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1) Comparison of simulations using the present mechanism with literature data. 

Fig. S1. Comparison of modeling predictions using the present mechanism (lines) and experimental 

data (symbols) reported by Zhao et al. [1] for the oxidation of n-pentane in a JSR (42 cm3, 1 atm, 

10000 ppm n-pentane, φ=0.5 and 1.33, dilution in Ar/N2). 

Fig. S2. Comparison of modeling predictions using the present mechanism (lines) and experimental 

data (symbols) reported by Zhao et al. [1] for the oxidation of n-pentane in the presence of NO, in a 

JSR (42 cm3, 1 atm, 10000 ppm n-pentane, φ=0.5, dilution in Ar/N2, 0-1070 ppm of NO). 

Fig. S3. Comparison of modeling predictions using the present mechanism (lines) and experimental 

data (symbols) reported by Zhao et al. [2] for the oxidation of n-pentane in the presence of NO2, in a 

JSR (42 cm3, 1 atm, 10000 ppm n-pentane, φ=0.5, dilution in Ar/N2, 0 and 250 ppm of NO2). 

Fig. S4. Comparison of modeling predictions using the present mechanism (lines) and experimental 

data (symbols) reported by Zhao et al. [2] for the oxidation of n-pentane in the presence of NO2, in a 

JSR (42 cm3, 1 atm, 10000 ppm n-pentane, φ=1.33, dilution in Ar/N2, 0 and 250 ppm of NO2).  
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Fig. S2. Comparison of modeling predictions using the present mechanism (lines) and experimental data 

(symbols) reported by Zhao et al. [1] for the oxidation of n-pentane in a JSR (42 cm3, 1 atm, 10000 ppm n-

pentane, φ=0.5 and 1.33, dilution in Ar/N2). 
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Fig. S2. Comparison of modeling predictions using the present mechanism (lines) and experimental data 

(symbols) reported by Zhao et al. [1] for the oxidation of n-pentane in the presence of NO, in a JSR (42 cm3, 

1 atm, 10000 ppm n-pentane, φ=0.5, dilution in Ar/N2, 0-1070 ppm of NO). 
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Fig. S3. Comparison of modeling predictions using the present mechanism (lines) and experimental data 

(symbols) reported by Zhao et al. [2] for the oxidation of n-pentane in the presence of NO2, in a JSR (42 cm3, 

1 atm, 10000 ppm n-pentane, φ=0.5, dilution in Ar/N2, 0 and 250 ppm of NO2). 
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Fig. S4. Comparison of modeling predictions using the present mechanism (lines) and experimental data 

(symbols) reported by Zhao et al. [2] for the oxidation of n-pentane in the presence of NO2, in a JSR (42 cm3, 

1 atm, 10000 ppm n-pentane, φ=1.33, dilution in Ar/N2, 0 and 250 ppm of NO2). 
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