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Abstract - Ambient Assisted Living (AAL) aims to ease the 

daily living and working environment for disabled/elderly 

people at home. AAL use information and communication 

technology based on sensors data. These sensors are generally 

placed randomly without taking into account the layout of 

buildings and rooms. In this paper, we develop a mathematical 

model for optimal sensor placement in order (i) to optimize the 

sensor number with regard to room features, (ii) to ensure a 

reliability level in sensor network considering a sensor failure 

rate. This placement ensures the target tracking in smart home 

since optimizing sensor placement allow us to distinguish 

different zones and consequently, to identify the target location, 

according to the activated sensors. 

 

Keywords: Ambient assisted living, sensor PIR, target tracking, 
mathematical modelling. 

 

I. INTRODUCTION 

    According to the statistics published by the World Health 

Organization [1], the number of people aged 60 and over will 

double in 2050. Consequently, a significant effort is required to 

develop Ambient Assisted Living (AAL) systems that ensure 

comfort and safety for elderly people in their smart homes [2]. 

AAL systems use a set of connected sensors and ICT 

(Information and Communication Technology) to treat sensor 

data in order to recognize activities of daily living or to assist 

elderly people.  

 

PIR (Pyroelectric InfRared) sensor networks are widely used for 

indoor target tracking [3,4,5]. Binary data are studied and 

analyzed using data mining approaches [6,7] and learning 

procedure to track targets [8]. In the context of target tracking, 

computational geometry methods such as high order Voronoi 

diagram are also used by [9]. In [10], the authors present space 

encoding and decoding techniques for multiple target tracking. 

Using these methods, a single identification may be associated 

with multiple spaces. In order to cope with this issue, the 

development of an extra distinguishing phase is required. The 

size of the generated data depends on the number of deployed 

sensors in the network. Hence, developing an effective tracking 

scheme relying on a proper number of sensors will be of 

significant importance.  

Sensors in buildings are used for a wide variety of applications 

such as monitoring air quality and indoor temperature. In the 

context of the optimum deployment of sensors, Li and Ouyang 

[11] propose a new sensor deployment method to maximize the 

profit. The term profit has been considered as a measure for both 

flow coverage (O-D flow estimation) and path coverage (travel 

time estimation). Guerriero et al [12] presents several 

optimization models taking into account different objectives 

such as maximization of the sensor life time, minimization of 

the residual energy and maximization of the number of sensor 

nodes whose residual energy is above a chosen threshold value. 

Pradhan and Panda [13] develops a multi objective optimization 

model to simultaneously maximize coverage and life time in 

sensor networks. Zhao et al [14] develops a Mixed Integer 

Linear Programming (MILP) model to extend the network life 

time by optimal placement of sensors. To validate the model, the 

authors develop heuristics and conduct a set of different 

experiments. Rebaï et al [15] proposes a model to optimize the 

sensor placement in the network with the consideration of 

connectivity between sensors. In Karabulut et al [16], a bi-level 

non-linear programming model is developed to deploy sensors. 

Ahmed et al [17], proposes an integer linear programming 

model to maximize the network lifetime. The authors define the 

life time as an interval that elapses until any active set of sensors 

fails to satisfy the required coverage. Sharma et al. propose an 

approach for optimal sensor placement with regard to 

uncertainties due to occupancy and boundaries fluxes of 

buildings [18]. A relaxation sequential algorithm is proposed for 

optimal sensor placement [19]. The optimal sensor placement is 

similar to the optimal camera placement problem [20]. 

 

The literature review prove that researches have focused on the 

optimal sensor placement for different topics such as mobile 

wireless networks, wearable activity recognition, etc. We 

propose a mathematical model based on linear programming. 

The proposed approach take into account room features and 

hidden zones where sensors cannot be placed. The approach is 

adapted to building layout. We propose the sensor placement for 

target tracking. Indeed, the sensor placement is calculated taking 

into account a unique sensors combination for each adjoining 

zone knowing that each zone is covered by several sensors. 

Theses combinations allows us to identify according to the 

activated sensors, the target location. Besides, in wireless sensor 

network, it is probable that one or more sensors breakdown 

because of power failure, faulty materials, poor workmanship, 

etc. These failures may cause losses of information and data. 

The ability of a system to operate well even in failure situations 

is defined as the reliability [21]. In sensor networks, deploying 

mailto:rym.ben-bachouch@univ-orleans.fr
mailto:rym.ben-bachouch@univ-orleans.fr


a system that is both reliable and inexpensive is important. The 

consideration, evaluation and analysis of the reliability in the 

sensor networks regarding internal and external factors are 

discussed in [22, 23, 24]. The proposed approach takes into 

account a minimum level of reliability to be satisfied.  

 

In section 2, we describe the proposed problem and the 

mathematical model. The results obtained on a real-world case 

are outlined in section 3. And finally, a summary of the study 

presenting the conclusion and perspective for the future works 

are provided in section 4. 
 

II. PROBLEM DESCRIPTION 

    We suppose that a three-dimensional environment is covered 

by PIR sensors. The area is discretized into small blocks with 

different sides (Figure 1). Sides are the surface where we can 

deploy sensor or not (due to technical constraints). Each sensor 

is identified by three features: the surface (side) on which it is 

deployed, the level of its Field Of View (FOV), and its 

orientation. Sensors are assumed to be deployed in the center of 

the surface. Furthermore, we suppose that a block can be 

covered by a sensor if its centroid is observed by this sensor.  

 

The target tracking scheme in the proposed model associates an 

array of binary numbers to each block. The array size is equal to 

the optimum number of sensors needed to cover the block. This 

number is defined by the solution of the mathematical model. 

The main aim in the proposed target tracking method is to cover 

each block by a unique binary code (array) which allow us to 

identify the target location. Following the received data of the 

sensors deployed in the network, these unique binary arrays give 

ability to identify the target location and trace his path (see 

Figure 2).    

 

 
Figure 1. Area discretization and sensor deployment 

Every block is supposed to be covered by a minimum number 

of sensors with a pre-determined value in order to guarantee the 

target tracking and the reliability level for the sensor network. 

The objective of the model is to minimize the total cost of 

deployed sensors in the region of interest while meeting the 

problem constraints. 

 

 
Figure 2 Example of target tracking with optimal sensor deployment. 

The following notations are used to present the mathematical 
model. 

Sets: 

(𝐼, 𝐽, 𝐾) : set of blocks indexed by (𝑖, 𝑗, 𝑘) 

S: set of sensors indexed by s. 

Parameters: 

𝐻𝑖,𝑗,𝑘 : minimum number of sensors required to cover a block 

(𝑖, 𝑗, 𝑘). 

ΩS , (I,J,K) : a binary matrix that indicates for each block (𝑖, 𝑗, 𝑘), 

the set of sensors that cover it, i.e. {s | d  ≤ Rsensing
s, CP ∈ 

FoVs }, where d is the Euclidian distance from the centroid of 

the surface where sensor 𝑠 is located to centroid of the block 

(𝑖, 𝑗, 𝑘). Rsensing
s is the sensing range of sensor s. Besides, to 

have a coverage in a block, the center point of the block needs 

to be in the sensor’s field of view, CP ∈ FoVs. 

𝑟 ∶ network reliability 

𝑀: A large positive number 

𝐶𝑠: cost of deploying sensor s in the network. 

𝑞: failure rate of sensors in the network. 

Decision variables: 

Xs 
= 1 if sensor s is deployed. 0, otherwise. 

Y(i,j,k), s 
= 1, if block (𝑖, 𝑗, 𝑘) is covered by a sensor s. 0, 

otherwise. 

V(i,j,k),(u,w,z),s : auxiliary binary decision variable. 

 

The mathematical model of the problem is described below. The 
objective function (1) minimizes the total cost of deploying 
sensors in the region of interest. 



MIN Z= ∑  𝐶𝑠 XS S 
 (1) 

Constraints (2) guarantees that every block is covered at least 
by 𝐻𝑖,𝑗,𝑘 numbers of the sensors. 

∑ Ωs , (i,j,k)Y(i,j,k), s 
s 

 ≥ 𝐻𝑖,𝑗,𝑘   ∀ (𝑖, 𝑗, 𝑘) ∈ (𝐼, 𝐽, 𝐾) (2) 

Constraints (3) and (4) guarantees that block (𝑖, 𝑗, 𝑘) and 
(𝑢, 𝑤, 𝑧) are covered by two different combination of sensors in 
order to distinguish zones and to identify target location. These 
constraints ensure the unique sensors combination for each 
zone. 

Y(i,j,k), s 
+Y(u,w,z), s 

≤ 1 + M V(i,j,k),(u,w,z),s 

∀(𝑖, 𝑗, 𝑘),(u,w,z)|(i,j,k) ≠(u,w,z) ∈ (𝐼, 𝑗, 𝐾); ∀ s ∈ 𝑆 

 

(3) 

 

∑ max ((Ωb , (i,j,k) - Ωb , (u,w,z)) , 0) Y(i,j,k), b b ≠s  + 

∑ max  ((Ωb , (u,w,z) - Ωb , (i,j,k)) , 0) Y(u,w,z), bb ≠s   ≥ 1 - 

M (1- V(i,j,k),(u,w,z),s) 

∀ (𝑖, 𝑗, 𝑘), (𝑢, 𝑤, 𝑧) | (𝑖, 𝑗, 𝑘)  ≠ (𝑢, 𝑤, 𝑧)  ∈  (𝐼, 𝐽, 𝐾),  

∀ s ∈  𝑆 

(4) 

Network reliability is guaranteed by constraints (5). Supposing 
that the failure rate of the sensors are identical and independent 

probability values, 𝑞∑ ΩS , (I,J,K) XS S is the probability in which all the 
sensors that can cover block (𝑖, 𝑗, 𝑘) are down. This value 
subtracted from one, states the probability that one or more 
sensors are operational. Therefrom, the constraint (5) guarantees 
the reliability level in which at least one sensor is operational to 
monitor the area. These constraints can be also equivalently 
identified by the following linear expression:  

∑ ΩS , (I,J,K) X S S 
 ≥ 

LOG (1-R)

LOG (𝑞)
. 

 

1 - 𝑞∑ Ωs , (i,j,k) Xs s ≥ r   ∀ (𝑖, 𝑗, 𝑘) ∈ (𝐼, 𝐽, 𝐾) (5) 

Constraints 6 determines the relation between decision variable 
XS 

 and Y(I,J,K), S 
.  

max (Ωs , (i,j,k) , 0) Y(i,j,k), s 
 = max (Ωs , (i,j,k) , 0)X s 

 

∀ (𝑖, 𝑗, 𝑘)  ∈  (𝐼, 𝐽, 𝐾); ∀ s ∈  𝑆 
(6) 

Xs 
 ∈ {0, 1}, ∀ s ∈  S (7) 

Y(i,j,k), s 
 ∈ {0, 1}, ∀ (i,j,k) ∈ (I,J,K); ∀ s ∈  S (8) 

V(i,j,k),(u,w,z),s ∈ {0, 1} 

∀ (i,j,k), (u,w,z) | (i,j,k) ≠(u,w,z) ∈ (I,J,K), 
(9) 

Constraints 7, 8 and 9 are the integrity constraints. 

 

 

 

                                                           
1 The lab, called GIS MADONAH, is a housing alternative to give assistance to people who cannot perform 

some activities of daily living independently. Using automation facilities, specific furniture, sensors networks 
and computers, the lab aims to increase safety and well-being of inhabitants in smart homes. 

III. EXPERIMENTS AND RESULTS 

Different random instances and experiments are generated in 
order to assess the efficiency of the proposed mathematical 
model. To validate the applicability of the proposed theoretical 
framework, data from a real case is used. The model is coded in 
LINGO 11.0 optimization software and the tests are performed 
on a notebook with Pentium Core i5, 2.70 GHz Processor and 
16.0 GB Memory. 

 
TABLE 1 -RESULTS OBTAINED FROM MODEL FOR DIFFERENT SIZES OF THE 

PROBLEMS 

Test N° Dimension 

|(I,J,K)|*|S| 

No. of variables 

No. of constraints ∗ 

Objective function value (€) CPU time (s) 

1 |6|*|25| 

1 075 

912 

810.000 1 

2 |14|*|37| 

7 807 

7 280 

 

1 141.000 2 

3 |28|*|52| 

42 276 

40 824 

3 423.000 14 

4 |48|*|97| 

228 241 

223 584 

 

7 498.000 43 

5 |62|*|185| 

722 795 

711 264 

9 780.000 258 

6 |70|*|210| 

1 043 910 

1 029 140 

11 410.000 433 

 

Table 1 shows the results obtained from six different instances 

ranging from a small size to a large one. Tests differ from each 

other in the parameter setting, decision variables and constraints 

number. The performance of the obtained results is analyzed 

regarding to resolution time and objective function value.  

 

To illustrate the model applicability, the proposed theoretical 

framework is applied on a set of real data derived from an AAL 

lab1 located at Bourges city in France. The total space of the lab 

is partitioned into five different parts, consisting of a bedroom 

(18 m²), a living room (22.5 m²), a corridor (9m²), a kitchen (9 

m²) and a bathroom (11 m²) with 2.7 meters of ceiling height. 

Considering the regions that are not allowed to sensor 

deployment, and also using a suitable scale, the parts are further 

discretized into smaller areas. Three levels for sensors’ field of 

view, level 1=60°, level 2 =120° and level 3=180° are defined. 

We consider only one direction for sensor orientation, i.e. 

forward. The sensing range and unit cost of sensors is defined 

according to the values mentioned by the sensors’ manufacturer, 

being respectively equal to 12 meters and 160 euros. Regarding 

the different causes leading to failures in the network and using 

the expert assessments, the failure rate of the sensors and the 

network reliability are presumed to be respectively 25% and 

98%.  

 

http://www.bourges.univ-orleans.fr/madonah/index.php/experimentations


 

Figure 3 shows the results of the model when  H(i,j,k) = 1. It is 

noteworthy that the model produce the same results for H(i,j,k)= 

2 and H(i,j,k)= 3, since each zone is covered by at least three 

sensors in H(i,j,k)= 1. The model covers every zone by more than 

one sensor. This fact originates from constraints (3), (4) and (5) 

which satisfy the reliability level in the system and guarantee the 

unique codes that should be assigned to each zone in order to 

identify the target location.    
 

 
Figure 3- Optimal sensor deployment solution 

 

Sensitivity analyses are conducted to observe how the deployed 

sensors number changes regarding to variations in the network 

reliability level and its failure rate. Since different parts in the 

lab are separated by walls, they are considered to be 

independent. Hence, the sensor placement is optimized in each 

part. The results of the analysis are outlined in table 2. The 

number of deployed sensors increases with an increase in 

reliability level and failure rate of the sensors. According to the 

results outlined in table 2, by transition from 85% to 90% of the 

reliability level, there is no change in the sensor number 

deployed. By increasing the failure rate from 20% to 40%, the 

difference between the number of the deployed sensors 

increases from 20 to 30.   

 

 

 

 

 

 

 

TABLE 2 -NUMBER OF DEPLOYED SENSORS IN THE LIVING LAB ACCORDING TO 

THE RELIABILITY LEVEL AND FAILURE RATE. 

Reliability level Number of deployed sensors 

1 15 

0.98 15 

0.95 15 

0.9 20 

0.85 20 

0.8 43 

 
Failure rate Number of deployed sensors 

0.4 30 

0.35 25 

0.3 25 

0.25 20 

0.2 20 

0.15 20 

 

IV. CONCLUSION AND FUTURE RESEARCHES 

   Being a newly observed domain, the optimal sensor 

deployment shows major requirements for developing the 

schemes that ensure optimality, efficiency and reliability of 

sensor network. This paper develops a new mathematical model 

to optimize the placement of wireless binary sensor in smart 

homes. Considering the constraints related to buildings’ in a 3D 

environment, the presented model proposes an optimal sensors’ 

placement with regard to sensor features such as orientation and 

field of view.  In order to track target’s location, the model take 

into account the constraint of covering each zone by a different 

sensor combination in order to identify the target location using 

sensors data. Since sensors are subjected to failures, the 

theoretical framework assumes to guarantee of a reliability level 

in the system. We show the efficiency of the proposed approach 

with tests and real data. 
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