

Achieving energy transition with negative emissions:

how carbon storage and biomass resource potentials can impact the development of Bioenergy with Carbon Capture and Storage

Sandrine Selosse

MINES ParisTech, PSL Research University, Centre for Applied Mathematics Chair Modeling for Sustainable Development

June 5th, 2019

International Energy Workshop – IEA - Paris

Long-term possible low carbon futures of the energy system

Climate constraints

- 2°C objectives (emissions targets [Gt CO₂], radiative forcing [W/m²], atmospheric concentration [ppm])
- Paris Agreement (NDCs)

RCP8.5 (a high-emission scenario)

RCP2.6 (a low-emission mitigation scenario)

How to achieve a sustainable energy transition?

Modelling approach

TIAM-FR: French version of the TIMES Integrated Assessment Model

Optimization, linear programming Minimization of the total discounted cost of the system

Where

NPV is the net present value of the total cost for all regions over the projected period; ANNCOST (r,y) is the total annual cost in region

r and year y;

dr, y is the discount rate;

REFYR is the reference year for discounting; YEARS is the set of years and R is the set of regions (15 regions)

Bottom-up

Long-term: **2010**-2100

Multi-regional:15 regions (+T-ALyC)

Multi-sectors: 6 sectors

42 demands

585 729 data

11 646 commodities (about 770/region) 39 817 technologies (about 2 500/region)

Long-term possible low carbon futures of the energy system

Climate constraints

- 2°C objectives (emissions targets [Gt CO₂], radiative forcing [W/m²], atmospheric concentration [ppm])
- Paris Agreement (NDCs)

PSIM Technological choices to a climate stabilization

Muratori et al. (2016) - http://iopscience.iop.org/article/10.1088/1748-9326/11/9/095004

AR5: 101 of the 116 scenarios with a limited atmospheric concentration at 430-480 ppm rely on BECCS

About 67% of these have a BECCS share in primary energy exceeding 20% in 2100

(Fuss et al. (2014), Nature Climate Change)

World electricity production (PJ)

What low carbon and sustainable energy future?

Ambitious climate targets achieved if:

- Contribution of developing countries
- Ambitious contribution of emerging countries
- Almost total decarbonization of the industrialized countries
- Major deployment of the CCS
- Use of negative emissions with BECCS

What low carbon and sustainable energy future?

- Contribution of developing countries
- Ambitious contribution of emerging countries
- Almost total decarbonization of the industrialized countries
- Major deployment of the CCS
- Use of negative emissions with BECCS

- Availability of technology
 - Carbon capture and storage (CCS)
 - Availability of onshore storage
- Resource potential
 - Carbon storage
 - Biomass resources

PSIM What low carbon and sustainable energy future?

- Contribution of developing countries
- Ambitious contribution of emerging countries
- Almost total decarbonization of the industrialized countries
- Major deployment of the CCS
- Use of negative emissions with BECCS

Technological and resource constraints

- Availability of technology
 - Carbon capture and storage (CCS)
 - Availability of onshore storage
- Resource potential
 - Carbon storage
 - Biomass resources

Achieving energy transition with negative emissions:

how carbon storage and biomass resource potentials can impact the development of BECCS

The question of carbon storage.... (Gt)

Analysis of the carbon storage potential

- Scenario analysis (under climate constraints)
 - Carbon storage potentials
 - Initial TIAM <u>9,392 Gt</u>
 - Collection of various databases, reports, etc. <u>10,142 Gt</u>
 - Ref. Dooley <u>10,655 Gt</u>
 - Ref. Hendriks <u>572 Gt (Low)</u>

 1,706 Gt (Best)
 5,864 Gt (High)
 - Onshore/offshore determination

Carbon storage by year to achieve the 2°C objective (radiative forcing at $2,6 \text{ W/m}^2$ by 2100)

Sensitivity analyses on carbon storage by site and scenario (Gt CO₂)

Impact of an onshore storage ban on carbon storage an CCS deployment

Sensitivity analysis on biomass potential and impact on carbon storage

Alternatives low carbon pathways:

A joint impact analyzis of carbon storage and biomass potentials

The influence of carbon storage and biomass potentials in the future development of BECCS

onate of coo in the world production of electricity in 20		
Ambitious climate scenario -	Biomass potential	

Ambitious climate scenario - 70% GHG mitigation target		Biomass potential		
		High	Medium	Low
Carbon	High	45% (BECCS: 70%)	39% (BECCS: 55.9%)	27% (BECCS: 18.1%)
storage	Medium	45% (BECCS: 69.8%)	39% (BECCS: 56.3%)	27% (BECCS: 18.2%)
potential	Low	33% (BECCS: 93.9%)	28% (BECCS: 76.7%)	15% (BECCS: 33.5%)

Share of CCS in the world production of electricity in 2050

Gt of negative emissions (CO2 sequestrated in 2050 from BECCS)

Ambitious climate scenario – 70% GHG mitigation target		Biomass potential		
		High	Medium	Low
Carbon storage potential	High	12 Gt	8.8 Gt	2.8 Gt
	Medium	12 Gt	8.9 Gt	2.8 Gt
	Low	11 Gt	7.7 Gt	2.2 Gt

To conclude...

- A key measure of success is how far and how fast the Paris Agreement will encourage more ambitious actions
- Models like TIAM-FR constitute crucial tools to help policymakers as regards long-term low carbon pathways but there is a need for:
 - Position of the envisioned future
 - Connect the proposed trajectories to the real
 - Anticipation and vision, based on short and long term consideration (and without disconnect them)
- Among the low-carbon technology options, CCS technologies are widely presented as a solution for achieving ambitious climate goals, particularly when associated with biomass
 - Carbon storage capacities and particularly biomass potential can be a limiting factor for (BE)CCS deployment
 - Deploying these technologies at this scale for mitigation purposes requires the implementation of incentive and regulation policies

sandrine.selosse@mines-paristech.fr

June 5th, 2019

International Energy Workshop – IEA - Paris

Impact of a contrasted biomass potential on the world electric production (PJ)

Regional electricity production (PJ)

95,000,000

Cost analysis of constraints

Carbon marginal cost (\$/tCO2)

Scenario	Year	Carbon marginal cost	
NDCs lolo BioHi	2020	20	
NDCs_lolo_BioLo	2030		
NDCs_upup2_BioHi		25	
NDCs_upup2_BioLo	2030		
NDCs_upup_BioHi	2030		
NDCs_upup_BioLo			
W-2050-40_BioHi	2030	30	
W-2050-40_BioLo	2030	30	
NDCs_lolo_BioHi	2050		
NDCs_lolo_BioLo	2030	35	
W-2050-50_BioHi	2030	33	
W-2050-50_BioLo	2030		
W-2050-70_BioLo	2030	40	
W-2050-70_BioHi	2030	50	
NDCs_upup_BioHi	2050	75	
NDCs_upup_BioLo	2030	75	
W-2050-40_BioHi	2050	90	
W-2050-40_BioLo	2030	90	
NDCs_upup2_BioHi	2050	95	
W-2050-50_BioHi	2050	100	
NDCs_upup2_BioLo	3050	120	
W-2050-70_BioHi	2050	120	
W-2050-50_BioLo	2050	150	
W-2050-70_BioLo	2050	420	