− uk(y))

|x− y|n+2s
dxdy.

Now we notice that if (x, y) ∈ Sk×Sk then (u(x)−uk(y)) ≤ (u(x)−u(y)), if (x, y) ∈ Sk×Sk
then (u(x)− uk(y)) ≥ (u(x)− u(y)) and∫

Sk

∫
Sk

(wk(x) + wk(y))2

|x− y|n+2s
dxdy −

∫
Sk

∫
Sk

wk
2(x)

|x− y|n+2s
dxdy −

∫
Sk

∫
Sk

wk
2(x)

|x− y|n+2s
dxdy

= 2

∫
Sk

∫
Sk

wk(x)wk(y)

|x− y|n+2s
dxdy.

Also using change of variables, we have∫
Sk

∫
Sk

(wk(x) + wk(y))(u(x)− u(y))

|x− y|n+2s
dxdy

=

∫
Sk

∫
Sk

wk(x)(u(x)− u(y))

|x− y|n+2s
dxdy −

∫
Sk

∫
Sk

wk(x)(u(x)− u(y))

|x− y|n+2s
dxdy.

Therefore altogether we obtain

J0 ≥ Cns (‖wk‖2 + ‖wk‖2) + 4

∫
Sk

∫
Sk

wk(x)wk(y)

|x− y|n+2s
dxdy + 2

∫
Rn
wk(−∆)su dx− 2

∫
Rn
wk(−∆)su dx

− 4

∫
Sk

∫
Sk

wk(x)(u(x)− u(y))

|x− y|n+2s
dxdy + 4

∫
Sk

∫
Sk

wk(x)(u(x)− u(y))

|x− y|n+2s
dxdy

− 4

∫
Sk

∫
Sk

(wk(x) + wk(y))(u(x)− u(y))

|x− y|n+2s
dxdy

≥ Cns (‖wk‖2 + ‖wk‖2) + 2

∫
Rn
wk(−∆)su dx− 2

∫
Rn
wk(−∆)su dx

where we used the fact that if (x, y) ∈ Sk × Sk then wk(x)wk(y) ≥ 0. Now recalling that u

and u forms sub and supersolution of (Pλ) respectively, inserting the above inequality in (3.5)
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we obtain

Iλ(uk) ≥ Iλ(vk) +
Cns ‖wk‖2

2
+
Cns ‖wk‖2

2
+

∫
Sk

(
u1−q − (u+ wk)

1−q

1− q
+ u−qwk

)
dx

+

∫
Sk

(
u1−q − (u− wk)1−q

1− q
− u−qwk

)
dx+ λ

∫
Sk

(
u2∗s − (u+ wk)

2∗s

2∗s
+ u2∗s−1wk

)
dx

+ λ

∫
Sk

(
u2∗s − (u− wk)2∗s

2∗s
− u2∗s−1wk

)
dx.

Now from Mean Value Theorem it follows that there exists θ ∈ (0, 1) (where θ may change

its value for different function below) such that

Iλ(uk) ≥ Iλ(vk) +
Cns ‖wk‖2

2
+
Cns ‖wk‖2

2
−
∫
Sk

((u+ θwk)
−q − u−q)wkdx

−
∫
Sk

(u−q − (u+ θwk)
−q)wkdx− λ

∫
Sk

((u+ θwk)
2∗s−1 − u2∗s−1)wkdx

− λ
∫
Sk

(u2∗s−1 − (u+ θwk)
2∗s−1)wkdx

≥ Iλ(vk) +
Cns ‖wk‖2

2
+ λ

∫
Sk

((u+ θwk)
2∗s−1 − u2∗s−1)wkdx

− λ
∫
Sk

(u2∗s−1 − (u+ θwk)
2∗s−1)wkdx.

(3.6)

Now since 2∗s > 2, there exists constant C > 0 such that (3.6) reduces to

Iλ(uk) ≥ Iλ(vk) +
Cns ‖wk‖2

2
+
Cns ‖wk‖2

2
− C

∫
Sk

(u2∗s−2 − wk2∗s−2)wk
2dx

− C
∫
Sk

(u2∗s−2 − wk2∗s−2)wk
2dx

≥ Iλ(vk) +
Cns ‖wk‖2

2
+
Cns ‖wk‖2

2
− C

(∫
Sk

|u|2∗s
) 2∗s−2

2∗s

‖wk‖2

− C
(∫

Sk

|u|2∗s
) 2∗s−2

2∗s
‖wk‖2.

(3.7)

Claim- lim
k→∞

|Sk| = 0 and lim
k→∞

|Sk| = 0.

Let α > 0 and define

Ak = {x ∈ Ω : uk ≥ u and u > w + α}, Âk = {x ∈ Ω : uk ≤ u and u < w − α}

Bk = {x ∈ Ω : uk ≥ u and u ≤ w + α}, B̂k = {x ∈ Ω : uk ≤ u and u ≥ w − α}.

Since

0 = L({x ∈ Ω : u < w}) = L(∩∞j=1{x ∈ Ω : u < w +
1

j
})
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so there exists j0 ≥ 1 large enough and α < 1/j0 such that L({x ∈ Ω : u < w + α}) ≤ ε/2.

This implies that L(Bk) ≤ ε/2 and similarly, we obtain L(B̂k) ≤ ε/2. From (3.4) we already

have |uk − w|2 → 0 as k →∞. So for k ≥ k0 large enough we get that

α2ε

2
≥
∫

Ω
|uk − w|2 dx ≥

∫
Ak

|uk − w|2 dx ≥ α2L(Ak)

which implies that L(Ak) ≤ ε
2 for k ≥ k0. Similarly we obtain L(Âk) ≤ ε

2 for k ≥ k0. Now

since Sk ⊂ Ak ∩Bk and Sk ⊂ Âk ∩ B̂k we get that L(Sk) ≤ ε and L(Sk) ≤ ε for k ≥ k0. This

proves the claim. Thus

(∫
Sk

|u|2∗s
) 2∗s−2

2∗s
≤ o(1) and

(∫
Sk

|u|2∗s
) 2∗s−2

2∗s

≤ o(1)

which imposing in (3.7) gives that for large enough k

Iλ(uk)≥Iλ(vk) ≥ Iλ(w)

which is a contradiction to (3.4). Therefore w must be a local minimum of Iλ over X0. �

Theorem 3.4 There exists a positive weak solution to (PΛ).

Proof. Let λm ↑ Λ as m→∞ and {uλm} be a sequence of positive weak solutions to (Pλm),

such that uλm forms the local minimum of Iλm as seen in Lemma 3.3. Since we consider the

minimal solutions, we get um ≤ um+1 for each m. Then, it is easy to see that Iλm < 0 in the

case 0 < q < 1 whereas there exists a constant K independent of m such that Iλm ≤ K for

all m when q > 1 but q(2s − 1) < (2s + 1). This implies that {uλm} is uniformly bounded

in X0. Therefore, up to a subsequence there exists uΛ ∈ X0 such that uλm ⇀ uΛ weakly and

pointwise a.e. in X0 as m → ∞. Also by construction uλm ≥ uλ1 as defined in Lemma 3.1.

Therefore, uΛ is a positive weak solution of (PΛ). �

4 Multiplicity result

We have already obtained the first solution for (Pλ) in the previous section when λ ∈ (0,Λ)

in X0-topology. We fix λ ∈ (0,Λ) and let w denotes the first weak solution of (Pλ) obtained

in Proposition 3.2. In this section, we prove the existence of second solution of (Pλ) using

the machinery of mountain pass Lemma and with the help of Ekeland variational principle.

Precisely, we extend the approach used in [13] to the non local setting and for q ≥ 1. This

can be done by using the asymptotic boundary behavior of w ∈ C+
φq

(Ω) and the Hardy’s

inequality to control the singular nonlinearity in the cone T defined below:

T
def
= {x ∈ X0 : u ≥ w a.e. in Ω}

and since w forms a local minimizer of Iλ we get that Iλ(u) ≥ Iλ(w) whenever ‖u−w‖ ≤ σ0,

for some constant σ0 > 0. Then one of the following cases holds
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(ZA) (Zero Altitude) inf{Iλ(u)| u ∈ T, ‖u− w‖ = σ} = Iλ(w) for all σ ∈ (0, σ0).

(MP) (Mountain Pass) There exists a σ1 ∈ (0, σ0) such that inf{Iλ(u)| u ∈ T, ‖u − w‖ =

σ1} > Iλ(w).

Before investigating the two distinguished cases (ZA) and (MP ), we prove the following

regularity result for weak solutions to (Pλ):

Proposition 4.1 Any weak solution to (Pλ) for λ ∈ (0,Λ] belongs to L∞(Ω) ∩ C+
φq

(Ω).

Proof. Let u ∈ X0 denotes a weak solution to (Pλ). We know that uλ ∈ X0∩C+
φq

(Ω) (defined

in Lemma 3.1) forms a subsolution to (Pλ) satisfying (−∆)suλ = uλ
−q in Ω. We first have

Claim : uλ ≤ u a.e. in Ω.

Let us prove the above claim. Suppose it is not true. First it is easy to see that for any

v ∈ X0 it holds

(v(x)− v(y))(v+(x)− v−(y)) ≥ |v+(x)− v+(y)|2, for any x, y ∈ Rn.

Therefore using (uλ − u)+ as the test function in

(−∆)s(uλ − u) ≤ uλ−q − u−q in Ω

we get

0 ≤ Cns
∫
Q

|(uλ − u)+(x)− (uλ − u)+(y)|2

|x− y|n+2s
dxdy

≤ Cns
∫
Q

((uλ − u)+(x)− (uλ − u)+(y))((uλ − u)(x)− (uλ − u)(y))

|x− y|n+2s
dxdy

≤
∫

Ω
(uλ
−q − u−q)(uλ − u)+ dx ≤ 0.

Hence it must be that meas{x ∈ Ω : uλ(x) ≥ u(x)} = 0 which gives a contradiction.

Therefore uλ ≤ u a.e. in Ω. Let us now prove that u ∈ L∞(Ω). We follow the approach

in [4, Proposition 2.2]. By virtue of the above claim and Hardy’s inequality, we know that∫
Ω u
−qφ dx < ∞ for any φ ∈ X0. We aim to show that (u − 1)+ belongs to L∞(Ω) which

will imply that u ∈ L∞(Ω). If f(t) = (t− 1)+ for t ∈ R and ψ(t) ∈ C∞(R) be a convex and

increasing function such that ψ′(t) ≤ 1 when t ∈ [0, 1] and ψ′(t) = 1 when t ≥ 1 then we can

define

ψε(t) = εψ(t/ε)

so that ψε → f uniformly as ε → 0. Also since ψε is smooth, by regularity results and the

uniform convergence of ψε to f we get that

(−∆)sψε(u)→ (−∆)s(u− 1)+ as ε→ 0.

Moreover because ψε is convex and differentiable, we know that

(−∆)sψε(u) ≤ ψ′ε(u)(−∆)su ≤ χ{u>1}(−∆)su
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where χ{u>1} denotes the characteristic function over the set {x ∈ Ω : u(x) > 1}. Then

passing on the limits ε→ 0 in above equation, we obtain

(−∆)s(u− 1)+ ≤ χ{u>1}(−∆)su ≤ χ{u>1}(u
−q + λu2∗s−1) ≤ C(1 + ((u− 1)+)2∗s−1)

for some constant C > 0. Therefore using [4, Proposition 2.2], we conclude that (u − 1)+ ∈
L∞(Ω). Finally we show that u ∈ C+

φq
(Ω). Let zλ be the unique solution (refer to [1, Theorem

1.1] with δ = q and β = 0) to

(−∆)szλ = zλ
−q + λc, u > 0 in Ω, u = 0 in Rn \ Ω,

with c = ‖u‖2
∗
s−1
∞ then similarly we can prove that u ≤ zλ. Therefore using local regularity

results in [17, Propositions 2.2 and 2.3] derived from [20, Propositions 2.8 and 2.9], u ∈ C+
φq

(Ω).

This completes the proof. �

Lemma 4.2 Let (ZA) holds then for any σ ∈ (0, σ0) there exists a solution v ∈ C+
φ (Ω) to

(Pλ) such that 0 < w < v in Ω and ‖v − w‖ = σ.

Proof. We follow the proof of Lemma 2.6 of [13] in a nonlocal framework. We fix σ ∈ (0, σ0)

and r > 0 such that σ − r > 0 and σ + r < σ0. Let us define the set

W = {u ∈ T | 0 < σ − r ≤ ‖u− w‖ ≤ σ + r}

which is closed in X0 and by (ZA), inf
u∈W

Iλ(u) = Iλ(w). So using Ekeland variational principle,

for any minimizing sequence {uk} ⊂ X0 satisfying ‖uk‖ = σ and Iλ(uk) ≤ Iλ(w) + 1
k , we get

another sequence {vk} ⊂W such that
Iλ(vk) ≤ Iλ(uk) ≤ Iλ(w) +

1

k

‖uk − vk‖ ≤
1

k

Iλ(vk) ≤ Iλ(z) +
1

k
‖z − vk‖, for all z ∈W.

(4.1)

We can choose ε > 0 small enough so that vk + ε(z − vk) ∈ W for z ∈ T . So from (4.1) we

obtain
Iλ(vk + ε(z − vk))− Iλ(vk)

ε
≥ −1

k
‖z − vk‖.

Letting ε→ 0+ and using the fact that vk ≥ w for each k, for z ∈ T we get∫
Rn

(−∆)svk(z − vk)−
∫

Ω
v−qk (z − vk) dx− λ

∫
Ω
v

2∗s−1
k (z − vk) dx ≥ −

1

k
‖z − vk‖. (4.2)

Now since {vk} forms a bounded sequence in X0, we get that there exists a v ∈ X0 such

that, up to a subsequence, vk ⇀ v weakly in X0 and pointwise a.e. in Ω as k → ∞. Since

vk ≥ w for each k, we get v ≥ w a.e. in Ω. In what follows, we will prove that v is a weak
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solution of (Pλ). For φ ∈ X0 and ε > 0, we set φk,ε = (vk + εφ−w)− ∈ X0 which implies that

(vk + εφ+ φk,ε) ∈ T . Putting z = vk + εφ+ φk,ε in (4.2) we get

Cns

∫
Q

(vk(x)− vk(y))((εφ+ φk,ε)(x)− (εφ+ φk,ε)(y))

|x− y|n+2s
dxdy −

∫
Ω
v−qk (εφ+ φk,ε) dx

− λ
∫

Ω
v

2∗s−1
k (εφ+ φk,ε) dx ≥

−1

k
‖(εφ+ φk,ε)‖.

(4.3)

We define the sets Ωk,ε = Supp φk,ε, Ωε = Supp φε and Ω0 = {x ∈ Ω : v(x) = w(x)}. Then

we get that L(Ωε \ Ω0) → 0 as ε → 0 and L(Ωk,ε \ Ωε) + L(Ωε \ Ωk,ε) → 0 as k → ∞. Also

since |φk,ε| ≤ w + ε|φ|, using Lebesgue Dominated convergence theorem we get φk,ε → φε =

(v + εφ − w)− in Lm(Ω) for all m ∈ [1, 2∗s]. Moreover φk,ε ⇀ φε weakly in X0 and pointwise

a.e. in Ω as k →∞. Now we estimate the following integral∫
Q

(vk(x)− vk(y))(φk,ε(x)− φk,ε(y))

|x− y|n+2s
dxdy

=

∫
Q

(vk(x)− vk(y))(φε(x)− φε(y))

|x− y|n+2s
dxdy

+

∫
Q

(vk(x)− vk(y))((φk,ε − φε)(x)− (φk,ε − φε)(y))

|x− y|n+2s
dxdy := I1 + I2.

(4.4)

We show that I2 ≤ ok(1) for which we split the integrals and estimate them separately. Let

Hk = Ωk,ε ∩ Ωε and Gk = Ωk,ε \ Ωε ∪ Ωε \ Ωk,ε. Then∫
Ω

∫
CΩ

(vk(x)− vk(y))((φk,ε − φε)(x)− (φk,ε − φε)(y))

|x− y|n+2s

≤
∫
Hk

∫
CΩ

v(x)(v − vk)(x)

|x− y|n+2s
+

∫
Gk

∫
CΩ

vk(x)(φk,ε − φε)(x)

|x− y|n+2s

≤
∫
Hk

∫
CΩ

v(x)(v − vk)(x)

|x− y|n+2s
+

∫
Gk

∫
CΩ

vk(x)φk,ε(x)

|x− y|n+2s

=

∫
Hk

∫
CΩ

v(x)(v − vk)(x)

|x− y|n+2s
+ ok(1)

(4.5)

using the fact that L(Ωk,ε \ Ωε) + L(Ωε \ Ωk,ε) → 0 as k → ∞ and Lebesgue Dominated

convergence theorem. Similarly∫
Ω

∫
Ω

(vk(x)− vk(y))((φk,ε − φε)(x)− (φk,ε − φε)(y))

|x− y|n+2s

≤
∫
Hk

∫
Hk

(v(x)− v(y))((v − vk)(x)− (v − vk)(y))

|x− y|n+2s

+ 2

∫
Hk

∫
Gk

(vk(x)− vk(y))((φk,ε − φε)(x)− (φk,ε − φε)(y))

|x− y|n+2s

+

∫
Gk

∫
Gk

(vk(x)− vk(y))((φk,ε − φε)(x)− (φk,ε − φε)(y))

|x− y|n+2s

≤
∫
Hk

∫
Hk

(v(x)− v(y))((v − vk)(x)− (v − vk)(y))

|x− y|n+2s
+ ok(1)

(4.6)
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using again the Lebesgue Dominated convergence theorem with the fact that vk − v → 0 and

φk,ε − φε → 0 pointwise as k →∞. Combining (4.5) and (4.6) we obtain that

I2 ≤
∫
Hk

∫
Hk∪CΩ

(v(x)− v(y))((v − vk)(x)− (v − vk)(y))

|x− y|n+2s
+ ok(1) = ok(1).

Therefore using this in (4.4), we obtain∫
Q

(vk(x)− vk(y))(φk,ε(x)− φk,ε(y))

|x− y|n+2s
dxdy ≤

∫
Q

(vk(x)− vk(y))(φε(x)− φε(y))

|x− y|n+2s
dxdy+ok(1).

Moreover, we have that |v−qk (εφ+φk,ε)| ≤ w−q(w+2εφ) ∈ L1(Ω) using the Hardy’s inequality.

Thus using Lebesgue Dominated convergence theorem and passing on the limits k → ∞ in

(4.3) we get

0 ≤ Cns
∫
Q

(vk(x)− vk(y))((εφ+ φε)(x)− (εφ+ φε)(y))

|x− y|n+2s
dxdy−

∫
Ω

(v−q +λv2∗s−1)(εφ+φε) dx.

Using the fact that w is a weak solution of (Pλ) and v ≥ w, the above inequality implies that

Cns

∫
Q

(v(x)− v(y))(φ(x)− φ(y))

|x− y|n+2s
dxdy −

∫
Ω
v−qφ dx− λ

∫
Ω
v2∗s−1φ dx

≥ −1

ε

(
Cns

∫
Q

(v(x)− v(y))(φε(x)− φε(y))

|x− y|n+2s
dxdy −

∫
Ω
v−qφε dx− λ

∫
Ω
v2∗s−1φε dx

)
≥ 1

ε

(
Cns

∫
Q

((w − v)(x)− (w − v)(y))(φε(x)− φε(y))

|x− y|n+2s
dxdy +

∫
Ω

(v−q − w−q)φε dx
)

≥ Cns
∫

Ωε

∫
Ωε

((v − w)(x)− (v − w)(y))(φ(x)− φ(y))

|x− y|n+2s
dxdy

+ 2Cns

∫
Ωε

∫
{w≤v+εφ}

((v − w)(x)− (v − w)(y))φ(x)

|x− y|n+2s
dxdy

+ 2Cns

∫
Ωε

∫
CΩ

(v − w)(x)φ(x)

|x− y|n+2s
dxdy +

∫
Ωε

(v−q − w−q)φ dx

= o(1) as ε→ 0+

using the fact that |Ωε \ Ω0| → 0 as ε→ 0+. From this, we get that

Cns

∫
Q

(v(x)− v(y))(φ(x)− φ(y))

|x− y|n+2s
dxdy −

∫
Ω
v−qφ dx− λ

∫
Ω
v2∗s−1φ dx = 0 for all φ ∈ X0.

Claim- The sequence vk → v strongly in X0 as k →∞.

From Brezis Lieb lemma we have

‖vk‖2 − ‖vk − v‖2 = ‖v‖2 + o(1)∫
Ω
|vk|2

∗
s dx−

∫
Ω
|vk − v|2

∗
s dx =

∫
Ω
|v|2∗s dx+ o(1).
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Since vk, v ≥ w a.e. in Ω, we get∫
Ω
|vk|1−q dx−

∫
Ω
|v|1−q dx =

∫
Ω

(vk + θv)−q(vk − v) dx, for θ ∈ [0, 1].

We know that (vk +θv)−q(vk−v)→ 0 pointwise a.e. in Ω and vk, v ≥ w ∈ C+
φ (Ω). Therefore

for any E ⊂ Ω, we have∫
Ω

(vk + θv)−q(vk − v) dx ≤ C‖δ
(1−q)s
1+q (x)‖L2(E)‖vk − v‖, using Hardy’s inequality. (4.7)

Since q(2s− 1) < (2s+ 1), for any ε > 0, there exists a ρ > 0 such that ‖δ
(1−q)s
1+q (x)‖L2(E) < ε

whenever L(E) < ρ. Hence from (4.7) and Vitali’s convergence theorem we obtain∫
Ω

(vk + θv)−q(vk − v) dx→ 0 as k →∞

that is ∫
Ω
|vk|1−q dx→

∫
Ω
|v|1−q dx as k →∞.

Taking v as the testing function in (4.2), we deduce

Cns ‖vk − v‖2 ≤ λ‖vk − v‖
2∗s
L2∗s (Ω)

+ ok(1). (4.8)

In the other hand, taking z = 2vk in (4.2) we infer

Cns ‖vk‖2 −
∫

Ω
v1−q
k dx− λ‖vk‖

2∗s
L2∗s (Ω)

≥ ok(1). (4.9)

Since v is a weak solution, we have that

Cns ‖v‖2 −
∫

Ω
v1−q dx− λ‖v‖2

∗
s

L2∗s (Ω)
= 0. (4.10)

From (4.9) and (4.10),

Cns ‖vk − v‖2 ≥ λ‖vk − v‖
2∗s
L2∗s (Ω)

+ ok(1). (4.11)

From (4.8) and (4.11), we have that

Cns ‖vk − v‖2 = λ‖vk − v‖
2∗s
L2∗s (Ω)

+ ok(1). (4.12)

Without loss of generality, we can assume that Iλ(w) ≤ Iλ(v). Then, we easily get

Iλ(vk)− Iλ(v) ≤ Iλ(w)− Iλ(v) + ok(1) ≤ ok(1)

from which it follows that

Cns
2
‖vk − v‖2 −

λ

2∗s
‖vk − v‖

2∗s
L2∗s (Ω)

≤ ok(1). (4.13)
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From (4.12) and (4.13), we infer that vk → v strongly in X0. This proves the claim. Since

vk ∈ W we conclude that v ∈ W and v 6≡ w. Next we prove that w < v in Ω. For that,

we first observe that from Proposition 4.1 w, v ∈ L∞(Ω) ∩ C+
φq

(Ω). Now suppose that there

exists x0 ∈ Ω such that v(x0) = w(x0). Then, since v ≥ w, v, w ∈ C(Rn) and v 6≡ w, we get

0 > Cns

∫
Rn

(v − w)(x0)− (v − w)(y)

|x0 − y|n+2s
= v−q(x0) + λv2∗s−1(x0)− (w−q(x0) + λw2∗s−1(x0)) = 0

from which we get a contradiction. Therefore v > w in Ω.

�

We define

Ss = inf
u∈X0\{0}

∫
Q

|u(x)− u(y)|2

|x− y|n+2s
dxdy(∫

Ω |u|2
∗
s dx

)2/2∗s
as the best constant for the embedding X0 ↪→ L2∗s (Ω). Consider the family of minimizers

{Uε} of Ss (refer [18]) defined as

Uε(x) = ε−
(n−2s)

2 u∗
(x
ε

)
, x ∈ Rn

where u∗(x) = ū

(
x

S
1
2s
s

)
, ū(x) = ũ(x)

|u|2∗s
and ũ(x) = α(β2 + |x|2)−

n−2s
2 with α ∈ R \ {0} and

β > 0 are fixed constants. Then for each ε > 0, Uε satisfies

(−∆)su = |u|2∗s−2u in Rn.

Let ν > 0 be such that B4ν ⊂ Ω and let ζ ∈ C∞c (Rn) be such that 0 ≤ ζ ≤ 1 in Rn, ζ ≡ 0 in

Rn\B2ν and ζ ≡ 1 in Bν . For each ε > 0 and x ∈ Rn, we define Φε(x) := ζ(x)Uε(x). From

[12, Lemma 4.13], we have the following.

Lemma 4.3 sup{Iλ(u+ tΦε) : t ≥ 0} < Iλ(u) + s(Cns Ss)
n
2s

nλ
n−2s
2s

, for any sufficiently small ε > 0.

Now we prove the existence of second solution if (MP ) holds.

Lemma 4.4 Let (MP ) holds then there exists a v ∈ X0 ∩ C+
φ (Ω), verifying w < v in Ω,

which solves (Pλ) weakly.

Proof. From Lemma 4.3, it follows that there exists ε > 0 and R0 ≥ 1 such that

(i) Iλ(w +RUε) < Iλ(w) for ε ∈ (0, ε0) and R ≥ R0.

(ii) Iλ(w + tR0Uε) < Iλ(w) +
s(Cns Ss)

n
2s

nλ
n−2s
2s

for ε ∈ (0, ε0) and t ∈ [0, 1].

We define the complete metric space

Γ := {η ∈ C([0, 1], T ) : η(0) = w, ‖η(1)− w‖ > σ1, Iλ(η(1)) < Iλ(w)}
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with metric defined as d(η′, η) = max
t∈[0,1]

{‖η′(t) − η(t)‖} for all η, η′ ∈ Γ. From (i) above,

we get that η(t) = w + tR0Uε ∈ Γ for large enough R0 > 0. This gives that Γ 6= ∅. Let

γ0 = inf
η∈Γ

max
t∈[0,1]

Iλ(η(t)) then by virtue of (ii) above and condition (MP ), we get

Iλ(w) < γ0 ≤ Iλ(w) +
s(Cns Ss)

n
2s

nλ
n−2s
2s

.

Now let Ψ(η) = max
t∈[0,1]

Iλ(η(t)) for η ∈ Γ. Then using Ekeland’s variational principle, we get a

sequence {ηk} ⊂ Γ such that

Ψ(ηk) < γ0 +
1

k
and Ψ(ηk)<Ψ(η) +

1

k
‖Ψ(η)− η(ηk)‖Γ, ∀η ∈ Γ. (4.14)

We define

Λk = {t ∈ [0, 1] : Iλ(ηk(t)) = max
x∈[0,1]

Iλ(ηk(x))}

. Claim: There exists a tk ∈ Λk such that if vk = ηk(tk) and z ∈ T then∫
Rn

(−∆)svk(z − vk)−
∫

Ω
(v−qk + λv

2∗s−1
k )(z − vk) dx ≥ −

1

k
max{1, ‖z − vk‖}.

We prove it by contradiction, so assume that for every t ∈ Λk there exists a zt ∈ T such that∫
Rn

(−∆)sηk(t)

(
zt − ηk(t)

max{1, ‖zt − ηk(t)‖}

)
dx

−
∫

Ω
((ηk(t))

−q + λ(ηk(t))
2∗s−1)

(
zt − ηk(t)

max{1, ‖zt − ηk(t)‖}

)
dx < −1

k
.

(4.15)

Since Iλ is locally Lipschitz in T , zt can be chosen to be locally constant on Λt. Therefore

for each t ∈ Λk there exists a neighborhood Nt of t in (0, 1) such that for each r ∈ Nt ∩ Γk,

(4.15) holds that is∫
Rn

(−∆)sηk(r)

(
zt − ηk(r)

max{1, ‖zt − ηk(r)‖}

)
dx

−
∫

Ω
((ηk(r))

−q + λ(ηk(r))
2∗s−1)

(
zt − ηk(r)

max{1, ‖zt − ηk(r)‖}

)
dx < −1

k
.

(4.16)

It is possible to choose a finite set {r1, r2, . . . , rm} ⊂ Λk such that Λk ⊂ ∪mi=1Jri . For notational

convenience, we set zi = zri and denote {κ1, κ2, . . . , κm} as the partition of unity associated

with covering {Jr1 , Jr2 , . . . , Jrm} of Λk. Now if we define z(r) =
∑m

i=1 κi(r)zi for r ∈ [0, 1]

then z(r) ∈ T for each r ∈ [0, 1]. Therefore from (4.16) we deduce that for all r ∈ [0, 1]∫
Rn

(−∆)sηk(r)

(
z(r)− ηk(r)

max{1, ‖z(r)− ηk(r)‖}

)
dx

−
∫

Ω
((ηk(r))

−q + λ(ηk(r))
2∗s−1)

(
z(r)− ηk(r)

max{1, ‖z(r)− ηk(r)‖}

)
dx < −1

k
.
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Let h : [0, 1] → [0, 1] be a continuous function such that h(t) = 1 in a neighborhood of Λk

and h(0) = h(1) = 0. Also we set µk(t) = max{1, ‖z(t)− ηk(t)‖} and

η(t) = ηk(t) +
h(t)ε

µk(t)
(z(t)− ηk(t)).

For ε ∈ (0, 1), η(t) ∈ T for all t ∈ [0, 1]. Hence (4.14) gives us that

max
t∈[0,1]

Iλ(ηk(t)) ≤ max
t∈[0,1]

Iλ(η(t)) +
ε

k
max
t∈[0,1]

(
h(t)
‖z(t)− ηk(t)‖

µk(t)

)
. (4.17)

If tk,ε ∈ [0, 1] denotes the value such that Iλ(η(tk,ε)) = maxt∈[0,1] Iλ(η(t)) then we can assume

that tk,εj → tk for some tk ∈ [0, 1], where εj is a sequence such that εj → 0. Using the

continuity of η, we deduce that

η(tk,εj )→ ηk(tk) as εj → 0.

Hence from (4.17) we obtain that maxt∈[0,1] Iλ(ηk(t)) ≤ maxt∈[0,1] Iλ(ηk(tk)) which implies

Iλ(ηk(tk)) = max
t∈[0,1]

Iλ(ηk(t)). So tk ∈ Γk and h(tk,εj ) = 1 for j > 0 large enough, by definition.

If we set vk = ηk(tk), vk,j = ηk(tk,εj ) and µk,j = max{1, ‖z(tk,εj )−vk,j‖} then for large enough

j we obtain

Iλ(vk,j) ≤ Iλ(vk) ≤ Iλ
(
vk,j +

εj
µk,j

(z(tk,εj )− vk,j)
)

+
εj
k
. (4.18)

It is easy to see that µk,j → θk := max{1, ‖z(tk)− vk‖} and ‖vk − vk,j‖ → 0 as j → ∞. Let

pj = vk,j − vk and

kj = pj + εj

(
z(tk,j)− vk,j

µk,j
− z(tk)− vk

θk

)
= pj + o(1).

Then from (4.18), we obtain

1

εj

(
Iλ

(
vk + εj

(
z(tk)− vk

θk

)
+ kj

)
+ Iλ(vk + pj)

)
≥ −1

k
as j →∞.

But since vk + εj

(
z(tk)−vk

θk

)
≥ w using the fact that z(tk) ∈ T , from Proposition 2.1 and the

above inequality we get∫
Rn

(−∆)svk

(
z(tk)− vk

θk

)
dx−

∫
Ω

(v−qk + λv
2∗s−1
k )

(
z(tk)− vk

θk

)
dx ≥ −1

k
.

This is a contradiction to (4.15). Thus, the claim holds. So there exists a sequence {vk}
satisfying

∫
Rn

(−∆)svk(z − vk)−
∫

Ω
(v−qk + λv

2∗s−1
k )(z − vk) dx ≥ −

c

k
(1 + ‖z‖) for all z ∈ T

Iλ(vk)→ γ0 as k →∞
(4.19)
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where c > 0 is some constant. Setting z = 2vk in (4.14) and using (4.19) we get

γ0 + o(1) ≥ sCns
n
‖vk‖2 −

2∗s − 1 + q

2∗s(1− q)

∫
Ω
|vk|1−q dx−

c

2∗sk
(1 + 2‖vk‖).

Now this implies that {vk} must be bounded in X0, thus up to a subsequence, vk ⇀ v weakly

in X0 as k → ∞. Using similar ideas as in (ZA) case, it can be shown that v is a weak

solution of (Pλ). Then the remaining part of the proof is similar as in [12, Proposition 4.12]

(see also [13, Lemma 2.7] in the local setting) and consists of proving the strong convergence

of the sequence {vk} to v. To this aim we use that the energy Iλ(vk) is strictly below the first

critical level Iλ(w) +
s(Cns Ss)

n
2s

nλ
n−2s
2s

which implies

Cns
2
‖vk − v‖2 −

λ

2∗s
‖vk − v‖

2∗s
L2∗s (Ω)

<
s(Cns Ss)

n
2s

nλ
n−2s
2s

. (4.20)

Now (4.12) and (4.20) and the fact that Ss‖vk − v‖2L2∗s (Ω)
≤ ‖vk − v‖2 force ‖vk − v‖ → 0

as k → ∞. Thus, we infer that Iλ(v) = γ0 and v 6≡ w and the proof of w < v in Ω can be

performed as in the proof of lemma 4.2. �

Proof of Theorem 1.2: The proof follows from Lemma 4.2, Lemma 4.4, Proposition 4.1

and Proposition 3.4 along with Proposition 3.2. �

Proof of Theorem 1.3: The proof follows directly from Proposition 4.1 and [1, Theorem

1.2] with δ = q and β = 0. To see that the regularity result falls into the scope of [1, Theorem

1.2], note that u is a classical solution as defined in [1, Definition 1]. �
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