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Abstract

The application of shift cell technique is presented and discussed for peri-
odic porous media described with equivalent fluid models: as it can be found
in literature, it consists in a reformulation of classical Floquet-Bloch (F-B)
conditions, in which the phase shift of the boundary conditions, related to
wave propagation, is integrated into the partial derivative operator. Conse-
quently, the periodicity is included in the overall behavior of the structure,
while continuity conditions are imposed at the edges of the unit cell. Its
major advantage stands in allowing the introduction of a generic frequency
dependence of porous material behavior, through the resolution a quadratic
eigenvalue problem, providing an efficient way to compute the dispersion
curves of a porous material modeled as an equivalent fluid. A validation
and a computational cost comparison are performed between the shift cell
technique and the classical F-B approach, pointing out that the first can pro-
vide, among its other advantages, a sensible computational time reduction
for this kind of analyses. The derivation of the equivalent acoustic properties
of the unit cell from its dispersion characteristics is also investigated. To this
aim, group velocity matrix formulation and a branch-tracking algorithm are
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described. Some test cases are used for validating the proposed methodology.

Keywords: vibroacoustics, porous material, shift cell, branch tracking,
dispersion diagram, transmission loss

List of symbols

c0 sound speed in the interstitial fluid
Cg group velocity
E total energy
Ek kinetic energy
Ep potential energy
I flow of energy
j imaginary unit
K bulk modulus
k wave number in the material
k0 wave number in the interstitial fluid
m mass
p pressure
p∗ conj(p)
p0 amplitude of the incident pressure
r thickness of the unit cell
S surface interested by incident pressure
s side length
v instantaneous local velocity
vE energy transport speed

x, y, z space variables
Z0 characteristic impedance of the interstitial fluid
Zc characteristic impedance of the material
Zs surface impedance of the material
Γ domain boundary
θ, φ angles of incidence
ρ density of the material
ρ0 density of the interstitial fluid
τ∞ transmission coefficient
Ω poro-elastic volume
ω angular frequency
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1. Introduction

The inclusion of vibroacoustic treatments at early stage of product de-
velopment, through the use of porous media with periodic inclusions, is a
powerful strategy for the achievement of lightweight sound packages and
represents a convenient solution for manufacturing aspects [2].5

The main advantage of designing sound packages with periodic arrangements
is that they can provide a combination of absorption effects, resonance ef-
fects and wave interference effects. These configurations can address different
applications in transportation (aerospace, automotive, railway), energy and
civil engineering sectors, where both weight and space, as well as vibroacous-10

tic comfort, still remain as critical issues. Indeed, although porous materials
are commonly used for vibroacoustic applications, they suffer from a lack of
absorption at low frequencies compared to their efficiency at higher ones; this
difficulty is usually overcome by multi-layering [1]. However, while reducing
the impedance mismatch at the air-material interface, the efficiency of such15

devices relies on the allowable thickness [2].
A more efficient way to enhance the low frequency performances of sound
packages consists in embedding periodic inclusions in a porous layer [3, 4]
in order to create wave interferences or resonance effects that may play a
positive role in the dynamics of the system. Therefore, numerical tools to20

properly design sound packages are more and more useful.
The classical approach, known as Floquet-Bloch (F-B) theory, is a branch of
the theory of ordinary differential equations relating to the class of solutions
to 1D periodic linear differential equations of the form ẋ = A(t)x with A(t)
a piecewise continuous periodic function with period T . Floquet’s theorem,25

due to Gaston Floquet [5], gives a canonical form for each fundamental ma-
trix solution of this common linear system, through a coordinate change that
transforms the periodic system to a traditional linear system with constant,
real coefficients. In solid-state physics, the analogous result, extended to
3D systems, is known as Bloch’s theorem [6]. In the literature dealing with30

wave propagation problems in mechanical systems, the theory is referred to
as Floquet-Bloch theory.
In physical sciences and engineering, dispersion relations describe the effect
of dispersion in a medium on the properties of a wave traveling within that
medium, and therefore they offer a good perspective to explain the wave35

field behavior inside bodies, relating the wavelength or wavenumber of a
wave to its frequency. Dispersion may be caused either by geometric bound-
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ary conditions or by interaction of the waves with the transmitting medium
and, in its presence, wave velocity is no longer uniquely defined, giving rise
to the distinction of phase velocity and group velocity. For instance, the40

Helmholtz equation is a known example of equation describing the spatial
behavior: there, the physical periodic structure of the studied object trans-
lates into spatial periodicity of its coefficients. Therefore, the F-B theory can
be applied to obtain the dispersive properties of different mechanical periodic
systems, reducing the problem to the calculations performed in the so-called45

unit cell under to certain specific boundary conditions derived from the F-B
theory itself [7].
In order to develop efficient numerical techniques to handle the problem,
the shift cell operator technique is herein considered. It allows the descrip-
tion of the propagation of all existing waves from the description of the unit50

cell through the resolution of a quadratic eigenvalue problem. It belongs to
the class of the k(ω) (wave number as a function of the angular frequency)
methods, that allow computing dispersion curves for frequency-dependent
problems, instead of using the classical ω(k) (angular frequency as a func-
tion of wave number) that leads to non-linear eigenvalue problems. Similar55

techniques, which use a modified F-B approach in order to handle a k(ω)
problem, can be found in literature [8, 9, 10]. The shift cell method consists
in a reformulation of classical F-B conditions, in which the phase shift of
the boundary conditions, together with the exponential amplitude decrease
related to wave propagation, are integrated into the partial derivative op-60

erator; consequently, the periodicity is included in the overall behavior of
the structure, while continuity conditions are imposed at the edges of the
unit cell. Hence, this approach avoids condensation or non-linear eigenvalue
solver, which are required by other ones. This technique has been success-
fully applied for describing the mechanical behavior of periodic structures65

embedding visco-elastic materials [11, 12] or piezoelectric materials [13, 14].
Here it is proposed an extension to equivalent fluid models of porous ma-
terials, which makes possible to overcome the limits of existing approaches
in order to obtain a device whose frequency efficiency outperforms existing
designs.70

It should be pointed out that a homogeneous 3D unit cell with a 2D period-
icity essentially represents an infinite layer with a given thickness; anyway in
this paper, in order to keep a consistent nomenclature, this configuration is
still addressed as “homogeneous case” or “homogeneous unit cell”. Herein, the
behavior of the porous material is described by Johnson-Champoux-Allard75
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(JCA) model [15, 16], but one can identically use any other equivalent fluid
model [17, 18, 19].
Then, starting from the complex wave numbers, obtained as an output from
the quadratic eigenvalue problem, it is shown that it is possible to compute
an equivalent transmission loss curve for an excitation at normal incidence;80

the comparison with results obtained using classical methods, shows a very
good agreement.
The aim of this paper, therefore, is to introduce some enhancements to the
state of the art of the shift cell technique applied to equivalent fluid models.

2. Shift cell operator technique85

In this paper, a porous medium with a periodic arrangement of perfectly
rigid inclusions is considered. The behavior of the foam is described by an
equivalent fluid model in the frequency domain, i.e.:

ρ
ω2

K
p+ ∆p = 0, (1)

where p = p(x, ω) is the acoustic pressure, x = (x, y, z) is the coordinate
vector, ω is the angular frequency, ρ = ρ(ω) is the equivalent fluid density90

and K = K(ω) is the bulk modulus [1]. The periodicity is described by
ρ(x − rn) − ρ(x) = 0 and K(x − rn) − K(x) = 0, ∀x ∈ Ω, where n is
a vector of integers normal to the face considered, r = (r1, r2, r3) is a ma-
trix containing the three vectors defining the cell periodicity directions and
lengths, and Ω is the domain of interest.95

Eq. 1 applies everywhere except on the discontinuity surfaces, where appro-
priate boundary conditions apply. When finite densities and bulk moduli
are used, these are the continuity conditions stated on pressure and normal
velocity; when rigid inclusions are considered, the normal velocity on the
inclusion surfaces vanishes.100

The classical F-B approach, that here is recalled in its 1D formulation but
can easily be generalized for 3D applications, provides a strategy to obtain
a set of solutions of a linear ordinary equations system. Only the solution
inside a period is needed, verifying that

f̂(x+ L) = βF f̂(x). (2)

where f̂ is a solution of Eq. 1 and, according to the classical nomenclature,105

βF = ekFL is called Floquet multiplier, while kF is the complex Floquet
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Figure 1: Reciprocal lattice vector in a 3D unitary cell.

exponent. In addition, Floquet found that the solution at any point can be
factorized in the following two terms:

f̂(x) = f(x)ekF x, (3)

where f(x) is a periodic function, that represents the eigenvectors and carries
the periodicity L of the coefficients of the problem [7]. Any solution of Eq.110

1 can therefore be expressed in the form of Eq. 3.
For the purpose of the shift cell technique development, considering Eq. 1

and applying the Bloch theorem, which generalizes Floquet’s results to 3D
systems, such as p(x, ω) = p(x)ejkx, where k, for a 3D application with real
angles, is115

k = k

cos θ cosφ
cos θ sinφ

sin θ

 (4)

one can obtain

ρ
ω2

K
p+ (∇+ jk)T (∇+ jk)p = 0. (5)

p(x) being periodic, the Dirichlet boundary conditions imply continuity along
the periodic directions. The results discussed in the following sections are
obtained along the x-axis (φ = θ = 0◦).
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2.1. Weak formulation120

The aim of this section is the development of the weak formulation of
the problem, in order to obtain a matrix equation that fully describes what
happens inside a periodic unit cell of equivalent fluid. A weak formulation
of Eq. 5 consists in finding p such that ∀p̃, which obeys to the periodic
boundary conditions, one has:125

ω2

∫
Ω

1

K
p̃pdΩ +

∫
Ω

1

ρ
p̃∇T∇pdΩ + jk

∫
Ω

1

ρ
p̃∇TpdΩ + jkT

∫
Ω

1

ρ
p̃∇pdΩ+

− kTk
∫

Ω

1

ρ
p̃pdΩ = 0.

(6)

The solution approach follows a common weak formulation of a differential
problem in a discrete coordinate scheme. After rewriting the second term
through the use of an integration by parts, for which the considerations on
classical weighted residual methods [20] are valid, and considering that Γ is
the boundary domain, one obtains130

ω2

∫
Ω

1

K
p̃pdΩ +

∫
Γ

1

ρ
p̃∇TpdΓ−

∫
Ω

1

ρ
∇p̃∇TpdΩ + 2jk

∫
Ω

1

ρ
p̃∇TpdΩ+

− kTk
∫

Ω

1

ρ
p̃pdΩ = 0.

(7)

The boundary condition causes the integral on the boundary to vanish:

ω2

∫
Ω

1

K
p̃pdΩ−

∫
Ω

1

ρ
∇T p̃∇pdΩ + 2jk

∫
Ω

1

ρ
p̃∇pdΩ− kTk

∫
Ω

1

ρ
p̃pdΩ = 0. (8)

ω2

∫
Ω

1

K
p̃pdΩ−

∫
Ω

1

ρ
∇T p̃∇pdΩ + jk

∫
Ω

1

ρ
(p̃∇p−∇p̃p)dΩ+

− kTk
∫

Ω

1

ρ
p̃pdΩ = 0.

(9)

Finally, one can discretize the weak formulation through the Finite Element
Method: considering that ϕ is the eigenvector, the equation can be written
in its matrix form135

(K + jkL+ k2H − ω2M)ϕ = 0 (10)

with the following matrices:
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• K ∝
∫

Ω
1
ρ
∇p̃∇pdΩ;

• L ∝
∫

Ω
1
ρ
(∇p̃p− p̃∇p)dΩ;

• H ∝
∫

Ω
1
ρ
p̃pdΩ;

• M ∝
∫

Ω
1
K
p̃pdΩ.140

Here,M andK are respectively the symmetric mass and symmetric stiffness
matrices, L is a skew-symmetric matrix and H is a symmetric matrix; all of
them are complex and frequency-dependent.

2.2. Right and left eigenvalue problems
In this sub-section, the link between right and left eigenvectors is derived.145

A left eigenvector of a matrix is the same as the right eigenvector of the same
real transposed matrix.
The formulation in Eq. 10 leads to the following right eigenvalue problem:

[(K − ω2M) + λiL− λ2
iH ]ϕri = 0 (11)

where λi = jki is the i-th eigenvalue and ϕri denotes the right eigenvector
associated to λi. In this formulation, all matrices are frequency dependent.150

The Eq. 11 can be rewritten as

A1(ω)ψr
i = λiA2(ω)ψr

i (12)

with

• A1(ω) =

(
0 Id

K − ω2M L

)
;

• A2(ω) =

(
Id 0
0 H

)
;

• ψr
i =

(
ϕri
λiϕ

r
i

)
.155

where Id is the identity matrix. Conversely, a left-eigenvector for the same
eigenvalue satisfies

ψl
i

T
A1(ω) = λiψ

l
i

T
A2(ω), with ψl

i =

(
A
B

)
. (13)
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{
B = ϕr−i = ϕli
AT = λiϕ

r
−i
TH −ϕr−iTL = λiϕ

l
i
T
H −ϕli

T
L

(14)

In the resolution of the right eigenvalue problem, the i-th mode (i ∈ N+)
is defined by its λi and its eigenvector ϕri . For each mode i, a mode −i is160

associated with λ−i such that λ−i = −λi and ϕr−i = ϕli. Therefore, by solving
the right eigenvalue problem, the left solution is found too [12].

2.3. Group velocity
For frequency-dependent systems, the estimation of the group velocity is

not trivial [21]. In order to find its expression, Eq. 12 is now differentiated165

with respect to ω:

∂A1(ω)

∂ω
ψr
i +A1(ω)

∂ψr
i

∂ω
=
∂λi
∂ω
A2(ω)ψr

i + λi
∂A2(ω)

∂ω
ψr
i + λiA2(ω)

∂ψr
i

∂ω
(15)

and multiplied by the left eigenvector such that:

ψl
i

T ∂A1(ω)

∂ω
ψr
i +ψl

i

T
A1(ω)

∂ψr
i

∂ω
=

= ψl
i

T
(
∂λi
∂ω
A2(ω) + λi

∂A2(ω)

∂ω
)ψr

i +ψl
i

T
λiA2(ω)

∂ψr
i

∂ω
.

(16)

Considering that

ψl
i

T
A1(ω) = λiψ

l
i

T
A2(ω) (17)

one obtains

∂λi
∂ω

=
ψl
i

T
[
∂A1(ω)

∂ω
− λi

∂A2(ω)

∂ω
]ψr

i

ψl
i

T
A2(ω)ψr

i

(18)

which gives the expression of the group slowness using λi = jki:170

∂ki
∂ω

= −j
ϕli

T
[−2ωM +

∂K

∂ω
+ λi

∂L

∂ω
− λ2

i

∂H

∂ω
]ϕri

ϕli
T

[−L+ 2λiH ]ϕri
. (19)
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Finally, the complex group velocity is the inverse of the complex group slow-
ness [21]:

Cg =
∂ω

∂ki
=

jϕli
T

[−L+ 2λiH ]ϕri

ϕli
T

[−2ωM + ∂K
∂ω

+ λi
∂L
∂ω
− λ2

i
∂H
∂ω

]ϕri
. (20)

It should be noted that the frequency dependence of porous material models
is generally known analytically, hence the computation of Cg is fast since the
derivatives of the matrices with respect to ω can be expressed analytically:175

∂K

∂ω
= − 1

ρ2

∂ρ

∂ω
K,

∂L

∂ω
= − 1

ρ2

∂ρ

∂ω
L,

∂H

∂ω
= − 1

ρ2

∂ρ

∂ω
H (21)

with ∂ρ
∂ω

to be derived from the specific equivalent fluid model. This is without
doubts the most efficient way to perform the Cg computation, but one could
also choose to numerically estimate the matrix derivative, or even directly
the ∆ω

∆ki
values.

2.4. Classifying criteria to distinguish propagative and evanescent waves180

For undamped systems, waves are classified according to their propaga-
tive (k purely real) or evanescent (k purely imaginary) behavior, but when
dissipation occurs, such as it happens for a sample modeled through an equiv-
alent fluid, all wave numbers are complex; consequently, there is no purely
propagative solution and all waves are damped, with a decay rate that may185

be used to classify the branches in two categories: those that are rapidly
damped and those that are slowly damped in space. Hence, the latter could
be classified as “propagative” ones. In general, the distinction between them
is difficult and, thus, two classifying criteria are proposed.

I) The ratio between the real and the imaginary parts of every wave num-190

ber [12]: CI = real(k)
imag(k)

. The physical meaning of CI is related to the fact
that the real part of a wave number represents the propagative behav-
ior, while its imaginary part is linked to the dissipation and therefore
should be smaller than the real part in order to be able to consider a
wave as propagative.195

It should be pointed out that, since the real part of k is periodic while
the imaginary one is not, in order to correctly apply this criterion, the
real part of k must be turned into non-periodic, by mirroring it in
correspondence to each period; in particular, starting with a = 2 and

10



for each frequency fi with i > 0 of a specific dispersion branch, the200

procedure is the following:

if
dfi−1

dreal(ki−1)
> 0 and if

dfi
dreal(ki)

< 0⇒

⇒ real(ki:end) = a
π

r
− real(ki:end), a = a+ 1 (22)

II) The ratio between the real part of the energy transport speed, defined
as vE = I

E
for undamped waves, and the real part of group velocity

Cg: CII = real(vE)
real(Cg)

, where I is the flow of energy and E = Ek + Ep =205 ∫
Ω

1
2
(ρv2 + p2

ρc2
)dΩ is the total energy. Waves may be qualified as prop-

agative when the energy is transported at a velocity which is at least
close to the order of the group velocity.

Only the waves corresponding to CI > τI and CII > τII are considered as
propagative ones. In practice, for the purpose of the following analysis, the210

thresholds τ are chosen such as τI = 1 and τII = 0.7.
These thresholds may be chosen differently according to the problem of in-
terest [12]. Since there is no strict distinction between “propagative” and
“evanescent” waves, an alternative would be to define an indicator of the
“propagativeness” nature for each (ω, k) value of the dispersion diagram.215

This is illustrated later in the results presented in Section 4.

3. Validation of the method

3.1. Analysis of undamped case
In order to validate the shift cell technique implementation, in the studied

configuration and for propagation along the x-axis, a first calculation is made220

to compare shift cell results with those obtained using classical F-B periodic
conditions, using (non-dissipative) air as material. Herein, all results are
related to a 2D unit cell (top part of Figure 2), constituted by a square with
side equal to 2 cm and with a 0.5 cm radius circular perfectly rigid inclusion
located at the center of the unit cell, and to a 3D unit cell (bottom part of225

Figure 2), that is the extrusion of the 2D one. Both methods are used to
obtain the dispersion diagram along the x-axis direction; the only non-null
component of the wave vector is then the 1st one and k = kx.
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Figure 2: Comparison between dispersion curves obtained with classical
Floquet-Bloch and shift cell techniques on a 2D (on the top) and a 3D (on
the bottom) air unit cell, whose geometric data are reported in detail in Sub-
section 3.1. Dashed red lines: classical F-B method; blue points: shift cell
operator.
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The air parameters are: ρair = 1.21 kg
m3 (density), cair = 343.3m

s (speed of
sound) and Kair = 142 kPa (bulk modulus).230

It should be pointed out that, in this paper, the 3D cases are in fact 2D ones
solved with 3D meshing, not exploiting the possibility, from the geometrical
point of view, of doing a 2D meshing. This choice is motivated by the fact
that a 3D mesh actually captures the behavior along an additional direction
respect to the 2D one, allowing to perform analyses for every combination of235

angles φ and θ.
The comparison shows a perfect agreement between the results of the two
methods (Figure 2). In particular, one can observe that this arrangement
exhibits a band gap between 6000 Hz and 10000 Hz for waves propagating
along x direction.240

3.2. Meaning and behavior of band gaps for inclusions of increasing size
Figure 3 shows on the left what happens to the band gap, in the previ-

ously defined 2D unit cell, when the size of the inclusion (that has perfectly
rigid walls) changes. The radius of the inclusion for the three analyzed cases
are respectively equal to s

32
, s

4
and s

2.1
, where s is the side length: the open-245

ing frequency of the Bragg band gap decreases when the radius is increased,
and at the same time the width of the gap is increasing.
In the previous sub-section, only the real part of the wave number is shown.
Now both real and imaginary parts are shown, the latter being actually posi-
tive but shown as negative in the plots due to axis consistence. If no damping250

is included in the model, k is either purely real, the wave is then propaga-
tive, or purely imaginary, the wave being then evanescent (left column in
Figure 3).
On the contrary, instead of using the adiabatic value (142 kPa) for the bulk
modulus of air, one can artificially add a frequency-constant imaginary part255

to it (142 + j12 kPa is used here for illustration), so that one can simulate
a band gap behavior in presence of dissipation. The new dispersion curves
are shown in the right column of Figure 3. Indeed, a complex bulk modulus
prevents the presence of ideal band gaps in dispersion curves; one can clearly
see that the gap is opening but, because of the damping, kx is no longer260

purely imaginary: around the band gap, the slow branch with undamped
material becomes a fast wave when damping is added and allows rapid and
damped energy transportation inside the band gap. So, the real part of kx
(being mirrored and turned into non-periodic as explained in the 1st classi-
fying criterion described in Sub-section 2.4) is not equal to π

r
anymore, but265
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Figure 3: Dispersion curves for an air 2D cell, with increasing inclusion
radius (from top to bottom: r = s

32
, r = s

4
and r = s

2.1
), with adiabatic (left

column) and complex (right column) bulk modulus.
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remains low (compared to the imaginary one), which means that the wave
will be strongly spatially attenuated.
Also, a very fast branch, for which the imaginary part goes out of the plot
bound, can be observed in the first two cases in the right column of Figure 3.

3.3. Comparison of computational cost270

It is now performed a computational cost comparison between the shift
cell technique and the classical F-B approach, pointing out that the first can
provide, among its other advantages, a sensible computational time reduction
for dispersion analyses. Figure 4 and Figure 5 show a comparison of the com-
putational cost, in terms of time and as a function of the mesh size, between275

the shift cell and the F-B techniques. In particular, both eigenproblems are
solved using 100 frequency steps; the 2D unit cell is meshed using triangular
elements while, for the 3D geometry, tetrahedral elements are used. Both 2D
and 3D geometries correspond to those shown in the previous sections and
these results, in terms of computational times, are related to an undamped280

case.
As a conclusion, for the case of interest, the calculation cost is always lower
with the proposed approach than the one required by the classical Floquet-
Bloch technique.
The gain is increasing when the number of elements of the finite element285

model is increasing, which makes the technique attractive. The lower cost
is attributed to the management of the boundary conditions, which is much
more simple in the proposed methodology, where continuity instead of F-B
periodic conditions are needed.

4. Dispersion curves290

4.1. Branch-tracking algorithm
The previous Section has highlighted that a dispersion diagram can have

several branches, which are associated to different wave characteristics. In a
dispersion diagram there is a set of points, forming branches, that one may
wish to connect and follow according to the nature of each branch.295

Some solutions are proposed in literature, such as a MAC sorting crite-
rion [11], but these methods require to store many data at every iteration.
Instead, the group velocity constitutes a relevant indicator in order to follow
the branches from a point of calculation to the next one [12]. The proposed
technique consists in comparing a single group velocity value at a specific300
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Figure 4: Computational times [s] in the 2D (left) and 3D (right) cases, for
increasing number of elements.

Figure 5: Computational time percentage in the 2D (left) and 3D (right)
cases, for increasing number of elements.
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frequency Cgi(f) with Cg(f + ∆f): from the group velocity associated to a
starting point, the routine compares the initial Cgi with all the group veloc-
ities at the next frequency step f + ∆f and a minimization is made in order
to identify the point at f + ∆f to which is associated the closest value of
Cg. Then, this point is defined as the new starting one and so on, step by305

step, the branch is identified. In order to better appreciate the behavior of
each branch in the frequency range of study, in the following plots, disper-
sion and Cg curves are also colorized with a scale of colors that indicates the
level of “propagativeness”: the value 0 means that the wave at that specific
frequency is totally spatially attenuated, while the value 1 represents a prop-310

erly propagative behavior. In particular, considering the criteria discussed
in Sub-section 2.4, if all of them are satisfied then the propagativeness value
is equal to 1, otherwise it is calculated as the product between the results of
the two classifying ratios divided by the correspondent thresholds. It should
be pointed out that, if a specific criterion is satisfied, its contribution to the315

estimation of the level of propagativeness is always equal to 1, even if its
related ratio is larger. In other words:

if CI > τI ⇒ propI = 1, else propI =
CI
τI

if CII > τII ⇒ propII = 1, else propII =
CII
τII

level of propagativeness = propI × propII (23)

4.2. Results
In this Section, for a 3D melamine unit cell, whose geometric data are re-320

ported in detail in Sub-section 3.1, some results are shown in terms of evanes-
cent — propagative dispersion and group velocity diagrams and branch-
tracked dispersion and group velocity diagrams. These curves are obtained
for both a homogeneous and a heterogeneous (with inclusion) 3D unit cell,
whose porous material is modeled with JCA model ([15, 16]). The analyses325

are carried out in the frequency range 0 – 17000 Hz. This range, indeed,
is interesting for acoustic applications and assures that the wavelength is
much larger than the pore size, which is a necessary condition in order to
use equivalent fluid models. The size of the inclusion is also large compared
to the typical characteristic length that may be observed on a representative330
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Porosity 0.99
Tortuosity 1.02
Resistivity [Pa×s

m2 ] 8430
Viscous char. length [mm] 0.138
Termal char. length [mm] 0.154

Table 1: Acoustical parameters of the tested porous material.

elementary volume describing the macroscopic behavior of the porous mate-
rial [22].
It is well known that the parameters of the equivalent fluid models can have
a strong impact on the performances of the acoustic device [23], hence they
should be determined in a confident way. In the current case, they have been335

experimentally determined and are reported in Table 1.
In Figures 6 and 7, the two plots on the top and the center of each figure

represent two different ways to show the classification between evanescent
and propagative waves: on the top, the plot is directly obtained from the
application of the criteria presented in Sub-section 2.4, while on the center340

the same distinction is shown using a color scale of “propagativeness” as de-
scribed in Section 4.1.
For each dispersion diagram, three eigenvectors are reported (Figure 8). Only
the real parts of the eigenvectors, in terms of acoustic pressure field, are
shown, the imaginary parts being null due to the fact that they are propor-345

tional to their correspondent real parts. They are all extracted at the fre-
quency of 8500 Hz and along the direction that conventionally corresponds
to θ = φ = 0◦ in the 1st Brillouin zone. Their branches are ordered as
follows: at increasing frequencies, the 1st branch is represented by the first
real part that reaches the unitary value, the 2nd one is the second that sat-350

isfies this condition and so on. It can be noticed that they respectively act
along the x-, z- and y-axis directions. As already stated in the introduction,
a homogeneous 3D unit cell with a 2D periodicity essentially represents an
infinite layer with given thickness: in particular, continuity conditions are
applied along x-axis and z-axis, while sound-hard wall boundary conditions355

are used on the surfaces orthogonal to the y-axis. Therefore, in the homo-
geneous case, the so-called eigenvectors basically show the pressure acoustic
field inside the medium in correspondence of the first three eigenfrequencies.
For what concerns the propagative – evanescent plots, one can notice that
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the 1st mode propagates at almost all frequencies, the 2nd one appears to be360

propagative starting from middle frequencies, while the 3rd and 4th ones are
relevant only at high frequencies. For all tested configurations, the branch-
tracking algorithm is able to correctly classify the solutions, even in the
presence of band gaps, branch-crossing or branch-veering phenomena, as it
can be appreciated from Figures 6 and 7.365

5. Computation of transmission loss from dispersion diagrams

Dispersion diagrams presented above help designers to understand the
nature of the waves that can propagate in a sound package and the way they
are attenuated on the basis of an infinite periodic arrangement of the unit
cell. In this section, it is shown how these results can be used to estimate370

the transmission loss at normal incidence for an acoustic package composed
by a finite arrangement of 5 cells. This, in a first approximation, allows
comparing the dispersion relations and the acoustical characteristics of the
equivalent finite medium. For more complex cases, advanced homogenization
techniques may be used [24, 25].375

For a plane wave configuration, the transmission loss is computed in three
different ways.

I) Transfer matrix method [1] (homogeneous case):

TL = 10log10(
1

4
|T11 +

T12

ρ0c0

+ ρ0c0T21 + T22|2), (24)

with

[
T11 T12

T21 T22

]
=

[
cos(kr) j sin(kr)Zc
j sin(kr)
Zc

cos(kr)

]
. (25)

II) Full FEM with 5 cells (case with inclusion):380

TL = 10log10

Πincident

Πtransmitted

(26)

where Πincident and Πtransmitted represent the incident and transmitted
power, respectively. For this configuration, the calculation is made us-
ing an implementation of the plane wave forced response of the periodic
cell accounting for fluid loading [26].
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Figure 6: Evanescent and propagative (on the top and the center, in which
the color scale indicates the level of propagativeness) and branch-tracked (on
the bottom) group velocity diagrams, for the case of a melamine unit cell,
homogeneous (on the left) and with a rigid inclusion (on the right). The
positive range of the x axis shows the real parts, while its negative zone
shows the imaginary ones.
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Figure 7: Evanescent and propagative (on the top and the center, in which
the color scale indicates the level of propagativeness) and branch-tracked
(on the bottom) dispersion diagrams, for the case of a melamine unit cell,
homogeneous (on the left) and with a rigid inclusion (on the right). The
positive range of the x axis shows the real parts, while its negative zone
shows the imaginary ones.
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Figure 8: From top to bottom, real parts of the 1st, 2nd and 3rd branch
eigenvectors for a melamine homogeneous unit cell (on the left) and for a
melamine unit cell with inclusion (on the right).
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Figure 9: Transmission loss computed for a 3D repetition of 5 melamine unit
cells.

III) Transfer matrix method with 5 cells, where k and Zc are provided by385

the dispersion curves (proposed approach); in order to perform this
estimation, only the 1st branch of the diagram is taken into account,
since it is the only one to which corresponds an eigenvector along the
direction of the plane wave excitation, the others being orthogonal to
it. This assumption is valid as long as, in the frequency range of in-390

terest, there are no other propagative dispersion branches to which is
associated a mode that acts along the plane wave direction in the TL
analysis. For a plane wave that acts along an arbitrary direction, a
more complex formulation is required. While k is a direct output of
the dispersion relation, the equivalent characteristic impedance is com-395

puted as Zc =
√
Kρ, where the density ρ is obtained from the JCA

model and the bulk modulus is calculated as K = ρ(ω
k
)2.

The 3rd way of computation actually consists in a homogenization and sev-
eral papers that deal with the link between this kind of techniques and Bloch
waves can be found in literature [27].400

Concerning the case with the inclusion, one can notice that an improvement
of transmission loss properties, with respect to the homogeneous case, is
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shown at all frequencies, in particular in correspondence of a peak at a fre-
quency around 7 kHz, where a gain of about 15 dB is observed, and at high
frequencies.405

Note that, for the sake of comparison with the related dispersion curves,
only their 1st branch, identified through the previously defined algorithm, is
meaningful due to the fact that the corresponding mode is the only one, be-
tween those considered here (which are lowest order and therefore the least
attenuated modes), that is actually excited during these transmission loss410

simulations.
Note also that the dispersion branch taken into account is actually prop-
agative, according to the previously defined classifying criteria, in the whole
frequency range considered. Indeed, the TL improvement peak exactly corre-
sponds to the frequency range of the 1st branch of dispersion curves in which415

the wave is strongly spatially attenuated. This is definitely encouraging, for
the purpose of deriving the equivalent acoustic properties of the unit cell
from its dispersion characteristics.

6. Conclusions

In this paper, the formulation of the shift cell technique is presented to-420

gether with some applications aimed at evaluating the dispersive properties
of some foams modeled as a periodic porous medium. The benefit of the k(ω)
formulation, in the extraction of the eigenvalues, is shown and commented.
Since the numerical formulation for the foams leads all complex wave num-
bers, one of the key elements of the present research activities is the definition425

of adequate classifying criteria. As matter of fact, there is no purely propaga-
tive solution and all waves are damped, with a decay rate that may be used
to classify the branches in two categories: those that are rapidly damped
and those that are slowly damped in space. The proposed criteria allow to
distinguish between the evanescent and propagative waves traveling in the430

material and, consequently, to derive the group velocity.
The proposed technique is validated through a comparison with the appli-
cation of the classical Floquet-Bloch periodic conditions to a melamine unit
cell. It is also evidenced a remarkable reduction of the computational costs
associated with the application of this shift-cell technique.435

Furthermore, thanks to a branch-tracking algorithm, it is possible to com-
pute equivalent transmission loss curves, which show a very good agreement
with those obtained with classical methods.
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The next steps of this research work will involve the Biot model [28] for 2D
and 3D geometries.440
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