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M.W. Grünewald,26 T. Guillemin,13 G. Gutierrez,45 P. Gutierrez,67 J. Haley,68 L. Han,4 K. Harder,41 A. Harel,63

J.M. Hauptman,52 J. Hays,40 T. Head,41 T. Hebbeker,18 D. Hedin,47 H. Hegab,68 A.P. Heinson,43 U. Heintz,70

C. Hensel,1 I. Heredia-De La Cruzd,28 K. Herner,45 G. Heskethf ,41 M.D. Hildreth,51 R. Hirosky,74 T. Hoang,44

J.D. Hobbs,64 B. Hoeneisen,9 J. Hogan,73 M. Hohlfeld,21 J.L. Holzbauer,58 I. Howley,71 Z. Hubacek,7, 15

V. Hynek,7 I. Iashvili,62 Y. Ilchenko,72 R. Illingworth,45 A.S. Ito,45 S. Jabeenm,45 M. Jaffré,13 A. Jayasinghe,67
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We study the production of the exotic charged charmonium-like state Z±
c (3900) in pp̄ colli-

sions through the sequential process ψ(4260) → Z±
c (3900)π∓, Z±

c (3900) → J/ψπ±. Using the
subsample of candidates originating from semi-inclusive weak decays of b-flavored hadrons, we
measure the invariant mass and natural width to be M = 3902.6+5.2

−5.0 (stat)
+3.3

−1.4
(syst) MeV and

Γ = 32+28

−21 (stat)
+26

−7
(syst) MeV, respectively. We search for prompt production of the Z±

c (3900)
through the same sequential process. No significant signal is observed, and we set an upper limit of
0.70 at the 95% credibility level on the ratio of prompt production to the production via b-hadron
decays. The study is based on 10.4 fb−1 of pp collision data collected by the D0 experiment at the
Fermilab Tevatron collider.

I. INTRODUCTION

In high-energy hadron collisions, charmonium is known
to be produced both promptly in QCD processes and
non-promptly in b-hadron decays, with well measured
rates. For both J/ψ and ψ(2S) mesons the non-prompt
fraction increases with transverse momentum but prompt
production dominates in most of the studied pT range [1].

Much less information exists about the hadronic pro-
duction of exotic multiquark states containing a charm
quark and antiquark. The X(3872) – the most exten-
sively studied exotic meson – is produced copiously in
prompt pp interactions at

√
s = 1.96 TeV [2], and in pp

∗with visitors from aAugustana College, Sioux Falls, SD 57197,
USA, bThe University of Liverpool, Liverpool L69 3BX, UK,
cDeutshes Elektronen-Synchrotron (DESY), Notkestrasse 85, Ger-
many, dCONACyT, M-03940 Mexico City, Mexico, eSLAC, Menlo
Park, CA 94025, USA, fUniversity College London, London WC1E
6BT, UK, gCentro de Investigacion en Computacion - IPN, CP
07738 Mexico City, Mexico, hUniversidade Estadual Paulista, São
Paulo, SP 01140, Brazil, iKarlsruher Institut für Technologie (KIT)
- Steinbuch Centre for Computing (SCC), D-76128 Karlsruhe, Ger-
many, jOffice of Science, U.S. Department of Energy, Washington,
D.C. 20585, USA, lKiev Institute for Nuclear Research (KINR),
Kyiv 03680, Ukraine, mUniversity of Maryland, College Park,
MD 20742, USA, nEuropean Orgnaization for Nuclear Research
(CERN), CH-1211 Geneva, Switzerland, oPurdue University, West
Lafayette, IN 47907, USA, pInstitute of Physics, Belgrade, Bel-
grade, Serbia, and qP.N. Lebedev Physical Institute of the Russian
Academy of Sciences, 119991, Moscow, Russia. ‡Deceased.

collisions at
√
s = 7 TeV [3] and

√
s = 8 TeV [4]. The

fraction of the inclusive production rate of the X(3872)
mesons originating from decays of b-flavored hadrons
(Hb) is found to be approximately 0.3 [3, 4], independent
of pT . Evidence for prompt production of the X(4140),
another exotic candidate, was also reported by D0 [5].
The large prompt production rate of the X(3872) has of-
ten been used as an argument against its identification as
a weakly bound charm-meson molecule; see Ref. [6] for
the latest discussion.

In Ref. [7], the D0 Collaboration presented the
first evidence for production of the manifestly exotic
charmonium-like state Z±

c (3900) in semi-inclusive weak
decays of b-flavored hadrons in events containing a non-
prompt J/ψ and a pair of oppositely charged particles,
assumed to be pions. That analysis considered the mass
range 4.1 < M(J/ψπ+π−) < 4.7 GeV that includes the
ψ(4260) state: Hb → ψ(4260) + anything, ψ(4260) →
Z±
c (3900)π∓, Z±

c (3900) → J/ψπ±. This article presents
an extension of that study to a search for prompt pro-
duction of the Z±

c (3900) through the sequential process
ψ(4260) → Z±

c (3900)π∓, Z±
c (3900) → J/ψπ±. The

event sample used in this analysis is approximately 50%
larger than in Ref. [7] due to the use of an extended
track finding algorithm optimized for reconstructing low-
pT tracks.
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II. THE D0 DETECTOR, EVENT

RECONSTRUCTION, AND SELECTION

The D0 detector has a central tracking system con-
sisting of a silicon microstrip tracker and a central fiber
tracker, both located within a 1.9 T superconducting
solenoidal magnet [9, 10]. A muon system, covering
|η| < 2 [11], consists of a layer of tracking detectors
and scintillation trigger counters in front of a central and
two forward 1.8 T iron toroidal magnets, followed by two
similar layers after the toroids [12]. Events used in this
analysis are collected with both single-muon and dimuon
triggers. Single-muon triggers require a coincidence of
signals in trigger elements inside and outside the toroidal
magnets. All dimuon triggers require at least one muon
to have track segments after the toroid; muons in the for-
ward region are always required to penetrate the toroid.
The minimum muon transverse momentum is 1.5 GeV.

No minimum pT requirement is applied to the muon pair,
but the effective threshold is approximately 4 GeV due
to the requirement for muons to penetrate the toroids,
and the average value for accepted events is 10 GeV.
In pp collisions the J/ψ is produced promptly, either

directly or in strong decays of higher-mass charmonium
states, or non-promptly in b-hadron decays. Prompt
mesons have a decay vertex consistent with the inter-
action point while those from the b decays are displaced
on average by O(1 mm) as a result of the long b-hadron
lifetime.

0 0.2 0.4 0.6 0.8 1

 [cm]xyL
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410

510

E
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s/

0.
01
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m

Displaced vertex

Primary vertex

-1  D0 Run II, 10.4 fb

FIG. 1: The J/ψπ+π− decay length in the transverse plane
for events in the range 4.2 < M(J/ψπ+π−) < 4.3 GeV. The
black filled circles show the distribution of events that satisfy
the criteria for a displaced vertex. This subsample constitutes
about 2/3 of the nonprompt events. The distribution marked
with blue triangles includes the prompt production and the
remaining 1/3 of the nonprompt events.

We reconstruct J/ψ → µ+µ− decay candidates accom-
panied by a pair of charged particles, assumed to be pi-
ons, with opposite charges and with pT > 0.7 GeV. We
perform a kinematic fit under the hypothesis that the

muons come from the J/ψ and that the J/ψ and the two
particles originate from the same space point. In the fit,
the dimuon invariant mass is constrained to the world-
average value of the J/ψ meson mass [13]. The track
parameters (pT , position and direction in 3D) are read-
justed according to the fit and are used in the calculation

of the system’s transverse decay-path vector ~Lxy, the in-
variant mass M(J/ψπ+π−), and the masses of the two
J/ψπ subsystems. Following Refs. [14] and [15], we select
the larger mass combination as a Z±

c (3900) candidate’s
mass.
We select events in the M(J/ψπ+π−) range 4.1–

4.7 GeV that includes the ψ(4260) and excludes fully re-
constructed decays of b hadrons to final states J/ψh+1 h

−
2

where h1 and h2 stand for a pion, a kaon, or a proton. We
divide the data into two non-overlapping samples: events
with a displaced vertex, selected as in Ref. [7], and a
complementary sample of “primary vertex” events. The
criteria for the displaced vertex category are: the ver-
tex of the J/ψ and the highest pT track is required to
be displaced in the transverse plane from the pp̄ interac-
tion vertex by at least 5σ, the significance of the impact
parameter in the transverse plane (IP) [8] of the lead-
ing track is required to be greater than 2σ, the second
track’s IP significance is required to be greater than 1σ,
and the second track’s contribution to the J/ψ+2 tracks
vertex χ2 must be less than 6. The cosine of the angle in
the transverse plane between the momentum vector and
decay path of the J/ψ+2 tracks system is required to be
greater than 0.9.
The sample includes events where the hadronic pair

comes from decays K∗→Kπ or φ→KK. We remove
such events by assuming that one or both of the charged
hadrons are kaons and vetoing the mass combinations
0.81 < M(πK) < 0.97 GeV and 1.01 < M(KK) <
1.03 GeV. We also veto photon conversions by removing
events withM(π+π−) < 0.35 GeV. The decay-length dis-
tributions in the transverse plane for events in the “dis-
placed vertex” and the “primary vertex” categories in the
mass range 4.2 < M(J/ψπ+π−) < 4.3 GeV are shown in
Fig. 1.

III. J/ψπ± MASS FITS

We study the J/ψπ± system in the vicinity of the
Z±
c (3900). We perform a binned maximum-likelihood

fit of the M(J/ψπ) distribution to a sum of a reso-
nant signal and an incoherent background in six inter-
vals of M(J/ψπ+π−): 4.1–4.2 GeV, 4.2–4.3 GeV, 4.3–
4.4 GeV, 4.4–4.5 GeV, 4.5–4.6 GeV, and 4.6–4.7 GeV.
The signal is represented by the S-wave relativistic Breit-
Wigner function convolved with a Gaussian mass res-
olution. The Z±

c (3900) mass and width are fixed to
the values for the J/ψπ±,0 channels only (see Ref. [16]):
M = 3893.3 ± 2.7 MeV, Γ = 36.8 ± 6.5 MeV. The D0
mass resolution at this mass is σ = 17± 2 MeV. In these
fits we allow negative values for the signal yield.
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For the “displaced vertex” selection, background is
mainly due to weak decays of b hadrons to a J/ψ paired
randomly with hadrons coming from the same multi-
body decay. For the “primary vertex” events, the main
background is due to a promptly produced J/ψ combined
with particles produced in the hadronization process. In
both cases we use Chebyshev polynomials of the first kind
to represent background. The fitting range limits are
chosen so as to obtain an acceptable fit in a maximum
range while avoiding areas where the total probability
density function goes to zero. We choose the order of
the Chebyshev polynomial to minimize the Akaike infor-
mation test (AIC) [17]. For a fit with p free parame-
ters to a distribution in n bins the AIC is defined as
AIC = χ2+2p+2p(p+1)/(n−p−1). For the displaced-
vertex subsample we choose a 4th-order polynomial, and
for the “primary vertex” sample the choice is a 5th-order
polynomial.

IV. FIT RESULTS

The results of the fits are shown in Figs. 2 and 3
and summarized in Table I and in Fig. 4. The sta-
tistical significance of the signal is defined as S =
√

−2 ln(L0/Lmax), where Lmax and L0 are likelihood val-
ues at the best-fit signal yield and the signal yield fixed to
zero. In the case of a negative signal yield, S corresponds
to the statisical significance of the depletion.
For the “displaced-vertex” subsample we see a clear

enhancement near the Z±
c (3900) mass for events in the

range 4.2 < M(J/ψπ+π−) < 4.3 GeV, consistent with
coming from the ψ(4260) which has a mass of 4230 ±
8 MeV [13], and a smaller excess in the ranges 4.5–
4.6 GeV and 4.6–4.7 GeV. In the mass interval 4.3–
4.4 GeV (and to smaller extent for 4.4–4.5 GeV) our fits
show a negative, but not significant, yield of Z±

c (3900)
events. There is no significant signal in the “primary
vertex” subsamples in any M(J/ψπ+π−) interval.
For the “displaced-vertex events” in the mass range

4.2 < M(J/ψπ+π−) < 4.3 GeV we also perform a fit
allowing the signal mass and width to vary. From this fit,
shown in Fig. 5, we obtain our best measurement of the
Z±
c (3900) signal: M = 3902.6+5.2

−5.0 MeV, Γ = 32+28
−21 MeV.

The signal yield is N = 364± 156 events, the fit quality
is χ2/ndf = 24.1/14, and the statistical significance is
S = 5.4σ.

V. ACCEPTANCE OF THE

DISPLACED-VERTEX SELECTION

We obtain the acceptance of the “displaced-vertex” se-
lection for Hb decay events leading to Z±

c (3900) using
candidates for the decayB0

d → J/ψK±π∓, assuming that
the distributions of the decay length and its uncertainty
for the B0

d decay are a good representation for the av-
erage b hadron. Events are required to satisfy the same

kinematic and quality cuts as applied above. We find
the fitted numbers of B0

d decays Ndisplaced = 12951± 167
and Nprimary = 6616 ± 162, respectively. The ratios of
Nprimary to Ndisplaced for B0

d and Z±
c (3900) events with

the same topology should be the same, to the extent that
the lifetimes of B0

d and Hb are the same. With the sys-
tematic uncertainty discussed in the next section taken
into account, the acceptance of the displaced vertex se-
lection is A = 0.66± 0.02.

VI. SYSTEMATIC UNCERTAINTIES

A. Mass and width

We assign an asymmetric systematic uncertainty of
(0,+3) MeV to the mass measurement due to a bias in
mass measurements of b hadrons at D0. We assign the
uncertainty on the mass and width due to uncertainty in
the mass resolution as half of the difference of the results
obtained by changing the resolution by ±1σ to 15 MeV
and 19 MeV. We assign uncertainties due to the back-
ground shape based on the differences in the results using
the 3rd, 4th, and 5th-order polynomial. The systematic
uncertainties are summarized in Table II.

B. Signal yields

The uncertainty in the relative yields of prompt and
nonprompt production of the Z±

c (3900) is dominated by
statistical uncertainties. The systematic uncertainties
are evaluated as follows.

• Mass resolution

We assign the uncertainty in the signal yields due
to uncertainty in the mass resolution as half of the
difference of the results obtained by changing the
resolution by ±1σ to 15 MeV and 19 MeV.

• Trigger bias

Some of the single-muon triggers include a trig-
ger term requiring the presence of tracks with non-
zero impact parameter. Events recorded solely by
such triggers constitute approximately 5% of all
events. We assign a systematic uncertainty of ±5%
to Ndisplaced due to this effect.

• Acceptance of the displaced-vertex selection

Our assumption of the equality of the displaced-
vertex selection acceptance for the non-prompt
Z±
c (3900) and for B0

d is based on expectation of the
equality of the average lifetime of b-hadron parents
of the Z±

c (3900) and that of the B0
d . The world-

average of the B0
d lifetime is 3% lower than the life-

time averaged over all b hadron species [13]. This
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FIG. 2: The invariant mass distribution of J/ψπ± candidates in three intervals of M(J/ψπ+π−), from top to bottom 4.1–
4.2 GeV, 4.2–4.3 GeV, and 4.3–4.4 GeV. Left: events with a displaced vertex. Right: “primary vertex” events. Superimposed
are the fits of a Breit-Wigner signal with fixed mass and width [16] (dashed blue lines), a Chebyshev polynomial background
(dashed red lines), and their sum (solid blue lines).

difference corresponds to a 1% difference in the ac-
ceptance. In addition, there may be small differ-
ences between different channels in the transverse
momentum distributions of the parent b hadrons

and of the final-state particles. When the decay
B0

s → J/ψφ is used to estimate the “displaced-
vertex” selection acceptance, the result is A =
0.675 ± 0.010. We assign a 2% uncertainty to the
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FIG. 3: The invariant mass distribution of J/ψπ± candidates in three intervals of M(J/ψπ+π−), from top to bottom 4.4–
4.5 GeV, 4.5–4.6 GeV, and 4.6–4.7 GeV. Left: events with a displaced vertex. Right: “primary vertex” events. Superimposed
are the fits of a Breit-Wigner signal with fixed mass and width [16] (dashed blue lines), a Chebyshev polynomial background
(dashed red lines), and their sum (solid blue lines).

displaced-vertex acceptance to account for the dif-
ferences between the B0

d decay and Hb decays.

• Signal model

We vary the fixed parameters [16] of the signal mass
and width by ±2.7 MeV and ±6.5 MeV, respec-
tively, corresponding to ±1σ.
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TABLE I: The Z±
c (3900) signal yields, fit quality, and statistical significance S in intervals of M(J/ψπ+π−) for events with a

displaced decay vertex and for the complementary sample of “primary vertex” events, using the mass and width fixed at the
PDG average values for the J/ψπ± channel: M = 3893.3 MeV, Γ = 36.8 MeV.

Displaced vertex Primary vertex

M(J/ψπ+π−) GeV Event yield χ2/ndf S (σ) Event yield χ2/ndf S (σ)

4.1–4.2 86± 68 18.7/14 1.3 −134± 144 52.7/15 0.9

4.2–4.3 376± 76 28.1/16 5.2 149± 203 21.9/14 0.5

4.3–4.4 −148± 64 17.4/15 2.3 194± 174 16.7/19 1.1

4.4–4.5 −33± 60 26.6/15 0.5 −256± 170 30.9/18 1.5

4.5–4.6 105± 64 23.7/25 1.7 223± 162 42.3/23 1.4

4.6–4.7 76± 55 57.4/25 1.4 −384± 174 46.3/23 2.2

TABLE II: Systematic uncertainties in the Z±
c (3900) mass

and width measurements for Fig. 5.

Source Mass, MeV Width, MeV

Mass calibration +3
−0 0

Mass resolution ±0.1 ±7

Background shape ±1.4 +25
−0

Total (sum in quadrature) +3.3
−1.4

+26
−7

• Background shape

For the “displaced vertex” selection, we assign a
symmetric uncertainty based on the differences be-
tween the results obtained using the 3rd, 4th, and
5th order polynomial. For the “primary vertex” se-
lection, we assign an asymmetric uncertainty equal
to the difference in the results using the 5th-order
and 4th-order polynomial. The systematic uncer-
tainties in the signal yield are summarized in Ta-
ble III.

TABLE III: Systematic uncertainties in the Z±
c (3900) signal

yield for events in the 4.2 < M(J/ψπ+π−) < 4.3 GeV interval
(Fig.2c and 2d).

Source Displaced vertex Primary vertex

Mass resolution ±18 ±18

Trigger bias ±19 –

Acceptance ±7 –

Signal mass ±11 ±55

Signal width ±40 ±30

Background shape ±2 +0
−149

Total (sum in quadrature) ±49 +65
−163

VII. EXTRACTING LIMITS ON PROMPT

PRODUCTION RATES

Using results of the mass fits to the “displaced-vertex”
and “primary vertex” subsamples and the above value of
the acceptance of the displaced vertex selection, we can
obtain acceptance-corrected yields of prompt and non-
prompt production and their ratio. We determine the
yield for the J/ψπ+π−mass range 4.2–4.3 GeV where the
nonprompt signal is statistically significant.
The mass spectrum in the range 4.2–4.3 GeV in the

“primary vertex” category shows no clear Z±
c (3900) sig-

nal and a large background of about 5000±70 events in
the signal region. While there is no visible signal, we can-
not exclude a yield comparable to the nonprompt signal.
In calculating the prompt-to-nonprompt ratio, we first

obtain the total yield of the nonprompt production by
dividing Ndisplaced by the acceptance A. That gives
Nnonprompt = 570± 137 (stat + syst).
Of the above number, a fraction equal to 1 − A falls

into the “primary vertex” category and must be sub-
tracted to obtain the net number of prompt events,
Nprompt = 149 − (1 − 0.66) × 570 = −45 ± 237. In
calculating the uncertainty on the total prompt yield,
we add the statistical and the systematic uncertainty
components in quadrature. We obtain the ratio r =
Nprompt/Nnonprompt = −0.08+0.38

−0.46. Assuming Gaussian
uncertainties and setting the Bayesian prior for negative
values of r to zero, we obtain an upper limit of 0.70 at
the 95% credibility level.

VIII. SUMMARY AND CONCLUSIONS

Using the D0 Run II data reconstructed with a dedi-
cated extended-tracking algorithm optimized for low-pT
tracks, we have studied production of the exotic state
Z±
c (3900) in the decays of b hadrons to a J/ψπ+π− sys-

tem with a subsequent decay to Z±
c (3900)π∓. The ob-

servation is consistent with the sequential decay of a b-
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FIG. 4: The Z+
c (3900) signal yield per 100 MeV for the six

intervals of m(J/ψπ+π−): 4.1–4.2, 4.2–4.3, 4.3–4.4, 4.4–4.5,
4.5–4.6 and 4.6–4.7 GeV for (a) “displaced vertex” and (b)
“primary vertex” selection. The points are placed at the bin
centers.

flavored hadron Hb → ψ(4260) + anything, ψ(4260) →
Z±
c (3900)π∓, Z±

c (3900) → J/ψπ±. We find a Z±
c (3900)

signal at a statistical significance of 5.4σ for events with
4.2 < M(J/ψπ+π−) < 4.3 GeV, and find its mass and

width to be M = 3902.6+5.2
−5.0 (stat)

+3.3

−1.4 (syst) MeV and

Γ = 32+28
−21 (stat)

+26

−7 (syst) MeV in agreement with world
average values [13, 16].
We searched for evidence of the prompt production of

ψ(4260) with subsequent rapid decays to Z±
c (3900)π∓.

In the absence of a significant signal we set an upper
limit at the 95% credibility level on the ratio of prompt
to nonprompt production, Nprompt/Nnonprompt < 0.70.
This upper limit is significantly lower than that ob-
served for X(3872), for which Nprompt/Nnonprompt is in
the range two to three [3, 4], and X(4140), for which
Nprompt/Nnonprompt≈ 1.5 [5].
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