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Abstract. An effective model, which jointly captures shape and motion
cues, for dynamic texture (DT) description is introduced by taking into
account advantages of volumes of blurred-invariant features in three main
following stages. First, a 3-dimensional Gaussian kernel is used to form
smoothed sequences that allow to deal with well-known limitations of
local encoding such as near uniform regions and sensitivity to noise. Sec-
ond, a receptive volume of the Difference of Gaussians (DoG) is figured
out to mitigate the negative impacts of environmental and illumination
changes which are major challenges in DT understanding. Finally, a local
encoding operator is addressed to construct a discriminative descriptor
of enhancing patterns extracted from the filtered volumes. Evaluations
on benchmark datasets (i.e., UCLA, DynTex, and DynTex++) for issue
of DT classification have positively validated our crucial contributions.

Keywords: Dynamic Texture · DoG · Gaussian Filter · LBP · CLBP.

1 Introduction

Dynamic textures (DTs) are textural characteristics repeated in temporal ranges,
such as waves, trees, fire, clouds, fountain, blowing flag, etc. Analyzing to clarify
them is an important task for different applications in computer vision. Various
methods have been introduced with diverse procedures for describing DTs. In
general, those can be roughly categorized into the following groups. Optical-flow-
based approaches [20, 18] efficiently represent the turbulent motion properties of
DT videos in natural modes for issues of classifying DTs. In the meanwhile, fil-
tering techniques are taken into account in filtering-based approaches to reduce
the negative impacts of noise and illumination on encoding DT sequences. It
should be noted that this technique is also effective for analyzing 2D texture
images [14, 35]. The group of model-based approaches [30, 36] has mainly inher-
ited the computational types of Linear Dynamical System [30] (LDS) and its
variants to model motions of DTs in spatio-temporal aspects, while geometry-
based approaches [37, 38, 25] geometrically capture dynamic features for DT rep-
resentation based on fractal analyses, such as dynamic fractal spectrum (DFS)
[38], Multi-fractal spectrum (MFS) [37], and wavelet-based MFS [11]. Recently,
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learning-based approaches have been considerable due to their promising effect
in DT recognition, which can be divided into two principle trends: deep learn-
ing methods (e.g., Convolutional Neural Networks (CNNs)) [22, 1, 2] utilize deep
algorithms for learning features, and the other is dictionary-learning-based tech-
niques [23, 24] which are based on kernel sparse coding to produce learned dic-
tionaries for DT description. Finally, local-feature-based approaches [15, 31–34,
16] are involved with Local Binary Pattern (LBP) operator which is fortunately
applied for encoding still images thanks to its computational efficiency. For video
representation, they mostly rely on two main LBP-based variants to enhance the
capacity of discriminative power as follows: Volume LBP (VLBP) [39] formed
on contiguous frames, and LBP-TOP [39] computed on three orthogonal planes.

Although achieving the positive performance on classifying DTs, some limi-
tations have been enduring, such as in the filtering-based approaches: issues of
noise and illumination [3]; in the local-feature-based methods: near uniform pat-
terns, sensitivity to noise [32, 15], and large dimensional problems [39, 28, 31]. In
this paper, we propose an effectively computational framework to diminish these
restrictions in the following steps. Firstly, a 3D Gaussian kernel is taken into ac-
count for analyzing videos as a pre-processing to point out blurred sequences
with less sensitive to noise and near uniform regions. A receptive volume of DoG
is then computed from these sequences to deal with the influences of environ-
mental and illumination changes. Finally, a robust descriptor is structured by
exploiting a local encoding operator (e.g., LBP, CLBP, etc) to jointly capture
shape and motion cues of blurred-invariant features from three orthogonal planes
of the filtered volumes. Experiments on various benchmarks have shown that our
proposal promisingly performs compared to the state-of-the-art methods.

2 Proposed Method

Exploiting local features for video representation with an effective computa-
tion, the local-feature-based approaches have acquired promising results on DT
recognition. In spite of that, their performance is still in restriction due to the
problems of illumination, near uniform regions, and sensitivity to noise. In this
section, we firstly recall LBP and its variants as well as Gaussian-based filtering
kernels. We then introduce an efficient framework for DT representation based
on above materials to address typical limitations of local encoding operators.

2.1 A Brief Review of LBP and Its Completed Model

A typical LBP code is defined as a chain of bits for describing local relation-
ships between a center pixel and others in neighborhoods of a still image [19].
Accordingly, let I signify a 2D gray-scale image. A binary string for each pixel
q ∈ I is formed by estimating the difference of gray-scale values of q and local
neighbors {pi} sampled its surrounding regions as

LBPP,R(q) =
{
sign

(
I(pi)− I(q)

)}∣∣∣P−1
i=0

(1)
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where P denotes a number of neighbors interpolated on a circle of radius R, I(.)
comes out the gray-level of a pixel, and function sign(.) is defined as

sign(x) =

{
1, x ≥ 0

0, otherwise.
(2)

In calculation of probability distributions for image texture representation,
the LBP codes form a histogram with a large dimension of 2P distinct values. In
practice, two popular mappings are utilized to treat this shortcoming: u2 with
P (P − 1) + 3 bins for uniform features and riu2 with P + 2 bins for rotation
invariant uniform features. In addition, other considerable mappings are also
expected to improve the structuring operation, such as LBC [41] - an alternative
of uniform patterns, TAPA mapping [13] for addressing topological information.

Guo et al. [9] proposed a completed model of LBP (CLBP) in which three
complemented components are incorporated in different ways for enhancing the
performance: CLBPS that is identical to the typical LBP, CLBPM for capturing
magnitude information, and CLBPC for obtaining the difference between the
gray-level of a center pixel and that of the mean on the whole image. Experiments
in [9] also validated that the joint of three components (i.e., CLBPS/M/C), which
is used in our proposal, outperforms other configurations.

2.2 Blurred-Invariant Gaussian Volumes

A Gaussian filtering is a process of convolving a Gaussian kernel on a spatial do-
main. It should be in accordance with the regulation of a Gaussian distribution.
In general, the n-dimensional Gaussian kernel is defined as follows.

Gn
σ(x1, x2, ..., xn) =

1

(σ
√

2π)n
exp
(
− x21 + x22 + ...+ x2n

2σ2

)
(3)

in which σ means a pre-defined standard derivation, n denotes a number of
spatial axes {xi}ni=1 taken into account the convolutions.

For analysis of DT videos, the 3D Gaussian kernel should be applied as

G3D
σ (x, y, t) =

1

(σ
√

2π)3
exp
(
− x2 + y2 + t2

2σ2

)
(4)

where x, y denote the spatial coordinates, t indicates the temporal coordinate.
As a result of that, the difference of 3D Gaussian filters is computed as

DoG3D
σ1,σ2

(x, y, t) = G3D
σ1

(x, y, t)−G3D
σ2

(x, y, t) (5)

Two above kernels G3D
σ1

and DoG3D
σ1,σ2

are used to filter a DT video resulting
in filtered volumes of blurred (VG) and invariant (VDoG) features as follows.{

VGσ1 = G3D
σ1

(x, y, t) ∗ V
VDoGσ1,σ2

= |DoG3D
σ1,σ2

(x, y, t)| ∗ V
(6)

where V means a volume of DTs, σ1 < σ2 , “*” is the convolutional operator.
This volume filtering is illustrated in the second image line of Figure 1.
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(a)

(b1) (c1) (d1)

(b2) (c2) (d2)

Fig. 1. A sample of Gaussian filterings. (a) is an input gray-scale frame in a DT video.
(b1), (c1) are 2D smoothed images of (a) using σ1 = 0.5, σ2 = 4 respectively, and (d1)
denotes the 2D DoG of them [17]. In the meanwhile, (b2), (c2) are 3D blurred frames
of (a) with the above standard derivations, and (d2) is the 3D DoG of (b2) and (c2).

 

 

 

Fig. 2. (Best viewed in color) Our proposed framework for structuring volumes of
blurred-invariant features. Therein, the black arrow denotes a pre-processing of Gaus-
sian filters while the blue implies a process of encoding the filtered volumes.

2.3 Proposed DT Descriptor

In this section, we propose a simple framework to efficiently capture appearance
information and motion cues for DT representation. For a given video V, the
proposed framework consists of three major steps to encode DT characteristics
(see Fig. 2 for graphical illustration). Firstly, the 3D Gaussian-based filters G3D

σ1

and DoG3D
σ1,σ2

are taken into account for analyzing V as a pre-processing stage
to figure out its corresponding filtered volumes, i.e., VGσ1 and VDoGσ1,σ2

, against
the issues of noise and illumination. Secondly, each of these volumes is broken
into the separative frames of image textures according to its three orthogonal
planes {XY,XT, Y T}. A local encoding operator Ψ is then utilized for these
planes to extract spatial information and motion properties of DTs as follows.

Γ(VGσ1/DoGσ1,σ2
) =

[
Ψ(fi ∈ XY ),Ψ(fj ∈ XT ),Ψ(fk ∈ Y T )

]
(7)
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where frames fi, fj , and fk belong to the corresponding planes of a filtered
volume, Ψ(.) denotes a function of local encoding structures (e.g., LBP, CLBP,
etc.) for capturing smoothing characteristics of spatio-temporal cues from VGσ1
and invariant features of those from VDoGσ1,σ2

. An instance for encoding VGσ1 is
graphically illustrated in Fig. 3. Finally, the achieved histograms are normalized
and concatenated to produce a robust descriptor based on the volumes of blurred-
invariant Gaussians V-BIG(Vσ1,σ2

) to enhance the performance.

V-BIG(Vσ1,σ2) =
[
Γ(VGσ1 ),Γ(VDoGσ1,σ2

)
]

(8)

... ... ... 
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Fig. 3. Encoding model for a filtered volume VG.

2.4 Beneficial Properties of the Proposed Descriptor

Similar to FoSIG [17], our descriptor takes advantage of the following beneficial
properties to enhance the discriminant power. In addition, V-BIG are involved
with an important feature of informative voxel discrimination that leads to its
outstanding performance compared to FoSIG in most of circumstances. Figure
1 shows a specific comparison of using 2D and 3D Gaussian filtering kernels, in
which the outputs of the 3D filter seem more “stable” than that of 2D.
– Robustness to changes of illumination and environment: Filtered volumes
VG and VDoG are robust against changes of illumination thanks to 3D Gaus-
sian filtering kernels. Furthermore, the receptive DoG volume against scale
changes, computed by two Gaussians of different scales, allows to capture
features with more robustness to the major remaining problems of DT de-
scription: illumination, scale, and changes of environment.
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– Robustness to noise: Instead of encoding on a raw video V, its filtered vol-
umes, i.e., VG and VDoG, are addressed to exploit local features with more
intensities to noise. It should be noted that the 2D Gaussian filtering kernel
has been taken into account for analyzing neighborhoods at various regional
scales of a pixel for textural image description [12], and capturing spatio-
temporal information based on filtered images of the planes in a video [17].
Different from those, the 3D Gaussian filtering kernels is used to enrich dis-
criminative information of voxels in consideration of the whole sequence. On
the other hand, our proposal also integrates DoG filters to make descriptor
more robust against environmental and illumination changes.

– Forceful discriminative factors: Well-known as an approximation of Lapla-
cian of Gaussian (LoG), volume of VDoG provides useful receptive properties
for encoding DT features. In the meanwhile, volume of VG produces robust
smoothing characteristics for DT representation. As a result, these comple-
mented components have significantly contributed to improve the perfor-
mance of classification (see Table 2 for their contributions in detail).

– Informative voxel discrimination: Thanks to using 3D Gaussian filtering ker-
nels, each voxel is enriched by informative discrimination that allows to
jointly capture shape and motion cues of a DT video. It is different from
FoSIG [17], in which just spatio-temporal characteristics of a voxel are cal-
culated on 2D Gaussian filtered images of the planes in a sequence. Experi-
ments in Section 3 validate the interest of this approach compared to [17].

– Low computational cost: Using a raw MATLAB code on a Linux laptop with
configurations of CPU Intel Core i7 1.9 Ghz and 4G RAM, our encoding
algorithm just takes less 0.84s to handle a video of 48× 48× 75 dimension.
It is about 0.08s faster than that of FoSIG [17] (0.92s).

3 Experiments

To evaluate the performance of our proposition, we address descriptor V-BIG
for task of DT recognition on different benchmark DT datasets, i.e., UCLA
[30], DynTex [21], and DynTex++ [8]. For classifying, we utilize a linear multi-
class SVM algorithm with the default parameters which is implemented in the
LIBLINEAR1 library [7]. The obtained rates are then evaluated in comparison
with the state-of-the-art results.

3.1 Experimental Settings

To structure filtered volumes, we investigate σ1 = 0.5, σ2 = {1, 2, 3, 4, 5, 6},
and x, y, t ∈ [−3σ, 3σ]. For calculating the proposed descriptor, CLBP operator
is exploited to capture local features of these volumes, i.e., Ψ = CLBPriu2

{(P,R)}
with joint parameters of riu2 mapping, {(P,R)} = {(8, 1)} for single-scale, and
{(8, 1), (8, 2)} for multi-scale to acquire more local relationships in further re-
gions. As a result of those, the obtained descriptors have dimensions of 1200 and

1 https://www.csie.ntu.edu.tw/∼cjlin/liblinear
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2400 bins respectively. For comparison with the state of the art, the setting of
(σ1, σ2) = (0.5, 6) for the multi-scale encoding is appointed thanks to its outper-
formance on most of DT datasets. Empirically, it should be addressed σ2 ∈ [1, 6]
due to a reduction of spatial information in case of σ2 > 6.

3.2 Datasets and Protocols

The properties of benchmark datasets as well as experimental protocols, which
are used for verifying our proposal, are exposed in this section. The summary in
brief of those is shown in Table 1 for a convenient search.

UCLA Dataset: Saisan et al. [30] composed 50 categories of 200 DT se-
quences in 110 × 160 × 75 dimension with four videos for each of groups. In
experiments of DT recognition, a split version of 48× 48× 75 is often used and
divided into the challenging subsets as follows.

– 50-class: DT classification using the original 50 categories with two protocols:
leave-one-out (LOO) [3, 33] and 4-fold cross validation [15, 32].

– 9-class and 8-class: 50 categories are readjusted in a different way to con-
struct a sub-dataset of 9 groups named as “boiling water” (8), “plants” (108),
“sea” (12), “fire” (8), “flowers” (12), “fountains” (20), “smoke” (4), “water”
(12), and “waterfall” (16), in which the numbers in parentheses mean their
quantities. As the dominance of “plants” class, it is discarded to form an
8-class scheme with more challenges [38]. Similarly, the protocol is set as in
[8, 15], that a half of samples in each group is randomly taken out for train-
ing and the remain for testing. The average rates of 20 runtimes on these
schemes are reported as the final results.

DynTex Dataset: Péteri et al. [21] recorded more than 650 high-quality
DT videos in differences of environmental conditions. Identical to [2, 3, 6], LOO
is used to evaluate DT classification rates for all of the following sub-datsets.

– DynTex35: It is constructed as a challenging sub-dataset from clipping 35
videos as follows: randomly splitting each video at different cutting points
but not in the half of X, Y, and T axes to acquire 8 non-overlapping sub-
videos; further splitting along its T axis to obtain 2 more. As a result of
that, DynTex35 is ranged into 10 categories [3, 32, 39].

– Alpha: It consists of three categories of 20 sequences.
– Beta: It includes 162 videos grouped into 10 classes with different quantities.
– Gamma: It contains 10 classes of 264 DT videos with varied cardinalities.

DynTex++ Dataset: 345 raw videos of DynTex are pre-processed so that
just the main turbulent motions are taken out and fixed in dimension of 50 ×
50 × 50 [8]. They are then grouped into 36 categories with 100 sub-videos for
each, i.e., 3600 DTs in total. Similar to [3, 8], a half of items of each group
is randomly chosen for training and the remain for testing. The mean of 10
runtimes is reported as the final recognition rate.
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Table 1. A summary of main properties of DT datasets.

Dataset Sub-dataset #Videos Resolution #Classes Protocol

UCLA
50-class 200 48× 48× 75 50 LOO and 4fold
9-class 200 48× 48× 75 9 50%/50%
8-class 92 48× 48× 75 8 50%/50%

DynTex

DynTex35 350 different dimensions 10 LOO
Alpha 60 352× 288× 250 3 LOO
Beta 162 352× 288× 250 10 LOO
Gamma 264 352× 288× 250 10 LOO

DynTex++ 3600 50× 50× 50 36 50%/50%

Note: LOO and 4fold are leave-one-out and four cross-fold validation respectively.
50%/50% denotes a protocol of taking randomly 50% samples for training and the
remain (50%) for testing.

Table 2. Comparison rates (%) on DynTex++ between FoSIG [17] on filtered images
and V-BIG on filtered volumes using settings of riu2 mapping and {(P,R)} = {(8, 1)}.

Descriptor FoSIGriu2
8,1 of [17] Our V-BIGriu2

8,1

(σ1, σ2) G2D
σ1 DoG2D

σ1,σ2 G2D
σ1 +DoG2D

σ1,σ2 G3D
σ1 DoG3D

σ1,σ2 G3D
σ1 +DoG3D

σ1,σ2

(0.5, 3) 95.73 93.19 96.38 96.01 94.61 96.45

(0.5, 4) 95.73 93.33 96.39 96.01 94.55 96.33

(0.5, 5) 95.73 93.52 96.12 96.01 94.26 96.14

(0.5, 6) 95.73 93.78 95.99 96.01 94.43 96.59

3.3 Experimental Results

Evaluations of our proposed descriptor V-BIG on the benchmark DT datasets
are presented in Table 3, in which the highest rates are in bold. In the meanwhile,
Table 2 shows the important contributions of each kind of filtered features in
performing DT recognition. It can be verified from these tables that exploiting
the filtered volumes of smooth-invariant patterns in video representation figures
out a robust descriptor with outstanding operation. The experimental results are
compared to those of the existing methods in Table 4. In general, our proposal is
more efficient than the others, except deep-learning-based approaches utilizing
a giant computational cost for DT description. It should be noted that V-BIG
also outperforms significantly FoSIG [17] with the same single-scale settings of
CLBPriu2

{(8,1)} and (σ1, σ2) = (0.5, 6) (see Tables 3, 4). Hereafter, the proficiency
of V-BIG on the specific datasets are assessed in detail.

UCLA Dataset: In this scenario, V-BIG outperforms on schemes of 50-LOO
and 50-4fold with the settings for comparison (see Table 3). With rate of 99.5%
for both of them, the proposed method deals with the same as performances of
all existing approaches, including deep-learning-based techniques, i.e., DT-CNN
[1] and PCANet-TOP [2] (see Table 4). In aspects of DT classification on 9-class
and 8-class, our proposal achieves comparative results compared to the local-
feature-based methods. More specifically, it can be seen in Table 4 that V-BIG’s
performance obtains recognition rates of 97.95%, 97.5% respectively, about 1.3%
lower than those of the recent local-feature-based approaches, such as FoSIG’s
[17] (98.95%, 98.59%), CVLBC’s [40] (99.20%, 99.02%), and MEWLSP’s [34]
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Table 3. Classification rates (%) on DT benchmark datasets.

Dataset UCLA DynTex
Dyn++

{(P,R)}, (σ1, σ2) 50-LOO 50-4fold 9-class 8-class Dyn35 Alpha Beta Gamma

{(8, 1)}, (0.5, 1) 98.50 99.00 96.90 96.74 98.57 100 93.83 94.32 96.53

{(8, 1)}, (0.5, 2) 99.50 99.50 97.70 96.96 97.43 100 93.83 93.56 96.51

{(8, 1)}, (0.5, 3) 99.00 99.50 97.75 96.74 98.57 100 93.21 92.42 96.45

{(8, 1)}, (0.5, 4) 98.50 99.00 98.00 96.41 98.57 100 93.21 92.80 96.33

{(8, 1)}, (0.5, 5) 98.50 99.00 97.65 97.72 98.57 100 93.21 92.80 96.14

{(8, 1)}, (0.5, 6) 99.00 99.50 97.80 98.04 98.86 100 93.83 92.80 96.59

{(8, 1), (8, 2)}, (0.5, 1) 99.00 99.00 97.55 96.30 99.43 100 94.44 93.94 96.59

{(8, 1), (8, 2)}, (0.5, 2) 99.00 99.00 97.15 96.96 98.57 100 94.44 94.70 96.52

{(8, 1), (8, 2)}, (0.5, 3) 98.50 99.00 97.00 96.63 99.14 100 94.44 94.70 96.57

{(8, 1), (8, 2)}, (0.5, 4) 99.00 99.00 97.65 96.30 98.57 100 95.06 94.32 96.42

{(8, 1), (8, 2)}, (0.5, 5) 99.00 99.00 97.45 96.20 99.14 100 95.06 94.32 96.61

{(8, 1), (8, 2)}, (0.5, 6) 99.50 99.50 97.95 97.50 99.43 100 95.06 94.32 96.65

Note: 50-LOO and 50-4fold denote results on 50-class breakdown using leave-one-out and four cross-fold
validation. Dyn35 and Dyn++ are shortened for DynTex35 and DynTex++ sub-datasets respectively.

(98.55%, 98.04%). It should be noted that their abilities are either not verified
on the other challenging datasets (MEWLSP, CVLBC) or not better than ours
on DynTex and DynTex++ (FoSIG).

DynTex Dataset: It can be observed from Table 4, our method obtains
rate of 99.43% on DynTex35, the best result compared to all approaches, except
MEWLSP [34] (99.71%) and CSAP-TOP [16] (100%). However, MEWLSP has
not been verified on the challenging DT datasets (i.e., Alpha, Beta, Gamma) as
well as not perform better than ours in schemes of 50-LOO and 50-4fold. In the
meanwhile, CSAP-TOP is only little higher than ours on this scheme, but not
on the others (see Table 4). In terms of DT classification on the other variants
of DynTex datasets, V-BIG achieves the best performance on Alpha with rate of
100% among the state of the art, over 3% better than FoSIG’s [17] (96.67%) and
the same as that of the deep-learning-based methods, i.e., DT-CNN [1], st-TCoF
[22], and D3 [10]. It is also verified that our method outperforms prominently
on Beta and Gamma sub-datasets, obtaining the best results compared to all
non-deep-learning methods. Specifically, with rates of 95.06% and 94.32% on
Beta and Gamma respectively, V-BIG is about 2% higher than FDT’s [18] with
93.21% and FoSIG’s [17] with 92.42% (see Table 4).

DynTex++ Dataset: On this scheme, our method gains the highest rate
of 96.65% using the settings chosen for comparison (see Table 3). This perfor-
mance is the best compared to the state-of-the-art results, excluding MEWLSP
[34] with 98.48%, MBSIF-TOP [3] 97.12%, and DT-CNN [1] 98.18%, 98.58%
for AlexNet and GoogleNet frameworks respectively (see Table 4). However,
MEWLSP and MBSIF-TOP have either not been evaluated on the variants of
DynTex (i.e., Alpha, Beta, Gamma) or not better than ours in recognition on
most of datasets. Meanwhile, DT-CNN takes huge computation to learning DT
features with complex algorithms. In comparison with FoSIG’s [17], ours is also
higher, 96.59% versus 95.99%, with the same settings of {(P,R)} = {(8, 1)} and
(σ1, σ2) = (0.5, 6) (see Tables 2 and 3).
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Table 4. Comparison of recognition rates (%) on benchmark DT datasets

Group
Dataset UCLA DynTex

Dyn++
Encoding method 50-LOO 50-4fold 9-class 8-class Dyn35 Alpha Beta Gamma

A
FDT [18] 98.50 99.00 97.70 99.35 98.86 98.33 93.21 91.67 95.31
FD-MAP [18] 99.50 99.00 99.35 99.57 98.86 98.33 92.59 91.67 95.69

B

AR-LDS [30] 89.90N - - - - - - - -
KDT-MD [4] - 97.50 - - - - - - -
NLDR [26] - - - 80.00 - - - - -
Chaotic vector [36] - - 85.10N 85.00N - - - - -

C

3D-OTF [37] - 87.10 97.23 99.50 96.70 83.61 73.22 72.53 89.17
WMFS [11] - - 97.11 96.96 - - - - -
NLSSA [5] - - - - - - - - 92.40
KSSA [5] - - - - - - - - 92.20
DKSSA [5] - - - - - - - - 91.10
DFS [38] - 100 97.50 99.20 97.16 85.24 76.93 74.82 91.70
2D+T [6] - - - - - 85.00 67.00 63.00 -
STLS [25] - 99.50 97.40 99.50 98.20 89.40 80.80 79.80 94.50

D
MBSIF-TOP [3] 99.50N - - - 98.61N 90.00N 90.70N 91.30N 97.12N

DNGP [29] - - 99.60 99.40 - - - - 93.80

E

VLBP [39] - 89.50N 96.30N 91.96N 81.14N - - - 94.98N

LBP-TOP [39] - 94.50N 96.00N 93.67N 92.45N 98.33 88.89 84.85N 94.05N

DDLBP with MJMI [28] - - - - - - - - 95.80
CVLBP [31] - 93.00N 96.90N 95.65N 85.14N - - - -
HLBP [32] 95.00N 95.00N 98.35N 97.50N 98.57N - - - 96.28N

CLSP-TOP [15] 99.00N 99.00N 98.60N 97.72N 98.29N 95.00N 91.98N 91.29N 95.50N

MEWLSP [34] 96.50N 96.50N 98.55N 98.04N 99.71N - - - 98.48N

WLBPC [33] - 96.50N 97.17N 97.61N - - - - 95.01N

CVLBC [40] 98.50N 99.00N 99.20N 99.02N 98.86N - - - 91.31N

CSAP-TOP [16] 99.50 99.50 96.80 95.98 100 96.67 92.59 90.53 -
FoSIG [17] 99.50 100 98.95 98.59 99.14 96.67 92.59 92.42 95.99
Our V-BIG 99.50 99.50 97.95 97.50 99.43 100 95.06 94.32 96.65

F

DL-PEGASOS [8] - 97.50 95.60 - - - - - 63.70
PI-LBP+super hist [27] - 100N 98.20N - - - - - -
PD-LBP+super hist [27] - 100N 98.10N - - - - - -
PCA-cLBP [27] - - - - - - - - 92.40
Orthogonal Tensor DL [24] - 99.80 98.20 99.50 - 87.80 76.70 74.80 94.70
Equiangular Kernel DL [23] - - - - - 88.80 77.40 75.60 93.40
st-TCoF [22] - - - - - 100* 100* 98.11* -
PCANet-TOP [2] 99.50* - - - - 96.67* 90.74* 89.39* -
D3 [10] - - - - - 100* 100* 98.11* -
DT-CNN-AlexNet [1] - 99.50* 98.05* 98.48* - 100* 99.38* 99.62* 98.18*

DT-CNN-GoogleNet [1] - 99.50* 98.35* 99.02* - 100* 100* 99.62* 98.58*

Note: “-” means “not available”. Superscript “*” indicates results using deep learning algorithms. “N” indicates rates with
1-NN classifier. 50-LOO and 50-4fold denote results on 50-class breakdown using leave-one-out and four cross-fold valida-
tion respectively. Dyn35 and Dyn++ are abbreviated for DynTex35 and DynTex++ datasets respectively. Evaluations of
VLBP and LBP-TOP operators are referred to the evaluations of implementations in [32, 22]. Group A denotes optical-
flow-based approaches, B: model-based, C: geometry-based, D: filter-based, E: local-feature-based, F: learning-based.

4 Conclusions

In this work, an efficient framework for DT representation has been proposed
by exploiting the benefits of smooth-invariant features which are extracted from
3D Gaussian filtered volumes in order to construct a robust descriptor against
the problems of illumination and noise. Evaluations for DT classification on
the different benchmark datasets have verified that our method outperforms
significantly compared to the state of the art. Furthermore, the experiments
have also validated that encoding DT features based on the 3D filtered volumes
allows to enrich more information of shape and motion cues than capturing
spatio-temporal patterns based on the 2D Gaussian filtered images in the planes
of a DT video [17]. In the further contexts, the advantages of these properties
can be taken into account to form a descriptor with more discrimination.
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