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ABSTRACT. The objective of this study is to analyze a model of the chemostat involving the attach-
ment and detachment dynamics of planktonic and aggregated biomass in the presence of a single
resource. Considering the mortality of species, we give a complete analysis for the existence and
local stability of all steady states for general monotonic growth rates. The model exhibits a rich set
of behaviors with a multiplicity of coexistence steady states, bi-stability, and occurrence of stable limit
cycles. Moreover, we determine the operating diagram which depicts the asymptotic behavior of the
system with respect to control parameters. It shows the emergence of a bi-stability region through a
saddle-node bifurcation and the occurrence of coexistence region through a transcritical bifurcation.
Finally, we illustrate the importance of the mortality on the destabilization of the microbial ecosystem
by promoting the washout of species.

RÉSUMÉ. L’objectif de cette étude est d’analyser un modèle du chémostat impliquant la dynamique
d’attachement et de détachement de la biomasse planctonique et agrégée en présence d’une seule
ressource. En considérant la mortalité des espèces, nous donnons une analyse complète de l’existence
et de la stabilité locale de tous les équilibres pour des taux de croissance monotones. Le modèle pré-
sente un ensemble riche de comportements avec multiplicité d’équilibres de coexistence, bi-stabilité
et apparition des cycles limites stables. De plus, nous déterminons le diagramme opératoire qui dé-
crit le comportement asymptotique du système par rapport aux paramètres de contrôle. Il montre
l’émergence d’une région de bi-stabilité via une bifurcation nœud col et l’occurrence d’une région de
coexistence via une bifurcation transcritique. Enfin, nous illustrons l’importance de la mortalité sur la
déstabilisation de l’écosystème microbien en favorisant le lessivage des espèces.
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1. Introduction
In the culture of microorganisms, the processes of attachment and detachment of bac-

teria are well known and frequently observed. This phenomenon is manifested either by
fixation of microorganisms on support as in the growth of biofilms or simply by an ag-
gregation such as the formation of flocs or granules [10, 16]. In fact, the formation of
flocs has a direct impact on growth dynamics, since the access to the substrate is limited
for microorganisms within such structures. Nevertheless, it is only recently that they have
been explicitly taken into account in mathematical models based on the chemostat (see
the monograph [8]).

This flocculation mechanism may explain the coexistence of microbial species when
the most competitive species inhibits its own growth by the formation of flocs [9]. In fact,
these bacteria in flocs consume less substrate than planktonic bacteria since the attached
bacteria have less access to the substrate, given that this access to the substrate is pro-
portional to the outside surface of flocs. An extension of the model [9] has been studied
in [5] when the growth rate of isolated bacteria of the most competitive species exhibits
an inhibition. In this case, there may be coexistence around a stable limit cycle. The
interested reader can refer to [4, 5] for a review of the different specific attachment and
detachment rates used in the literature.

In this work, we consider the flocculation model of one species introduced in [4]. This
model, which has been studied also in [3, 8, 12, 13], is written as follows:

Ṡ = D(Sin − S)− f(S)u− g(S)v

u̇ = [f(S)−Du]u− a(u+ v)u+ bv

v̇ = [g(S)−Dv]v + a(u+ v)u− bv
(1)

where S(t) is the concentration of the substrate at time t; u(t) and v(t) are, respectively,
the concentrations of planktonic and attached bacteria at time t; f(S) and g(S) represent,
respectively, the growth rates of isolated and attached bacteria; D and Sin are, respec-
tively, the dilution rate and the concentration of the substrate in the feed device; Du and
Dv represent, respectively, the disappearance rates of planktonic and attached bacteria.

We assume that isolated bacteria can aggregate with isolated bacteria or flocs to form
new flocs with a rate a(u + v)u, where a is a positive constant, proportional to both
the density of isolated bacteria u and the total biomass density u + v. Furthermore, the
flocs can split and liberate isolated bacteria with rate bv, where b is a positive constant,
proportional to their density v.

The study of this model (1) has been limited to the biologically interesting case Dv ≤
Du ≤ D, where Du = αD and Dv = βD, α and β belong to [0, 1] and represent,
respectively, the fraction of planktonic and attached bacteria leaving the reactor. The
factor α was introduced in [2], see also [1], to model a reactor with biomass attached to
the support or to decouple the residence time of solids and the hydraulic residence time
(1/D).

In this work, we study the model (1) where Du and Dv can be modeled as in [11, 14]
by:

Du = αD +mu, Dv = βD +mv

where the non-negative parameters mu and mv representing mortality (or maintenance)
rate are taken into consideration. Therefore, our study will not be restricted to the cases
Dv ≤ Du ≤ D, as in [3, 4, 8, 12, 13], and the cases D < Du, D < Dv or Du < Dv ,
which are also of biological interest, will be investigated.



For the complete mathematical analysis of model (1), the reader is referred to [6]. Our
main objective in this paper is to describe the operating diagram of the model in order to
illustrate the behavior of the system according to the control parameters D and Sin.

This paper is organized as follows. First, we present in Section 2 some general hy-
potheses about the growth functions of flocculation model (1). Then, we analyze the ex-
istence and the local stability of steady states according to the dilution rate and the disap-
pearance rates of planktonic and attached bacteria. In Section 3, we present the operating
diagram in order to show the regions of emergence of multiplicity of positive steady states
according to the control parameters. In Section 4, we study the one-parameter bifurcation
diagrams and the numerical simulations in order to validate the theoretical analysis of the
operating diagram. Finally, conclusions are drawn in the last Section 5.

2. Hypotheses and model analysis
We use the following general hypotheses for growth functions f(S) and g(S):

(H1) f(0) = g(0) = 0 and f ′(S) > 0 and g′(S) > 0 for all S > 0.

(H2) f(S) > g(S) for all S > 0.

Assumption (H1) means that the growth can take place if and only if the substrate is
present. In addition, the growth rates of isolated and attached bacteria increase with the
concentration of substrate. Assumption (H2) means that bacteria in flocs consume less
substrate than isolated bacteria.

The following result shows that our model (1) preserves the biological meaning.

Proposition 2.1 For any non-negative initial condition, the solutions of system (1) remain
non-negative and positively bounded. In addition, the set

Ω =

{
(S, u, v) ∈ R3

+ : S + u+ v ≤ D

Dmin
Sin

}
, where Dmin = min(D,Du, Dv),

is positively invariant and is a global attractor for the dynamics (1).

The proofs of all results of this section are detailed in [6]. In the following, we use the
following notations:

ϕ(S) = f(S)−Du and ψ(S) = g(S)−Dv,

U(S) :=
ϕ(S) (ψ(S)− b)
a [ψ(S)− ϕ(S)]

and V (S) := − ϕ2(S) (ψ(S)− b)
a [ψ(S)− ϕ(S)]ψ(S)

, (2)

H(S) := f(S)U(S) + g(S)V (S). (3)

From (H1), when equations f(S) = Du, g(S) = Dv and ψ(S) = b have solutions,
they are unique and we define the usual break-even concentrations

λu = f−1(Du), λv = g−1(Dv) and λb = ψ−1(b).

From (H2), if in addition Dv ≥ Du, then λv > λu. When equations f(S) = Du or
g(S) = Dv or ψ(S) = b have no solution, we put λu =∞ or λv =∞ or λb =∞.



2.1. Existence of steady states
In order to study the existence of steady states of model (1), we define the interval I

by:

I =

{
]λu, λv[ if λu < λv

]λv,min(λu, λb)[ if λu > λv.
(4)

We can state the following result:

Lemme 2.1 Under the assumptions (H1-H2), system (1) has the following steady states:

1) the washout E0 = (Sin, 0, 0), that always exists,

2) a positive steady state, E1 = (S∗, u∗, v∗) with S∗ solution of equation

D(Sin − S∗) = H(S∗)

where H is given by (3), u∗ = U(S∗) and v∗ = V (S∗), where U and V are given by (2).
This coexistence steady state exists if and only if S∗ ∈ I where I is defined by (4).

The following proposition presents the number of positive steady states of (1).

Proposition 2.2
– When Du ≤ Dv , then the positive steady state E1 = (S∗, u∗, v∗) exists if and only

if Sin > λu. If it exists, it is unique.

– When Du > Dv , then there exists at least one positive steady state in the case λu <
min(λv, Sin) or λv < min(λu, λb) < Sin. Generically, the system can have generically
an odd number of positive steady states. When Sin < min(λu, λb) and λv < λu, then
generically the system has no positive steady state or an even number of positive steady
states.

2.2. Stability of steady states
In this section, we study the local asymptotic stability of each steady state of system

(1). Let J be the Jacobian matrix of (1) at (S, u, v), that is given by

J =

−D − f ′(S)u− g′(S)v −f(S) −g(S)
f ′(S)u ϕ(S)− a(2u+ v) −au+ b
g′(S)v a(2u+ v) ψ(S) + au− b

 .
The stability of the washout steady state is given as follows:

Proposition 2.3 E0 is Locally Exponentially Stable (LES) if and only if Sin < λu and
Sin < λb.

In the following, we analyze the stability of positive steady states. At E1 = (S∗, u∗, v∗),
the Jacobian matrix is given by

J1 =

−m11 −m12 −m13

m21 −m22 a23

m31 m32 −m33


where

m11 = D + f ′(S∗)u∗ + g′(S∗)v∗, m12 = f(S∗), m13 = g(S∗),

m21 = f ′(S∗)u∗, m22 = a(2u∗ + v∗)− ϕ(S∗), a23 = b− au∗,
m31 = g′(S∗)v∗, m32 = a(2u∗ + v∗) and m33 = b− au∗ − ψ(S∗).



The characteristic polynomial is given by

P (λ) = λ3 + c1λ
2 + c2λ+ c3,

c1 = m11 +m22 +m33,

c2 = m12m21 +m13m31 −m32a23 +m11m22 +m11m33 +m22m33,

c3 = m11(m22m33 −m32a23) +m21(m12m33 +m32m13) +m31(m12a23 +m13m22).

According to Routh–Hurwitz criterion, E1 is LES if and only if

c1 > 0, c3 > 0 and c4 = c1c2 − c3 > 0. (5)

We have the following results:

Lemme 2.2 All mij are positive for all i, j = 1, . . . , 3 with (i, j) 6= (2, 3) and we have
c1 > 0.

The next lemma shows that the sign of c3 is given by the position of the curve of the
function H(·) with respect to the line δ of equation y = D(Sin − S) (see Fig. 3(b)).
More precisely, we give the link between the determinant of the Jacobian matrix J1 at
E1 = (S∗, u∗, v∗) and D +H ′(S∗).

Proposition 2.4 One has c3 = − det(J1) = −ϕ(S∗)(ψ(S∗)− b)(D +H ′(S∗)).

Since the condition c4 > 0 of the Routh–Hurwitz criterion (5) could be unfulfilled,
we will study the behavior of flocculation model (1) according to the dilution rate and the
disappearance rates of planktonic and attached bacteria. In fact, there exist four cases that
must be distinguished:

Case 1: Du ≤ Dv ≤ D, Case 2: Dv < Du ≤ D,
Case 3: Dv < Du and D < Du, Case 4: Du ≤ Dv and D < Dv.

(6)

To determine the local stability of the positive steady state in the first and second cases
of (6), we will have need of the following.

Proposition 2.5 In the cases 1 and 2 (Du ≤ D and Dv ≤ D), we have c4 > 0.

It was shown in [8], see also [12, 13] that if Du = Dv = D then the positive steady E1

exists and is unique and LES if and only if Sin > λu. Actually, this result holds in case
1.

Proposition 2.6 In the case 1 (Du ≤ Dv ≤ D), the positive steady stateE1 = (S∗, u∗, v∗)
exists if and only if Sin > λu. If it exists, it is unique and LES.

The case 2 was solved in [3] where it was shown that the stability depends only on the
relative position of the curve of function y = H(S) and the straight line δ of equation
y = D(Sin − S) that is to say, on the sign of D +H ′(S∗). More precisely, we have:

Proposition 2.7 Let E1 = (S∗, u∗, v∗) be a positive steady state. Assume that case 2
holds.

1) If λu < λv: E1 is LES if H ′(S∗) > −D and is unstable if H ′(S∗) < −D.

2) If λu > λv: E1 is LES if H ′(S∗) < −D and is unstable if H ′(S∗) > −D.



In the case 3 of (6), when

D < Dv ≤ Du or Dv < D ≤ Du

c4 can change sign by varying the control parameter Sin such that the positive steady state
E1 could change its behavior without any collision with another steady state [6]. In fact,
numerical simulations show the emergence of stable limit cycles by Hopf bifurcations.

In case 4 of (6), we always have λu < λv and H ′(S) > 0. Therefore, from Prop. 2.4,
it is deduced that in case 4 of (6) we always have c3 > 0. We were not able to find a set
of parameters for which c4 < 0, as in the case 3 of (6) and we conjecture that in this case
the positive steady state E1 which is unique as soon as it exists, is also LES as soon as it
exists.

3. Operating diagrams
The operating diagrams show how the system behaves when we vary the two control

parameters Sin and D in (1). All other parameters in (1) are fixed, such as growth func-
tions and specific attachment and detachment velocities. In fact, they depend on the nature
of the organisms and the substrate introduced into the chemostat. Note that the operating
diagrams of flocculation model (1) have not been studied in the existing literature in the
generic case where the disappearance rates are distinct.

If mu ≥ f(+∞) then equation

f(S) = αD +mu (7)

has no solution. We assume that mu < f(+∞). The equation (7) is equivalent to

D = f̃(S) :=
f(S)−mu

α
.

Since f is increasing, then there exists a unique increasing function

Fu : [0, Du[ −→
[
f−1(mu),+∞

[
D −→ Fu(D) = f̃−1(D)

solution of equation (7) where

Du =
f(+∞)−mu

α
.

Note that if D ≥ Du, then equation (7) has no solution and we put Fu(D) = +∞. If
mv ≥ g(+∞) then equation

g(S) = βD +mv (8)

has no solution. We assume that mv < g(+∞). The equation (8) is equivalent to

D = g̃(S) :=
g(S)−mv

β
.

Since g is increasing, then there exists a unique increasing function

Fv : [0, Dv[ −→
[
g−1(mv),+∞

[
D −→ Fv(D) = g̃−1(D)



solution of equation (8) where

Dv =
g(+∞)−mv

β
.

Note that if D ≥ Dv , then equation (8) has no solution and we put Fv(D) = +∞. If
mv + b ≥ g(+∞) then equation

g(S) = βD +mv + b (9)

has no solution. We assume that mv + b < g(+∞). The equation (9) is equivalent to

D = g̃b(S) :=
g(S)−mv − b

β
.

Since g is increasing, then there exists a unique increasing function

Fb : [0, Db[ −→
[
g−1(mv + b),+∞

[
D −→ Fb(D) = g̃−1

b (D)

solution of equation (9) where

Db =
g(+∞)−mv − b

β
.

Note that if D ≥ Db, then equation (9) has no solution and we put Fb(D) = +∞.
In the following, we show the emergence of the bi-stability region with multiplicity of

positive steady states in the case

Fv(D) < Fu(D) < Fb(D) for all D ∈
[
0,min

(
Du, Dv, Db

)[
.

In this case, the function H is defined and decreasing on the interval I =]λv, λu[ (See
Lemma 2.5 of [6]). It vanishes at λu and tends to infinity as S tends to λv (see Fig. 3(b)).
Assume that H is convex. Thus, equation H ′(S) = −D has a unique solution

S̃(D) ∈ I =]λv, λu[ if and only if H ′(λu) +D > 0,

or also D > D with D solution of equation

H ′(Fu(D)) +D = 0.

More precisely, since the function H ′ is increasing, then there exists a unique decreasing
function

S̃ : [D, Dv[ −→ ]λv, λu[

D −→ S̃(D) = H̃−1(D)

solution of equation H ′(S) = −D with H̃(S) = −H ′(S). Thus, we define the curve
ΓSN of equation

Sin = FSN (D) :=
1

D
H(S̃(D)) + S̃(D)



which corresponds to the saddle-node bifurcation with the appearance of two positive
steady states. In order to illustrate the operating diagram, we considered the parameter
values provided in Table 2 with the growth rates f and g of Monod-type:

f(S) =
m1S

k1 + S
and g(S) =

m2S

k2 + S
, (10)

where mi denotes the maximum growth rate and ki the Michaelis-Menten constant, i =
1, 2. Table 1 shows the existence and local stability of steady states E0, E1 and E2 in the
regions Ik, k = 0, 1, 2, of the operating diagram shown in Fig. 1(b). The letter S (resp.
U) means stable (resp. unstable). Absence of letter means that the corresponding steady
state does not exist.

Table 1. Existence and local stability of steady states according to the regions in the oper-
ating diagram of Fig. 1(b).

Condition Region Color E0 E1 E2

Sin < FSN (D) (D,Sin) ∈ I0 cyan S
FSN (D) < Sin < Fu(D) (D,Sin) ∈ I1 green S S I
Fu(D) < Sin (D,Sin) ∈ I2 red I S

(a)
Sin Γb Γu ΓSN Γv

Db Du Dv

D

(b)
Sin Γu ΓSN

I2

I1

I0
D

Figure 1. Case Fv(D) < Fu(D) < Fb(D): (a) the three curves Γv, Γu and Γb do not
intersect and the curves Γu and ΓSN intersect in (D∗, S∗

in) = (0.46, 1.239). (b) The corre-
sponding operating diagram of (1).

Let Γi, i = u, v, b, SN , be the respective curves of equations Sin = Fi(D) (see Fig.
1(a)). Γu and ΓSN separate the operative plan (D,Sin) at most in three regions, denoted
Ik, k = 0, 1, 2 (see Fig. 1(b)). The transition from the region I0 to the region I1 by
the curve ΓSN (in green) corresponds to a saddle-node bifurcation with the appearance
of two positive steady states E1 which is LES and E2 which is unstable. The transition
from the region I1 to the region I2 by the curve Γu (in red) corresponds to a transcritical
bifurcation when the unstable steady state E2 disappears and E0 becomes unstable.

For this set of parameters mentioned in Table 2, the numerical simulations show that
the condition c4 > 0 of the Routh–Hurwitz criterion is satisfied in the region I1, that
is, the steady state E1 is LES as long as it exists. However, this condition may not be
satisfied for another set of parameters where the positive steady state can change behavior



by a Hopf bifurcation with the emergence of a stable limit cycle. In this case, the analysis
of the operating diagram is the subject of on-going investigations.

(a)
Sin Γu ΓSN

I2

I1

I0

D

(b)
Sin Γu ΓSN

I2

I1
?

I0

D

Figure 2. Effect of mortality on the operating diagram: (a) mu = 0.7 (b) mu = 50.

Fig. 2 shows the reduction of the bi-stability region (in green) I1 and the coexistence
region (in red) I2 by increasing the value of the mortality parameter of the isolated bac-
teria while the washout region (in cyan) I0 increases. Hence, the importance of mortality
on the behavior of the system and the destabilization of the microbial ecosystem and the
maintenance of the least competitive species and hence coexistence. Thus, the control
parameter values should be chosen in the region I2 in order to protect the coexistence of
two microbial species in this process. However, an appropriate initial condition should be
chosen to achieve a good operation of the process when the operating parameters are in
the region I1.

4. The one-parameter bifurcation diagrams and numerical
simulations

Our aim in this section is to study the behavior of system (1) when the parameter Sin
is varying and all other parameters are fixed. In order to validate the theoretical results of
the operating diagram, the diamond point (D∗, S∗in) = (2, 6) is chosen in the bi-stability
region I1 where the existence and stability of the steady states are illustrated in Fig. 3. In
fact, the positive steady states

E1 ' (3.5, 0.583, 1.699) and E2 ' (5.621, 0.198, 0.117)

are given by the intersection of the line δ of equation y = D∗(S∗in − S) and the curve
of the function H(·). In all figures, we have chosen the red color for LES steady states
and blue color for unstable steady states. From Prop. 2.4, c3(S∗) > 0 since ϕ(S∗) < 0,
ψ(S∗)− b < 0 and H ′(S∗) < −D in this case

λv ' 2.591 < λu ' 8.437 < λb = 43.5.

Moreover, Fig. 3(b) shows that c4(S∗) > 0 for all S∗ ∈ I defined by (4). Using Lemma
2.2, it follows that all the conditions of the Routh-Hurwitz criterion are satisfied, that is,



E1 is LES as long as it exists. Note that the curve of the function H(·) is tangent to the
line δ of equation y = D∗(SSNin − S) in S̃ ' 4.338 such that

SSNin =
1

D
H(S̃) + S̃ ' 5.426.

(a)
Sin Γu ΓSN

λu

S∗
in

SSN
in

I2
I1

I0

D∗
D

(b)

δ

D∗S∗
in

H(S) c4(S)

E1

E2

E0SSN
in

λv

I

λu

S

Figure 3. (a) The operating diagram of (1) when Fv(D) < Fu(D) < Fb(D). (b) The
corresponding existence and stability of steady states when the diamond point (D∗, S∗

in) =
(2, 6) ∈ I1.

Fig. 4(a) shows the coexistence between the two species for an initial condition

S(0) = S∗∗ + ε, u(0) = u∗∗ + ε, v(0) = u∗∗ + ε,

where ε = 10−3 and

E2 = (S∗∗, u∗∗, v∗∗) ' (5.621, 0.198, 0.117).

The solution of model (1) converges toward the coexistence steady stateE1 which is LES.
Fig. 4(b) shows the extinction of two species for an initial condition

S(0) = S∗∗ − ε, u(0) = u∗∗ − ε, v(0) = u∗∗ − ε.

and the convergence toward the washout steady state E0 = (6, 0, 0) which is LES.

(a)

S(t)

v(t)

u(t)

Time

(b)
S(t)

v(t)u(t)

Time

Figure 4. The system exhibits a bi-stability: according to the initial condition, there is either
(a) coexistence of the two species (convergence toward E1) or (b) washout of the two
species (convergence toward E0).



Fig. 5 illustrates the trajectories over time in three-dimensional space (S, u, v) for
several positive initial conditions. For (D∗, S∗in) = (2, 6) ∈ I1, Fig. 5(a) shows the
bi-stability with two basins of attraction, one toward the washout steady state E0 and the
other toward the coexistence steady state E1 which are stable nodes. These two basins
are separated by the stable manifold of saddle point E2. For (D∗, S∗in) = (2, 9) ∈ I2, the
numerical simulations can show the global convergence toward the positive steady state
E1 = (3.07, 0.77, 5.15) from any positive initial condition (see Fig. 5(b)).
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(a)

E1

E2

E0

•

v

u

S

(b)

E1

E0

•

v

u

S

Figure 5. The trajectories of system (1) in three-dimensional space (S, u, v) (a) the bi-
stability of E0 and E1 when (D∗, S∗

in) = (2, 6) ∈ I1. (b) Global convergence to E1 when
(D∗, S∗

in) = (2, 9) ∈ I2.

Finally, we study the one-parameter bifurcation diagram for system (1) as the control
parameter Sin varies while D is fixed (D = D∗ = 2). Fig. 6 shows a saddle-node
bifurcation between E1 and E2 at the cyan circle point for Sin = SSNin ' 5.426. Then,
the washout steady state E0 loses its stability by a transcritical bifurcation with E2 at the
green diamond point for Sin = λu ' 8.437.

(a)
S

E0

E0

E2

E1

Sin

(b)
u

E0 E0

E2

E1

Sin

(c)
v

E0 E0E2

E1

Sin

Figure 6. One-parameter bifurcation diagrams for fixed D = 2 showing the effect on the
components S, u and v of all steady states as Sin varies. Blue dashed curves corresponds
to unstable steady states and red solid curves to the stable steady states. The green solid
diamonds represent the transcritical bifurcations of E0 and E2 while the cyan solid circles
represent the saddle-node bifurcations of E1 and E2.



5. Conclusion
In this work, we have analyzed mathematically and through numerical simulations a

model of the chemostat where one species is present in two forms, isolated and attached
with the presence of a single resource. The new feature was that maintenance terms are
added to removal rates in order to give a complete analysis of the flocculation model (1).
The operating diagram shows the occurrence of the bi-stability region with multiplicity of
coexistence steady states that can bifurcate through saddle-node bifurcations or transcriti-
cal bifurcations. However, the bi-stability could occur in the classic chemostat model [15]
only when the growth rate is non-monotonic. Furthermore, the operating diagrams show
the effect of mortality of the planktonic bacteria on the reduction of the bi-stability and
the coexistence regions by promoting the washout of the species and the destabilization of
the microbial ecosystem. Finally, the one-parameter bifurcation diagram shows the effect
of the control parameter Sin on the behavior of the system.
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A. Parameters used in numerical simulations

Table 2. Parameter values used for (1) when the growth rates f and g are given by (10).

Parameter m1 k1 m2 k2 a b α β mu mv

(h−1) (g/l) (h−1) (g/l) (l/h/g) (h−1) (h−1) (h−1)

Figs. 1, 3, 4, 5, 6

Fig. 2
3.5 2.5 3 1.5 1 1 1 0.75

0.7

50
0.4
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