
HAL Id: hal-02160940
https://hal.science/hal-02160940v1

Submitted on 20 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mirage: 2D Source Localization Using Microphone Pair
Augmentation with Echoes

Diego Di Carlo, Antoine Deleforge, Nancy Bertin

To cite this version:
Diego Di Carlo, Antoine Deleforge, Nancy Bertin. Mirage: 2D Source Localization Using
Microphone Pair Augmentation with Echoes. ICASSP 2019 - IEEE International Conference
on Acoustic, Speech Signal Processing, May 2019, Brighton, United Kingdom. pp.775-779,
�10.1109/ICASSP.2019.8683534�. �hal-02160940�

https://hal.science/hal-02160940v1
https://hal.archives-ouvertes.fr


MIRAGE: 2D SOURCE LOCALIZATION USING
MICROPHONE PAIR AUGMENTATION WITH ECHOES

Diego Di Carlo†, Antoine Deleforge‡, and Nancy Bertin†

† Univ Rennes, Inria, CNRS, IRISA, France
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ABSTRACT
It is commonly observed that acoustic echoes hurt perfor-
mance of sound source localization (SSL) methods. We in-
troduce the concept of microphone array augmentation with
echoes (MIRAGE) and show how estimation of early-echo
characteristics can in fact benefit SSL. We propose a learning-
based scheme for echo estimation combined with a physics-
based scheme for echo aggregation. In a simple scenario in-
volving 2 microphones close to a reflective surface and one
source, we show using simulated data that the proposed ap-
proach performs similarly to a correlation-based method in
azimuth estimation while retrieving elevation as well from 2
microphones only, an impossible task in anechoic settings.

Index Terms— Sound Source Localization, Image Mi-
crophones, TDOA Estimation, Supervised Learning.

1. INTRODUCTION

Sound source localization (SSL) consists in determining the
position of a sound source from microphone signals in 3D
space. In polar coordinates, most existing methods focus on
estimating the directional of arrival, namely, azimuth and el-
evation angles. Though this task is performed routinely by
humans, it still challenges today’s computational methods,
in particular in the presence of reverberation or interfering
sources (see [1] and [2] for a review). Computational ap-
proaches consist in two components. First, extracting features
from audio data that are as independent as possible from the
source’s content while preserving spatial information. Sec-
ond, mapping these features to the source position. Two lines
of research have been investigated to obtain such mappings:
physics-based and learning-based approaches.

Physics-based approaches rely on a simplified sound
propagation model [1, 3, 4, 5]. The free-field model is by far
the most widely used one and assumes a single direct sound
path from the source to each microphone. When the source is
placed far enough, this yields a closed-form mapping from the
sound’s time-difference-of-arrival (TDOA) in a microphone
pair and the source’s azimuth angle in this pair. If multiple
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Fig. 1: Typical setup with one source source recorded by two
microphones. The illustration shows direct sound path (blue
lines) and resulting first-order echoes (orange lines).

microphone pairs are available and form a non-linear array,
their TDOAs can be aggregated to obtain 2D directions of
arrival [4]. These methods strongly suffer in environments
where the free-field assumption is violated, e.g., in the pres-
ence of strong acoustic echoes and reverberation [6].

Learning-based approaches use an annotated training
dataset to implicitly learn a mapping from audio features to
source positions [7, 8, 9, 10, 11]. Such data can be obtained
from real recordings [7] or using physics-based simulators
[8, 9, 10, 11]. These methods were showed to overcome some
limitations of the free-field model, but are usually trained for
specific microphone arrays and fail whenever test conditions
strongly mismatch training conditions.

Most sound source localization methods, including the
above listed, regard reverberation and in particular acoustic
echoes as a nuisance. In contrast, some recent work that we
refer to as echo-aware methods have showed that the knowl-
edge of early acoustic echoes could be used to reconstruct the
geometry of an audio scene [12, 13, 14] or to improve perfor-
mance of signal enhancement methods [15, 16, 17]. In [12],
some ad-hoc reflectors are used as artificial pinnae to esti-
mate elevation based on a simple reflection model. In [14],
cameras, depth sensors and laser sensors are used to identify
reflectors and build a corresponding acoustic model that helps
SSL.

In this work, we combine ideas from physics-based,
learning-based and echo-aware approaches to introduce the
framework of microphone array augmentation with echoes
(MIRAGE) for SSL. We consider a simple yet common sce-
nario to illustrate this idea: two microphones, one source and
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a nearby reflective surface, as illustrated in Fig. 1. This may
occur, for instance, when the sensors are placed on a table
such as in voice-based assistant devices or next to a wall.
The reflective surface is assumed to be the most reflective and
closest one to the microphones in the environment, hence gen-
erating the strongest and earliest echo in each microphone.
Under this close-surface model, we ask the following ques-
tions:

1. Can early echoes be estimated from two-microphone
recordings of an unknown source?

2. Can they be used to estimate both the azimuth and el-
evation angles of the source, an impossible task in free
field conditions?

We propose to use a deep neural network (DNN) trained on a
simulated close-surface dataset to estimate early echoes prop-
erties from audio features. The MIRAGE framework then
exploits these estimated properties by expressing them as
TDOAs in the virtual 4-microphone array formed by the true
microphone pair and its image with respect to the reflective
surface. We show that the proposed framework approximately
estimates echo properties, perform similarly to a correlation-
based method in azimuth estimation for the considered sce-
nario and estimates impossible elevation angles with good ac-
curacy in noiseless settings using two microphones only.

2. BACKGROUND IN MICROPHONE ARRAY SSL

In this section, we briefly review some necessary background
in microphone array SSL. Let us assume a microphone array
of I sensors is placed inside a room and records the sound
emitted by one static point sound source. In all generality, the
relationship between the signal mi(t) recorded by the sensor
placed at fixed position mi and the signal s(t) emitted by the
source at fixed position s is defined by:

mi(t) = (hi ∗ s)(t) + ni(t), (1)

where the convolution with room impulse response (RIR)
hi(t) embodies the fact that sensor i receives a so-called spa-
tial image of the source and ni denotes possible measure-
ment noise. The RIR depends on the spatial parameters of the
scene: microphone positions, source position w.r.t the room,
as well as the room acoustic properties (size, absorption and
diffuseness of the wall materials.)

RIRs can be typically modelled as the sum of the direct
path and multiple reflections of the sound. This can boil down
to modelling hi as a Dirac impulse at time τi accounting for
the time delay from the source to microphone i, plus an error
term. In the frequency domain, this leads to:

Hi(f) = αi(f) e−2πfτi + εi(f), (2)

where the error term εi(t) collects echoes, the reverberation
tail, diffusion, and noise. The term αi(f) captures the air
attenuation phenomenon. A time-domain example of RIR is
shown in Fig. 2 (left).
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Fig. 2: Left, a typical simulated RIR with annotated compo-
nents. Right, superposition of two RIRs and visualization of
time difference of arrival between direct paths (TDOA), first
echoes (iTDOA) and direct path and first echo (TDOE).

2.1. 2-channel 1D-SSL

Let us first consider the stereo case (I = 2). Under the far-
field assumption, traditional SSL methods use the time dif-
ference of arrival (TDOA), τ , τ2 − τ1, as a proxy for the
estimation of the angle of arrival (AOA), since:

AOA = arccos (c τ / d) , (3)

where c is the speed of sound and d the inter-microphone
distance. SSL then reduces to estimating the TDOA, which
can be done by cross-correlation-based methods such as
the widely used and well performing generalized cross-
correlation with phase transform (GCC-PHAT) method [3,
18]. Given short-time Fourier transforms M1 and M2 of the
two microphones signals, the GCC-PHAT angular spectrum
is defined as:

ΨGCC(τ) =
∑
f,n

M1(f, n)M∗2 (f, n)

|M1(f, n)M∗2 (f, n) |
e−2πfτ . (4)

Then, the TDOA estimate is given by τ̂ = arg max
τ

ΨGCC(τ).
Note that ΨGCC can also be expressed directly as a function
of the AOA using (3), hence the term angular spectrum.

2.2. Multichannel 2D-SSL

When more microphones are available and the array is not
linear, 2D-SSL can be envisioned. A possible approach is to
use 1D-SSL on all pairs and combine their results, a principle
which was successfully applied in the steered response power
with phase transform (SRP-PHAT) method [4]. SRP-PHAT
exploits the geometry of the microphone array and the esti-
mated TDOAs from microphone pairs to return the DOA. In
a nutshell, this algorithm aims to estimate a global angular
spectrum ΨSRP(θ, φ) which will exhibit a local maximum in
the direction of the active source. First, a global grid of pos-
sible DOAs is defined according to a desired resolution and
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Fig. 3: Illustration of the images m̃1 and m̃2 of microphones
m1 andm2 in the presence of a reflective surface and a source.
Blue lines correspond to direct paths, orange lines correspond
to echo paths.

computational load. Second, for each pair of microphones,
a local set of AOAs is defined and a TDOA-based algorithm
(e.g. GCC-PHAT) is used to compute the associated local
angular spectrum. Finally all the local contributions (a col-
lection of local ΨGCC(τ)) are geometrical aggregated and in-
terpolated back to the global DOA grid to form ΨSRP(θ, φ),
and the DOA maximizing Ψ is used as estimate.

3. MIRAGE: MICROPHONE ARRAY
AUGMENTATION WITH ECHOES

We now introduce the proposed concept of microphone array
augmentation with echoes (MIRAGE). Let us first expand for-
mula (2) to account for more echoes:

Hi(f) =

K∑
k=0

αki (f) e−2πfτ
k
i + εi(f) (5)

where the sum now comprises the direct path (k = 0) and
the K earliest reflections (K = 1 in this paper) and εi col-
lects the remaining RIR components. Here, αki (f) accounts
for both air attenuation and wall absorption phenomena. In
the remainder of this paper, we make the approximation of
frequency-independent αki . Eq. 5 then corresponds to the well
known image-source (IS) model, where reflections are treated
as mirror images of the true source with respect to reflective
surfaces, emitting the same signal. We will employ here a
less common but equivalent interpretation of IS, namely, the
image-microphone (IM) model. As illustrated in Fig. 3, vir-
tual microphones are mirror images of the true microphones
with respect to reflective surfaces. In this view, the echoic sig-
nal received at a true microphone is the sum of the anechoic
signals received at this microphone and its images. If we con-
sider the virtual array consisting of both true and image mi-
crophones, multiple microphone pairs are now available. For
each of them, it is then possible to define a corresponding
time difference of arrival. Among them, we will refer to the
one between the two real microphones as TDOA, the one be-
tween the two image microphones as image TDOA (iTDOA)

and the one between the first microphone and its image as
time difference of echoes (TDOE). We have:

TDOA = (‖m2 − s‖ − ‖m1 − s‖)/c = τ02 − τ01 , (6)

iTDOA = (‖m̃2 − s‖ − ‖m̃1 − s‖)/c = τ12 − τ11 , (7)

TDOE = (‖m̃1 − s‖ − ‖m1 − s‖)/c = τ11 − τ01 , (8)

where m̃i denotes the image of position mi. These three
quantities are directly connected to RIRs, as illustrated in
Fig. 2(right). Let V = {TDOA, iTDOA,TDOE} ∈ R3. Fol-
lowing the 2D-SSL scheme described in Sec. 2.2 and given
the virtual microphone-array geometry (which depends on the
relative position of microphones to the surface), V could in
principle be used to estimate the 2D directional of arrival of
the source. In the next section, we present a learning-based
method to estimate V using audio features obtained from only
two microphones.

4. LEARNING-BASED ECHO ESTIMATION

Our approach is to train a deep neural network (DNN) on a
dataset simulating the considered close-surface scenario. We
model the problem as multi-target regression, with interaural
level difference (ILD) and interaural phase difference (IPD)
as input features, and V ∈ R3 as output parameters. ILD and
IPD features are defined in the frequency domain as follows:{

ILD(f) = 1
T

∑T
t=1 log | M2(f,t)

M1(f,t)
|

IPD(f) = 1
T

∑T
t=1

M2(f,t)/|M2(f,t)|
M2(f,t)/|M1(f,t)|

(9)

More precisely, the input of the network is x = [ILD,
Re(IPD)], Im(IPD)], where Re and Im denote real and
imaginary part operators, respectively. Note that for the IPD,
the frequency f = 0 is discarded because it is constant for
every observation. In general, the mapping between V and
the proposed feature is not unique. In particular, this happen
when τ12 = τ11 . In order to avoid this, we preventively pruned
all the entries with |τ12 − τ11 | < 10−6 from the dataset.

We use a simple fully-connected DNN architecture con-
sisting of a D-dimensional input layer, a 3-dimensional out-
put layer, and 3 fully connected hidden layers with respective
input sizes 500, 300 and 50. Rectified linear unit (ReLU)
activation functions are used except at the output layer, and
each hidden layer has a dropout probability pdo = 0.3. We
use the mean square error loss function for training and the
Adam optimizer [19]. The normalized root mean square error
(nRMSE) is taken as validation metric1. The network is man-
ually tuned on a validation set to find the best combination
of number of hidden layers, their sizes and pdo. Once time
delay estimates V̂ are returned by the DNN, they are con-
verted to synthetic local angular spectra and passed to ΨSRP

1The nRMSE takes values between 0 (perfect fit) and ∞ (bad fit). If it is
equal to 1, then the prediction is no better than a constant.



(See Sec. 2.2) together with the relative positions of true and
image microphones which are assumed known. We call this
algorithm MIRAGE. The synthetic local angular spectra con-
sist of Gaussians centered at V̂ and with variances equal to
the prediction errors made by the DNN on the validation set.

5. IMPLEMENTATION AND RESULTS

To the best of the authors’ knowledge, no reference imple-
mentation of algorithms for 2D-SSL using only 2 micro-
phones is available to date. To check the validity of TDOA
estimation, it is compared to GCC-PHAT using the true mi-
crophones (see Sec. 2.1). For training and validation of the
DNN we generate many random shoe-box room configura-
tions using the software presented in [20]. This software im-
plements both the image-method for simulating reflections
and a ray-tracing algorithm for diffusion. Room widths are
uniformly drawn at random in [3, 9] m, heights in [2, 4] m.
Random source/microphones positions and absorption coeffi-
cients for the 6 surfaces are used, respecting the close-surface
scenario. In particular, the microphones are at most 30 cm
from the close-surface, placed 10 cm from each other, the ab-
sorption coefficients of the other walls are uniformly sampled
in (0.5, 1) and the one of the close-surface is in (0, 0.5). The
same realistic diffusion profile [11] is used for all surfaces.
Around 90, 000 audio scenes are generated this way, yielding
reverberation times (RT60) between 20 ms and 250 ms. For
training and validation, the RIRs are convolved with 1 sec of
white-noise (wn) with no additional noise. All signals and
RIRs are sampled at 16 kHz. The STFT is performed on 1024
point with 50% overlap. Finally the features are computed as
in (9) yielding a vector of size D = 1534 for each observa-
tion. While we validate the DNN on a portion of the dataset in
a holdout fashion, the test is conducted on 200 new RIRs con-
volved with both wn and speech (sp) utterances. This set is
generated similarly to the training and validation sets. More-
over the recordings are perturbed by external white noise at
10 dB SNR (wn+n, sp+n). The speech signals are normal-
ized speech utterances of various lengths (from 1 s to 6 s),
randomly selected from the TIMIT corpus. A free and open-
source Matlab implementation of SRP-PHAT2 is used to ag-
gregate local angular spectra obtained from the DNN’s out-
put. A sphere sampling with 0.5◦ resolution and coordinates
θ ∈ [−179, 180] and φ ∈ [0, 90] is used for the DOA search.

TDOA estimation errors using the proposed approach and
GCC-PHAT are presented in Table 1. Training a DNN to es-
timate TDOAs brings similar performances as GCC-PHAT in
terms of nRMSE. Estimation of iTDOA and TDOE seems to
be a harder task for the simple DNN we used. Nevertheless,
our results confirm the possibility of retrieving early echoes
from only two-microphone recordings. When some exter-
nal noise is added, performance of both methods severely

2http://bass-db.gforge.inria.fr/bss_locate/

nRMSE ACCURACY
Input TDOA iTDOA TDOE θ < 10◦ θ < 20◦

MIRAGE wn 0.18 0.28 0.25 4.10 (77) 5.97 (97)
MIRAGE wn+n 0.68 0.69 0.89 5.00 (26) 9.89 (54)
MIRAGE sp 0.31 0.34 0.56 4.83 (63) 7.26 (82)
MIRAGE sp+n 0.99 0.98 1.48 4.60 (16) 9.88 (35)

GCC-PHAT wn 0.21 - - 4.22 (81) 6.19 (97)
GCC-PHAT wn+n 0.68 - - 4.03 (65) 5.34 (83)
GCC-PHAT sp 0.32 - - 4.08 (82) 5.34 (97)
GCC-PHAT sp+n 1.38 - - 4.70 (19) 8.38 (32)

Table 1: Normalize root mean squared error for TDOA esti-
mation and mean angular error in ◦ (with accuracies (%)) for
AOA estimation with 10◦ and 20◦ angular tolerance.

DoA ACCURACY ACCURACY
< 10◦ < 20◦

Input θ φ θ φ

MIRAGE wn 4.5 (59) 3.9 (71) 6.8 (79) 5.9 (88)
MIRAGE wn+n 4.4 (18) 5.5 (26) 9.4 (35) 11.1 (66)
MIRAGE sp 4.6 (45) 4.8 (59) 8.1 (71) 7.2 (83)
MIRAGE sp+n 5.2 (17) 5.9 (12) 10.7 (38) 12.3 (43)

Table 2: Mean angular error in ◦ (with accuracies (%)) for
2D SSL (azimuth and elevation) with 10◦ and 20◦ tolerance.

degrades. This is a well-know and expected behaviour for
GCC-PHAT. It suggests that noise should be considered in
the training phase of MIRAGE. When we compare the per-
formance in terms of AOA, the two methods yield the same
accuracy within a 20◦ threshold, as can be see in Table 1.
When a smaller tolerance is considered, GCC-PHAT outdoes
the proposed approach in accuracy, with comparable errors.
Again, when adding noise, performance decreases. In Ta-
ble 2 the performance of the full 2D-SSL pipeline is showed.
Within a tolerance of 20◦, the MIRAGE model allows esti-
mation of both azimuth and elevation of the target source.
However since in our data the 2 microphones were free to
move, the inclinations of the true and image pairs are rarely
flat. While this helps elevation estimation, it reduces the ac-
curacy of predicting the right azimuth. While external noise is
again decreasing the accuracy dramatically, it is interesting to
notice that our DNN model trained and validated with white
noise sources somewhat generalizes to speech sources.

6. CONCLUSION

In this paper we demonstrated how a simple echo model could
allow 2D SSL with only two microphones, using simulated
data. Future research will focus on extending this proof-of-
concept to real data. The problem of echo-delay estimation
proved to be very challenging, and extensions of the proposed
learning scheme will be developed to obtain more reliable es-
timations of angular spectra. Extensions of the method to bet-
ter handle various types of noise and emitted signals will also
be sought. Finally, applications of the MIRAGE framework
to larger microphone arrays, higher order echoes and a variety
of tasks beyond SSL will be explored.

http://bass-db.gforge.inria.fr/bss_locate/


7. REFERENCES

[1] Caleb Rascon and Ivan Meza, “Localization of sound
sources in robotics: A review,” Robotics and Au-
tonomous Systems, vol. 96, pp. 184–210, 2017.

[2] S. Argentieri, P. Danès, and P. Souères, “A survey on
sound source localization in robotics: From binaural to
array processing methods,” Computer Speech & Lan-
guage, vol. 34, no. 1, pp. 87–112, nov 2015.

[3] C. Knapp and G. Carter, “The generalized correlation
method for estimation of time delay,” IEEE Transac-
tions on Acoustics, Speech, and Signal Processing, vol.
24, no. 4, pp. 320–327, aug 1976.

[4] Joseph H. DiBiase, Harvey F. Silverman, and Michael S.
Brandstein, “Robust Localization in Reverberant
Rooms,” in Microphone Arrays: Signal Processing
Techniques and Applications, pp. 157–180. Springer,
Berlin, Heidelberg, 2001.

[5] Romain Lebarbenchon, Ewen Camberlein, Diego Carlo,
Antoine Deleforge, and Nancy Bertin, “Evaluation of
an open-source implementation of the SRP-PHAT algo-
rithm within the 2018 LOCATA challenge,” in 2018
IEEE-AASP Challenge on Acoustic Source Localiza-
tion and Tracking (LOCATA), International Workshop
on Acoustic Signal Enhancement, 2018, pp. 2–3.

[6] Jan Scheuing and Bin Yang, “Disambiguation of
tdoa estimates in multi-path multi-source environments
(datemm).,” in ICASSP (4), 2006, pp. 837–840.

[7] Antoine Deleforge, Florence Forbes, and Radu Horaud,
“Acoustic space learning for sound-source separation
and localization on binaural manifolds,” International
Journal of Neural Systems, vol. 25, no. 01, pp. 1440003,
2015.

[8] Fabio Vesperini, Paolo Vecchiotti, Emanuele Principi,
Stefano Squartini, and Francesco Piazza, “A neural net-
work based algorithm for speaker localization in a multi-
room environment,” in 2016 IEEE 26th International
Workshop on Machine Learning for Signal Processing
(MLSP). Sep. 2016, pp. 1–6, IEEE.

[9] Sharath Adavanne, Archontis Politis, and Tuomas Virta-
nen, “Direction of arrival estimation for multiple sound
sources using convolutional recurrent neural network,”
CoRR, vol. abs/1710.10059, 2017.
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