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Abstract

One dimensional active metamaterials with broadband controllable bending stiffness are
studied in this paper. The key unit of the active metamaterials is composed of a host
beam and piezoelectric patches bonded on the beam surfaces. These patches serve as
sensors or actuators. An appropriate feedback control law is proposed in order to change
the bending stiffness of the active unit. The input of the control law is the voltage on
the sensors, the output is the voltage applied on the actuators. Due to the control,
bending stiffness of the active unit is (1 + α) times of that of the bare host beam, α
being a design parameter in the control law. The bending stiffness can be tuned to
desired value by changing α. The performances of the controlled bending stiffness are
analytically and numerically studied, the stability issues are also discussed. The active
units are first used in a spatial periodic waveguide to have tunable band gaps, then
they are integrated in a spatiotemporal periodic waveguide to realize non-reciprocal wave
propagation. Performances of the two waveguides are numerically studied.

Keywords: metamaterials, piezoelectric materials, feedback control, vibration,
non-reciprocal wave propagation

1. Introduction

Metamaterials are artificially engineered structures with unconventional effective prop-
erties. They are composed of unit cells (also called meta-atoms [1]), whose sizes are
smaller than the wavelengths at interested frequency ranges. Typically through a peri-
odic arrangement (but not necessary [2]) of these unit cells, band gaps at low frequencies
can be created for sound and vibration mitigation [3, 4]. Since the effective properties of
metamaterials can be delicately customized and tailored through the design of unit cells,
metamaterials have also been widely used to control acoustic and elastic waves. A plenty
of unconventional wave propagation effects have been realized using metamaterials, such
as negative refraction [5], cloaking [6], topologically protected wave propagation[7], etc.
Although metamaterials have helped to broaden the frontiers of acoustic and mechanical
techniques in the past decades, efforts have mostly been dedicated to passive and static
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unit cells, which are difficult to be altered after being manufactured. This limitation
conflicts with the demands of more intelligent and adaptive structures.

Mainly motivated by the aforementioned reason, there has been a growing effort to
study active metamaterials [8–10]. The key distinguished features of these advanced
metamaterials are their controllable properties. The control is mostly realized by using
smart materials in the unit cell. For example, including piezoelectric patches shunted with
resonant circuits into a unit cell can obtain tunable equivalent dynamic stiffness [11, 12].
Negative capacitances have the ability to change the equivalent static Young’s modulus of
piezoelectric materials in a large frequency band. Therefore, they are more widely used to
design controllable unit cell. The negative capacitance presents an unstable zone which
must be avoided in practical applications [13, 14]. Active control is an alternative way to
tune the structural properties. Parameters of some smart materials can be tuned through
an external field, for example, magnetoelastic materials show a varying Young’s modulus
when they are placed in a changing magnetic field. Therefore, these materials have
been used to actively modulate system properties [15, 16]. Actively tuning the effective
parameters using feedback control loops has also been proposed. A part of the efforts has
been dedicated to design digital circuits [17, 18]. The digital circuit measures the voltage
on a piezoelectric transducer and feedbacks current into the same transducer according
to a designed control law therefore to mimic the behaviors of analog electrical elements
or any behavior of interest [19]. For example, the digital circuit could be programmed to
mimic a negative capacitance to control the effective Young’s modulus. Direct feedback
control is another active way to tune the structural properties, which has already been
used to realize effective negative mass [20], or add a positive active stiffness into the
system [21].

Active metamaterials have been proposed for many applications. For example, peri-
odic arrays of piezoelectric patches shunted with resonant circuits or negative capacitances
are bonded on the surfaces of beams or plates to obtain tunable band gaps [11, 13, 22, 23].
A self-adaptive metamaterial beam with digital circuit controlled mechanical resonators
for broadband wave attenuation at sub-wavelength scales is proposed in [24]. Active meta-
materials are also explored to manipulate wave propagation. Piezoelectric patches with
shunts are used to steer waves for effects like wave focusing [25], wave redirecting [26].
A programmable metasurface with sensing and actuating units is proposed to manipu-
late the amplitude and phase of transmitted and reflected waves in real-time [27]. The
metasurface particularly shows potential applications in one-way blocking of waves and
cloaking. An active metamaterial consisting of symmetrical double Helmholtz resonators
is proposed in [28] to realize cloak effect in fluid.

The progress of active metamaterials encourages studies on time-dependent structures.
These types of structures possess parameters being modulated in time or in time and space
simultaneously. It is shown that modulation of parameters of periodic waveguides in time
domain significantly alters the transmission properties at frequencies near and within
the band gap [29]. Piezoelectric patches shunted with time-varying resistance-inductance
circuits have shown to provide broadband vibration control effect [30]. Recently, media
with parameters modulated in both time and space in a traveling wave form have drawn
lots of attention since the wave propagation in them is non-reciprocal. Dispersion curves
of waves in these spatiotemporal periodic structures are no longer symmetrical [31]. Band
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gaps for waves propagating in opposite directions are at different frequency ranges. Within
these band gaps, several unusual wave propagation behaviors have been observed, such
as one-way wave transmission [31–33], frequency conversion [34] and frequency splitting
[35].

Although several strategies have been proposed to design active metamaterials as
introduced above, efficiently changing the structural parameters still remains an open
challenge. The equivalent stiffness obtained using piezoelectric patches shunted with
resonant circuits strongly depends on frequency and is only available in a narrow band
near the resonant frequency of the circuit [11, 12]. Negative capacitances are able to tune
structural properties in a wide frequency band. Nevertheless, the controlled equivalent
Young’s modulus only varies dramatically at the vicinity of the unstable zone [13, 14],
which means that to obtain significantly modulated system parameters, the system has to
work very close to the unstable zone, a small variation of the applied negative capacitance
value may make the system unstable or deviate the controlled parameters from the desired
values. Direct active feedback control is an emerging technique to design controllable
metamaterials. It has been proposed to control wave propagation and vibration properties
of 1D periodic waveguides [21, 36]. However, its ability to control structural parameters
has not been satisfactorily explored yet.

This paper proposes new kinds of metamaterials with broadband controllable stiffness
based on direct active feedback control. The designed basic active unit is composed
of a host beam and piezoelectric patches bonded on the beam surfaces. Some of the
patches serve as sensors to measure the input signal for the controller; the rest are used as
actuators, a feedback voltage generated by the controller is applied on them. The bending
stiffness of the active unit is controlled, the geometry and control law are introduced in
section 2. Performance and stability issues of the designed active unit are discussed in
section 3. The active units are used to form a 1D spatial periodic waveguide and a 1D
spatiotemporal periodic waveguide, properties of the two waveguides are studied in section
4.1 and section 4.2, respectively. Finally, conclusions are drawn in section 5.

2. The designed unit and control law

Figure 1 shows the designed active unit. There are four sensors and two actuators
in the cell all made of piezoelectric materials. The polarization of these patches is along
the z axis. Electrodes of the patches are on the surfaces perpendicular to the z axis.
The target is to control the bending stiffness associated with the flexural waves traveling
along the x axis in beam-like structures. Therefore, the four sensors are connected in a
way shown in the figure to filter the voltages generated by longitudinal and zero-order
torsion waves. The measured voltage by the sensors is Vs. The two actuators are also
connected together, the applied voltage on them is Va. In practice, the two sensors and
one actuator on the upper surface, also those on the lower surface, may be realized using
a single complete patch by dividing the electrode into three segments [37].

Under bending movement, according to the Euler-Bernoulli beam theory, the normal
strain on the cross section (on YZ plane) of the active unit is

εx = −z∂
2w

∂x2
, (1)
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Figure 1: The designed active unit.

Hereafter, εbx is used to represent the normal strain on the host beam cross section and εpx
is used to represent that on the patch cross section.

The constitutive equations of the piezoelectric patches are

εpx =
σpx
Yp

+ d31E3,

D3 = d31σ
p
x + εσ3E3,

E3 = − V

hp
,

(2)

in which, Yp is the in-plane Young’s modulus of the patch, d31 is the piezoelectric constant
under constant stress, and εσ3 represents the dielectric permittivity. σpx is the normal stress
on the cross section of the patch, D3 and E3 are the electric displacement and electric
field, respectively. V denotes the voltage on the electrode, for the actuator it is Va, and
for the sensor it is Vs. Directions 1, 2 and 3 correspond to x, y and z axis, respectively.

The normal stresses on the cross section of the actuators are obtained according to
equations (2):

σpx = Yp(ε
p
x + d31

Va
hp

). (3)

The normal stress on the host beam cross section is

σbx = Ybε
b
x, (4)

in which, Yb is the Young’s modulus of the beam.
According to the Euler-Bernoulli beam theory and using the expressions in equations

(1), (3) and (4), the bending moment of the active unit is obtained as

M =

∫ hb
2
+hp

−hb
2
−hp

∫ b
2

− b
2

zσxdydz

= −Ybbh
3
b

12

∂2w

∂x2
− {Ypba[(hb + 2hp)

3 − h3b ]
12

∂2w

∂x2
− Ypd31ba(hb + hp)Va}.

(5)

On the right side of equation (5), the first term corresponds to the contribution of
the host beam, and the rest terms are contributions from the actuators. Note that, the
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contributions of the sensors are ignored since the width of them is much smaller than that
of the actuators.

It is more meaningful to consider the behavior of the whole unit rather than a single
section of it since the patches act on the whole unit. Therefore, equation (5) is integrated
from the left end (xL) of the active unit to the right end (xR):

∫ xR

xL

Mdx = −Ybbh
3
b

12
θ4 − {

Ypba[(hb + 2hp)
3 − h3b ]

12
θ4 − Ypd31bal(hb + hp)Va}, (6)

in which, θ4 =
∫ xR
xL

∂2w

∂x2
dx =

∂w

∂x
|xR −

∂w

∂x
|xL , it is the difference of the rotation angles at

the left and right ends.
According to equation (6), it can be seen that, the bending moment can be changed

by controlling the voltage Va. Therefore, if the voltage is controlled according to the
following law

Va =
αYbbh

3
b − Ypba[(hb + 2hp)

3 − h3b ]
12Ypd31bal(hb + hp)

θ4, (7)

in which, α is an input parameter to determine the bending stiffness of the unit after
control as will be seen below, the integration of the bending moment accordingly turns
into ∫ xR

xL

Mdx = −(1 + α)
Ybbh

3
b

12
θ4, (8)

which means that the bending stiffness of the active unit after control is

Db(α) = (1 + α)
Ybbh

3
b

12
. (9)

From equation (9), it can be seen that the bending stiffness of the controlled unit is
(1 + α) times of that of the bare host beam.

The sensors are open-circuited, the difference between the rotation angles θ4 in the
control law in equation (7) is measured according to

θ4 = − 2l(εσ3 − Ypd231)
hp(hb + hp)d31Yp

Vs. (10)

More details related to equation (10) can be found in Appendix B.
Using equations (7) and (10), the final control law is obtained as

Va =
{αYbbh3b − Ypba[(hb + 2hp)

3 − h3b ]}(εσ3 − Ypd231)
6Y 2

p bahp(hb + hp)2d231
Vs. (11)

In summary, applying the law in equation (11), it is possible to change the bending
stiffness of the active unit in a manner expressed in equation (9). One can increase the
bending stiffness by using a positive α or decrease it by using a negative α compared with
that of the host beam.
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3. Control effects and stability issues

In this section, the control effects and stability issues of the active unit are discussed
based on theoretical and numerical studies on a clamped-free unit (namely, a cantilever).
In the simulations, the host beam is made of aluminum and the piezoelectric patches are
made of PIC 151. Parameters of these materials are listed in Appendix A. The geometrical
parameters of the active unit are given in table 1.

Table 1: Geometrical parameters of the clamped-free active unit.

Length Width Height

Host beam l = 0.05 m b = 0.05 m hb = 0.005 m

Actuator and sensor l = 0.05 m
ba = 0.044 m,
bs = 0.0025 m

hp = 0.0005 m

The first bending mode of the clamped-free unit is studied to reveal the control per-
formances. Assume that the damping is low therefore can be ignored, then the resonant
frequency of the first bending mode of the clamped-free unit is analytically obtained

fn1 =
3.516

l2

√
Db(α)

ρbbhb + 2ρpbhp
, (12)

in which, ρb and ρp are the density of the host beam and that of the piezoelectric patches,
respectively. From equation (12) it can be seen that the bending stiffness Db is positively
correlated to the resonant frequency, therefore the latter can be used as an indicator of
the former.

The first bending mode of the clamped-free unit is also numerically studied using the
finite element method (FEM). The simulations are done in the COMSOL Multiphysics
software. 3D quadratic Lagrange elements are used in the FEM model, as shown in figure
2. The control law in equation (11) is applied on the actuators as electric boundary
condition. Figure 3 shows the variation of the resonant frequency of the first bending
mode when α changes. Both the theoretical and numerical results are illustrated in the
figure. Figure 3 also shows the ratios between controlled and measured voltages (Va/Vs)
for different α obtained using equation (11). From the numerical results, it can be seen
that the applied control strategy is able to reduce the bending stiffness to be close to zero
or increase it to some extent compared with that of the host beam. The theoretical and
numerical results match well with each other when α satisfies −0.7 ≤ α ≤ 2.6, the relative
difference between them is less than 10%. Obvious discrepancies between the theoretical
and numerical results are observed when α < −0.7 or α > 2.6. This difference is mainly
caused by the actuators. The actuators are designed to bend the unit along the length
direction (x axis). However, an unwanted bending along the width direction (y axis) is
also caused since the patches are transversely isotropic. The importance of this unwanted
bending increases as the absolute value of the ratio Va/Vs increases. Consequently, when
α < −0.7 or α > 2.6, the unwanted bending becomes non-negligible (for instance, see the
mode shape at α = 3 in figure 3), the beam theory no longer holds very well in the unit’s
behaviors.
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Figure 2: Mesh of the FE model.

Figure 3: Theoretical and numerical resonant frequencies of the first bending mode as well as the ratios
Va/Vs obtained using equation (11) for different α values. The mode shape at α = 3 obtained using the
FEM is also shown in the figure in Y Z view. The horizontal dashed line indicates the resonant frequency
of the host beam.

With respect to the stability, according to equation (9), it can be seen that a positive α
will cause no stability problem since the bending stiffness is increased. On the contrary, a
negative α decreases the bending stiffness, more larger the absolute value of the negative
α is, more the stiffness is reduced. Therefore, after a certain critical value the static
bending stiffness becomes negative, the system is unstable. Theoretically, the active
unit becomes unstable when α ≤ −1. However, as revealed in figure 3, the active unit
behaves differently from the theoretical prediction when α is close to -1, which means
that the critical point of the stable zone could differ from the theoretical one. Therefore,
for systems composed of the designed active units, if negative α values are used in the
control law, the stability issue must be checked first.

The stability can be checked by only studying the pole related to the first resonant
mode (the term “resonant” indicates that all rigid body modes are excluded since they
are not controlled). According to the control theory, a linear system is stable when no
pole of it is located in the right half part of the complex plane in the Laplace domain
[38]. There are usually thousands of poles for a system. However, for the active systems
presented here, there is no need to study all the poles, because as the bending stiffness de-
creases, the first resonant mode becomes unstable before others since it has the minimum
resonant frequency. Therefore, only the pole related to the first resonant mode needs to
be considered. For example, figure 4 shows the variation of the pole related to the first
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Figure 4: Variation of the pole related to the first mode of the clamped-free active unit when α decreases
from 4 to -1 obtained using the FEM. The crosses represent the poles for different α values.

mode of the clamped-free active unit when α decreases from 4 to -1. These results are
obtained using the FEM. It can be seen that the clamped-free unit becomes unstable
when α < −0.8726, before the theoretical critical point.

4. Applications

4.1. Spatial periodic waveguide with tunable band gaps

First, the proposed active units are used to form a 1D spatial periodic waveguide.
Band gaps in periodic structures are useful for vibration and noise control. Realizing
band gaps nowadays is not a big challenge, however wider and even tunable band gaps
in real time are still not easy to be obtained. It will be demonstrated that periodic
waveguides composed of the proposed active units can have broad and controllable gaps.

Figure 5 shows the designed spatial periodic waveguide. It is obtained by alternating
active units with passive beams. The waveguide can be divided into 20 identical cells. A
zoom in on one of these cells is shown in figure 5. It should be clarified that, the term
“active unit(s)” always only denotes the part composed of the patches and the host beam
covered by the patches, as illustrated in figure 1, and the term “cell(s)” refers to the
repetitive basic part composing a periodic waveguide. For instance, in figure 5, the cell
contains an active unit and passive beams. The applied α values for all the active parts
are the same. Geometrical parameters of the cells are listed in table 2.

The dispersion curves of flexural waves (A0 mode) corresponding to different α values
are studied and the results are illustrated in figure 6. In the figure, k represents the
wavenumber and l1 is the length of the cell. The simulations are done in COMSOL. Only
a single cell illustrated in figure 5 is used in the simulation, Floquet periodic conditions
are applied on the left and right boundaries of the cell to obtain the dispersion curves.

In figure 6(a) to (d), α equal to or smaller than 0 are used to soften the waveguide.
Note that, the system is stable in all these studied cases. When α = 0 is used, the
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Figure 5: A spatial periodic waveguides containing 20 active units.

Table 2: Geometrical parameters for cells in the spatial periodic waveguide.

Length Width Height

Host beam
l1 = 0.08 m,
l2 = 0.02 m

b = 0.05 m hb = 0.005 m

Actuator and sensor lp = 0.04 m
ba = 0.044 m,
bs = 0.0025 m

hp = 0.0005 m

waveguide is very close to a homogeneous beam, therefore the band gaps in this case are
quite narrow. As the absolute value of the negative α increases, the lower boundaries of
the first and second band gaps decrease, the upper boundaries remain nearly unchanged.
Consequently, the widths of the gaps are significantly broadened. In figure 6(e) to (h),
α with values larger than 0 are used to stiffen the waveguide. In these cases, as the α
increases, the upper boundaries of the gaps move to higher frequencies and the lower
boundaries remain almost at the original location, leading to wider gaps.

Figure 7 more clearly illustrates how the applied α value will influence the widths of
the first and second band gaps. In the figure are also shown the ratios of the wavelengths
at the upper frequencies of the second band gaps to the length of the patch. It can be seen
that the control law works well until the wavelength is close to 1.7 times of the patch’s
length. Below this ratio, increasing α leads to less enlargement of the second band gap.

The vibrational properties of the finite waveguide are studied using the FEM in fre-
quency domain. A transverse harmonic force is applied on the left end of the whole
waveguide, and the displacement of a corner on the right end is studied (see figure 5).
The structural loss factor for the aluminum and patches is set as 1×10−4. Figure 8 shows
the frequency response curves of the displacement at the studied location when different
α values are applied. The frequency bands where the vibration level is low correspond
to the band gaps. A solo peak inside a band gap observed in some cases are caused by
localized modes [23]. One can see that results in figure 8 further verify the tunable band
gaps of the proposed active waveguide. One can use a negative α to broaden the gaps
and make them cover low frequency ranges. This feature could be very useful for low
frequency vibration and noise control, which is still a challenge in many situations. One
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6: The dispersion curves of flexural waves (A0 mode) in the active waveguide corresponding to
different α values. Color blocks indicate the band gaps. k represents the wavenumber and l1 is the length
of the cell. In (a) to (d) α values smaller than or equal to 0 are used to soften the waveguide; in (e) to
(h) α values larger than 0 are used to stiffen the waveguide.

Figure 7: Left Y axis: widths of band gaps versus α. Right Y axis: ratios of the wavelengths at the
upper frequencies of the second band gaps to the length of the patch.
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can also use a positive α to make the gaps cover wider and higher frequency ranges for
the purpose of vibration and noise reduction at interested frequencies.

4.2. Spatiotemporal periodic waveguide for non-reciprocal wave propagation

In this section the active units are used to form a spatiotemporal periodic waveguide
to realize non-reciprocal wave propagation. Spatiotemporal periodic waveguides possess
properties being modulated in both space and time. The non-reciprocal wave propaga-
tion effects inside them have been studied by many authors, as introduced in section 1.
However, very few propositions can be found on realization of such structures especially
for guided elastic waves.

The designed waveguide has 20 cells with identical geometrical parameters, as shown
in figure 9. Each cell contains 5 of these active units proposed in figure 1. Therefore, in
total there are 100 active units. The reason to design such a compact cell is motivated
by the thought that in practice such cell may be realized by using only one complete
patch with divided electrode segments on each surface of the host beam. The designed
geometrical parameters of the cells are illustrated in table 3.

Table 3: Geometrical parameters for cells in the spatiotemporal periodic waveguide.

Length Width Height

Host beam
l1 = 0.042 m,
l2 = 0.0005 m

b = 0.01 m hb = 0.005 m

Actuator and sensor lp = 0.008 m
ba = 0.008 m,
bs = 0.0005 m

hp = 0.0005 m

The local bending stiffnesses of the waveguide are modulated by changing the α values
applied on the active units according to

α(xi, t) = α1 + (α2 − α1)H[cos(2πfmt− kmxi)], i = 1, 2, ..., 100, (13)

in which, xi is the central coordinate of the ith active unit, H(·) represents the Heaviside
function, fm and km are the frequency and wavenumber of the modulation wave, respec-
tively. The wavenumber km is determined by the wavelength λm according to km = 2π/λm.
In the simulations, 10 active units per wavelength are used to realize the modulation wave
in a piecewise form. Therefore, the wavelength λm is equal to two times of the cell’s length,
as illustrated in figure 9. The function in equation (13) approximates a rectangular wave
as illustrated in figure 10, the α alternates between α1 and α2. Consequently, the bend-
ing stiffness of the ith active unit alternates between Kb(α1) = (1 + α1)Ybbh

3
b/12 and

Kb(α2) = (1 + α2)Ybbh
3
b/12.

The transfer functions from left to right and from right to left of the waveguide are
studied using the FEM. One pair of piezoelectric patches is placed on each side of the
waveguide, as shown in figure 9. To obtain the transfer function from left to right, the
patches “L” are excited by a tone-burst voltage signal vL(t), the transient voltage re-
sponses vR(t) of the patches “R” are measured. The left to right transfer function is
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(a) Softening effects

(b) Stiffening effects

Figure 8: Frequency response properties of the displacement at the studied location when different α
values are used to (a) soften the structure or (b) stiffen the structure.
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Figure 9: A spatiotemporal periodic waveguide containing 100 active units. A passive beam is connected
to the active waveguide on each side, a pair of piezoelectric patches denoted by “L” or “R” is placed on
each side of the waveguide.

Figure 10: The applied modulation wave. vm = 2πfm/km is the velocity and λm represents the wave-
length.
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(a)

(b) (c)

Figure 11: (a) The tone-burst voltage used for excitation, the central frequency is 1500 Hz. (b) Transient
voltage measured on the patches “R”. (c) Transfer function of the waveguide when α1 = 0, α2 = 2 and
fm = 0.

therefore obtained using FFT (vR(t))/FFT (vL(t)), FFT (·) means Fast Fourier Trans-
form. Similarly, the right to left transfer function is obtained by exciting the patches “R”
and measure the response of patches “L”. In the time domain simulations, the time step
is 1×10−5s, which is sufficient since as will be shown the interested frequencies are below
3000 Hz. The damping is included by using the Rayleigh damping model, the coefficient
for the mass matrix is 0.005, and the one for the stiffness matrix is 3.18× 10−8.

As examples, α1 = 0 and α2 = 2 are used in the simulations for demonstration. First,
the modulation frequency is set to be zero, namely fm = 0 in equation (13). In this case,
the designed waveguide only has periodicity in space, the band gaps of it for left- and
right-going waves are the same. To estimate the location of the first band gap, the one
cycle tone-burst voltage with the central frequency equal to 1500 Hz shown in figure 11(a)
is applied on the patches “L”. The voltage responses of the patches “R” are measured,
as shown in figure 11(b). Note that, in the simulations the left and right passive beams
are chosen to be long enough therefore the measured signals do not include the reflected
waves from the two free ends of the whole waveguide. Using the measured voltage and
the excitation voltage, the transfer function curve is obtained, as shown in figure 11(c).
It can be observed that there is a band gap from around 1250 to 2000 Hz.

When the modulation frequency is no longer zero, for example, if it is a positive value,
the band gaps for left-going waves are moved to lower frequency bands, on the contrary,
the gaps for right-going waves are moved to higher frequency bands. The shifted frequency
value for the first gap of the flexural wave can be estimated using equation (14) when a
harmonic modulation wave is used [31]. In our cases, a rectangular modulation wave is
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used. The major component of the Fourier series of a rectangular wave is the fundamental
harmonic. Therefore, equation (14) could also be used in our cases to approximately
estimate the shifted frequency bands.

fshift =
fm
4

(
πfm
√

3ρb
k2mYbhb

+ 2) ≈ fm
2
. (14)

According to equation (14), to totally separate the left-going waves’ band gap and
the right-going waves’ band gap, namely to obtain complete unidirectional gaps, the
modulation frequency needs to be equal to or larger than the width of the gap. The
width of the band gap of the waveguide with α1 = 0 and α2 = 2 is revealed in figure
11(c), which is 750 Hz. Therefore, to have completely separated unidirectional band
gaps, the modulation frequency must satisfy fm ≥ 750 Hz.

In figure 12, the left panel illustrates the corresponding left to right and right to left
transfer functions when the modulation frequency is not zero, the right panel shows the
measured voltage on patches “R” and “L” due to the excitation on patches “L” and “R”.
The transmission coefficients (namely the transfer functions here) are recommended tools
to study the reciprocity [39, 40]. In figure 12(a), the modulation frequency is 400 Hz.
From the left panel it can be observed that for the left-going waves, a gap from 1444
to 2221 Hz is created; on the other hand, for the right-going waves, the gap is from
1055 to 1832 Hz. Comparing these two gaps with the one obtained when fm = 0, it
can be seen that the frequency shift caused by the moving modulation is close to the
estimated value by using equation (14), which to some extend backs the accuracy of the
simulations. The two gaps in figure 12(a) are not totally separated since the applied
modulation frequency is smaller than the critical value. Therefore, in other simulations,
the modulation frequency is chosen as 800 Hz, larger than the critical value. In these
cases, two totally separated unidirectional gaps are obtained, as shown in figure 12(b).
Regarding the recorded voltages, from the right panel of figure 12 it can be seen that due
to the non-reciprocity the recoded voltages on opposite sides are different.

Figure 13 shows the control signals of the 1st, 20th, 60th and 100th active units for
fm = 400 Hz and fm = 800 Hz. The excitation is applied on the patches “L”. The 1st
active unit is the left-most one and the 100th is the right-most one in the waveguide. The
control is local for each active unit, therefore the control acts only when the waves reach
the corresponding active unit. The excitation voltage has a maximum amplitude equal
to 0.65 V, as shown in figure 11(a). Under this excitation, the control signal of the 1st
active unit has the maximum amplitude among all the active units, around 0.06 V for
both simulations. These results demonstrate that the required control voltages are totally
within the reasonable range.

The duration of the incident wave is short in the simulations. Therefore, the phase
difference between the incident wave and the modulation wave has some influences on the
transmission properties of the waveguide. To study these influences, a initial phase ϕ0 is
introduced into the modulation wave, as shown in equation (15), while the initial phase
of the incident wave keeps zero.

α(xi, t) = α1 + (α2 − α1)H[cos(2πfmt− kmxi + ϕ0)], i = 1, 2, ..., 100. (15)
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(a) fm = 400 Hz

(b) fm = 800 Hz

Figure 12: Left panel: left to right and right to left transfer functions of the waveguide. Right panel:
measured voltage on patches “R” and “L” due to the excitation on patches “L” and “R”. The modulation
parameters are α1 = 0, α2 = 2, and (a) fm = 400 Hz, (b) fm = 800 Hz.

(a) fm = 400 Hz (b) fm = 800 Hz

Figure 13: Control signals for the 1st, 20th, 60th and 100th active units when α1 = 0, α2 = 2 and (a)
fm = 400 Hz, (b) fm = 800 Hz. The excitation is on the left in both simulations.
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Figure 14: Influences of the initial phase ϕ0 of the modulation wave on the transfer function. The
excitation is applied on the left in each simulation.

8 different ϕ0 values evenly chosen between 0 and 2π have been studied, the corresponding
transfer functions are illustrated in figure 14. The excitation is applied on the left in each
simulation. It can be observed that the phase changes the depth of the gap. Increasing
the cycle number of the incident wave can reduce the influences of phase, since it has been
demonstrated that the phase has no influence on the transmission properties in frequency
domain [33].

5. Conclusions

An active unit with controllable bending stiffness is proposed. The active unit is
composed of a host beam and piezoelectric patches bonded on the beam surfaces. Some
patches are used as sensors to measure the difference between the rotation angles at the
two ends of the active unit. The other patches are used as actuators. A feedback control
loop is used between the sensors and actuators. An appropriate control law is applied to
control the bending stiffness. Due to the control, the bending stiffness is (1 + α) times
of that of the bare host beam. By choosing different α values, it is possible to obtain
different stiffnesses for the active unit. A positive α stiffens the unit and a negative one
softens it. Systems containing the designed active units are stable if α is larger than a
certain critical value, which is negative and depends on the studied system. A simple
method to check the stability is studying the pole related to the first resonant mode of
the system. The pole must not be located in the right half part of the complex domain
to guarantee a stable system.

The active units are included in a 1D spatial period waveguide to obtain tunable band
gaps. Numerical results show that, by softening or stiffening the waveguide, the band
gaps are broadened. Particularly, when the waveguide is softened, the first gap extends
to low frequency ranges, which is very desired since controlling low frequency vibration
and noise is not an easy task in many situations.

The active units are also used to realize a 1D spatiotemporal periodic waveguide for
non-reciprocal wave propagation. The moving modulation of the local bending stiffnesses
is realized by alternating the applied α for each active unit between two designed values
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according to a rectangular wave function. The non-reciprocal transmission through the
waveguide is numerically verified. By choosing an appropriate modulation frequency,
complete unidirectional band gaps are demonstrated. It is also demonstrated that the
required control voltages are totally within a reasonable range.
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Appendix A. Materials parameters

The Young’s modulus and density of aluminum are 70 GPa and 2700 kg/m3, respec-
tively. The parameters of the PIC 151 are listed in table A.4. The in-plane Young’s
modulus of piezoelectric patches made by PIC 151 is Yp = 1/SE11.

Table A.4: Material parameters of PIC 151.

Symbol Value Property

SE11 = SE22, S
E
33 1.683× 10−11, 1.9× 10−11 (Pa−1)

Compliance matrix under
constant electric field

SE12, S
E
13 = SE23 −5.656× 10−12,−7.107× 10−12 (Pa−1)

SE44 = SE55, S
E
66 5.096× 10−11, 4.497× 10−11 (Pa−1)

d31 = d32 −2.14× 10−10 (C/N)
Piezoelectric matrixd33 4.23× 10−10 (C/N)

d24 = d15 6.1× 10−10 (C/N)

ρ 7760 (kg/m3) Density

εσ1 = εσ2 , εσ3 1936ε0, 2109ε0
Dielectric permittivity
under constant stress

Appendix B. Relationship between the voltage on the sensors and the differ-
ence of the rotation angles

Constitutive equations of the sensors under open-circuited condition are

εpx =
σpx
Yp

+ d31E3,

0 = d31σ
p
x + εσ3E3.

(B.1)

According to equations (B.1), the strain can be expressed as

εpx = −ε
σ
3 − Ypd231
d31Yp

E3. (B.2)
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Using the expression εpx = −z∂
2w

∂x2
and equation (B.2), one can obtain

z
∂2w

∂x2
=
εσ3 − Ypd231
d31Yp

E3. (B.3)

Integrating the above equation along the thickness of the sensors leading to

∂2w

∂x2
= − 2(εσ3 − Ypd231)

hp(hb + hp)d31Yp
Vs. (B.4)

in which, Vs = −
∫
E3dz. Note that there are sensors on lower and upper surfaces, the

integration must be performed from (−hb/2−hp) to −hb/2 and from hb/2 to (hb/2 +hp).
Further integrating equation (B.4) from xL to xR, one can have the final relationship

between the sensed voltage and the difference of the rotation angles

θ4 =

∫ xR

xL

∂2w

∂x2
dx = − 2l(εσ3 − Ypd231)

hp(hb + hp)d31Yp
Vs. (B.5)
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