
HAL Id: hal-02160535
https://hal.science/hal-02160535

Submitted on 19 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Skeleton-based Approach to Analyze and Visualize
Oculomotor Behavior when Viewing Animated

Characters
Thibaut Le Naour, Jean-Pierre Bresciani

To cite this version:
Thibaut Le Naour, Jean-Pierre Bresciani. A Skeleton-based Approach to Analyze and Visualize
Oculomotor Behavior when Viewing Animated Characters. Journal of Eye Movement Research, 2017,
�10.16910/jemr.10.5.7�. �hal-02160535�

https://hal.science/hal-02160535
https://hal.archives-ouvertes.fr


Journal of Eye Movement Research 

10(5):7 

   1 

Introduction 

Body language plays an important role in human 

communication. It helps to convey and understand the 

emotions or intentions of others. The role of body lan-

guage in human communication is actually so important 

that some social activities and sports (e.g., dance, gym-

nastics) are based on codified gestures, the production of 

which can be evaluated and judged by juries of experts. 

Along a similar line, human performance sometimes 

heavily relies on the ability to use current movement and 

/ or gesture information to anticipate the future actions of 

others. This is the case in sports like tennis, boxing, or 

soccer, in which anticipating what opponents and / or 

partners are about to do is crucial. Therefore, a better 

understanding of how people scrutinize and analyze the 

gestures of other individuals can help improve human 

communication and performance.  

By measuring oculomotor behavior while the viewer 

watches images, natural scenes or movies, eye tracking 

technology becomes a powerful tool for developing a 

better understanding of what the viewer's perceptual 

strategies are and how he / she gathers information. How-

ever, eye tracking can generate large quantities of data 

which need to be processed and analyzed in order to 

identify and extract the most relevant information regard-

ing the viewer's oculomotor behavior. Processing of eye 

tracking data notably entails data exploration, organiza-

tion and visualization, in order, for instance, to prepare 

datasets for statistical analysis and / or to communicate 

information to a non-expert public. 

In this paper, we present a visualization tool designed 

to analyze and visualize eye tracking data from experi-

ments with animated characters. We developed this tool 

to help the users better understand the perceptual strate-

gies of viewers watching human-body gestures. The 

watched material can be in 2D (e.g video) or 3D format 

(e.g virtual reality), and our tool allows the user to pro-

cess and index eye tracking data relative to movements 

that are semantically equivalent but do not necessarily 

have the same dynamics. The user can compare or aggre-

gate data from groups of animated media sources and/or 

groups of viewers to spatially and temporally visualize 
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the gaze data distribution on the different parts of the 

body. These operations allow the user to visualize differ-

ences (e.g., in synchronization) between viewers or 

groups of viewers, and compare the number and duration 

of the fixations. Importantly, our tool has been designed 

to be easily used by both experts and non-experts in eye 

tracking data processing. 

To illustrate the functionalities of our visualization 

tool, we present two use case experiments with applica-

tions in the sport domain. In the first experiment (second 

section), official gymnastic judges were required to eval-

uate gymnastics sequences. In the second experiment 

(third section), goalkeepers had to 'analyze' the move-

ments of the penalty taker during the run-up to the ball in 

order to assess the direction of the kick. The two use case 

experiments are based on two different kinds of animated 

format: 2D videos for the first experiment (cf. Figure 

1.a1, b1, c1) and 3D scenes in virtual reality for the second 

experiment (cf. Figure 1.a
2
, b

2
, c

2
). In both experiments, 

the visual scene consists of sequences of motion of an 

animated character. A 3D scene represents an animated 

character generated by a 3D engine (e.g., Unity 3D or 

Unreal engine). These sequences contain dynamic stimuli 

which are annotated according to the anatomical parts of 

the human body. As proposed by Blascheck and col-

leagues (Blascheck et al., 2014), we define these stimuli 

as Areas of Interest (AOIs). 

 

Gaze visualization on animated 

characters 

Related techniques 

Our system of visualization relies on two concepts 

dedicated to the visualization of stimuli representing 

animated characters:  

 a heat mesh (i.e., the colored mesh illustrated 

by the Figure 1.d) is used to provide qualita-

tive information about the gaze distribution 

of one or more viewers; 

 a viewer timeline is used to specifically 

compare the synchronization between view-

ers. 

Blascheck and colleagues (Blascheck et al., 2014) 

proposed a classification of visualization systems accord-

ing to their specific features and target applications. 

Based on their classification, our system belongs to the 

AOI-based techniques (as opposed to point-based tech-

niques), and is designed to address spatio-temporal as-

pects (as opposed to systems addressing temporal-only or 

spatial-only aspects). Using their terminology, our system 

works on 2D and 3D dynamic stimuli and provides a 

Figure 1. Overview of the pipeline of our system. After capturing an animated sequence by video capture (a1) or using a system 

of motion capture (a2), the user manually annotates (b1), or the captured motion is automatically annotated (b2). After 

visualization of the animated sequences by the viewer(s), our system automatically computes the mapping between each 

fixation and the different parts of the skeleton. Finally, our system generates one or more meshes (corresponding to a temporal 
decomposition given by the user) colored by heat maps of the tracked areas (d). 
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visualization which is static, interactive, in 3D, on single 

or multiple users and not in context.  

AOIs. Although our system provides a graphical out-

put (defined by a colored mesh) similar to those of heat 

map (Mackworth & Mackworth, 1958) or vertex-based 

mapping (Stellmach, Nacke, & Dachselt, 2010), the col-

ored mesh is built from data previously quantified via 

body area annotations, instead of directly calculating the 

attention map with eye tracking data. These annotations 

(the parts of the body) are several regions defined as 

dynamic AOIs (Poole & Ball, 2006). Areas of Interest 

(AOI) constitute a classical way to describe visualized 

stimuli. For example Rodriguez and colleagues 

(Rodrigues, Veloso, & Mealha, 2012) proposed to anno-

tate a video recording of television news with different 

areas which are static. More similar to our study, Pa-

penmeier and colleagues (Papenmeier & Huff, 2010) 

proposed a tool which analyzes virtual scenes with dy-

namic AOI. Specifically, the authors created a 3D-model 

of the scene from the video and annotated the most im-

portant objects and their trajectories manually.   

Along a similar line, Stellmach and colleagues 

(Stellmach et al., 2010) provided a tool dedicated to the 

annotation of 3D scenes and the visualization of the gaze 

data distribution of viewers. After annotating the different 

objects of the scene, they proposed the concept of models 

of interest (MOI) to facilitate the investigation of objects 

in 3D scenes by mapping the data against time.   

In an industrial context, several companies (which sell 

eye trackers) proposed tools which allow to work with 

dynamic stimuli (i.e Tobii, SMI). 

While most of these tools work well with simple ani-

mations, they cannot be used to analyze complex skele-

ton-based animations, such as those involving human 

movement. Our tool has been specifically developed to 

fill this gap. 

Timeline AOI visualization. Timeline visualization 

is used to show the temporal aspects of AOI-based data. 

Classically, time is represented on one axis while AOIs or 

viewers are represented on a second axis with separate 

timelines. Similar to our method, Wu (Wu, 2016) used 

timelines colored with references to the scene objects for 

each viewer. Kurzhals (Kurzhals, Heimerl, & Weiskopf, 

2014) proposed a framework 'unifying AOI and viewers 

timelines’. However, understanding these unified repre-

sentations becomes increasingly difficult when the num-

ber of viewers and AOIs increases.  

The main benefit of our approach lies in the fact that 

all AOIs (i.e parts of the body) are summarized in a uni-

fied model, relying on an articulated mesh. This represen-

tation allows us to graphically decouple the timelines of 

viewers for each AOI (cf. Figure 4). As we will see, our 

method also allows to easily compare differences of syn-

chronization between viewers. 

Gaze behavior on characters. Although a large 

number of studies rely on the analysis of gaze behavior 

with stimuli represented by animated characters, applica-

tions allowing the exploration and visualization of the 

data collected are often overlooked. Bente and colleagues 

(G Bente, Petersen, Krämer, & de Ruiter, 2001) were 

among the first authors to use eye tracking to quantify the 

time spent on animated characters. In an experiment 

investigating nonverbal behavior, they compared the 

participants' impression regarding a sequence of dyadic 

interactions in two different contexts: video recording vs 

computer animation. To do that, provided that their char-

acters remained in a very restricted area, they recorded 

the time spent on 6 fixed areas: upper area (head and 

facial activity), middle area (body, arm, and hand move-

ments) and lower area (leg and foot movement) of the 

two characters. More recently, still investigating nonver-

bal behavior, Roth and colleagues (Roth et al., 2016) used 

annotated rectangle AOIs on videos to quantify the time 

spent on head and body regions. 

Our visualization system 

In the following section, we first present the features 

of our system and then we detail how it was designed. 

The subsequent sections will present two use cases based 

on 2D and 3D media sources, respectively. 

The main characteristics of our visualization system 

are: First, it is dedicated to the visualization, aggregation 

and comparison of eye tracking gaze data for one or sev-

eral viewers who can be split into different groups. Sec-

ond, unlike most software, it is independent of both the 

hardware used to collect the eye movement data and of 

the application used to generate the visual stimuli. Third, 

it can be easily used by both experts and non-experts in 

oculomotor research. 

Input data. With our system, eye tracking data can 

be collected both with video or 3D media sources. The 
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user has to provide two types of information as input to 

our visualization system: the experimental material which 

is common to all viewers, and the recorded eye move-

ment data of each individual viewer. This information has 

to be provided in XML format (see the example given in 

the supplementary material). 

Experimental material. The experimental material 

consists of the viewed material and a list of media 

sources descriptions (i.e., metadata) used for the experi-

ment. In our case, the viewed media sources represent 

movements of real characters in videos and virtual char-

acters in 3D. All viewed media sources need to be seman-

tically equivalent but they do not need to have the same 

kinematic features. The information describing a media 

source can be divided into three categories: 

 Basic information. Name and duration of 

the media source; Note that the name is im-

portant since the user will be able to compare 

different media source by class, by associat-

ing one or various parts of the name to dif-

ferent classes. 

 Intervals (optional). The user has the possi-

bility to define specific intervals. In most 

cases, the movements that we want to ana-

lyze can be segmented into temporal sub-

sequences. Specifically, a movement can be 

semantically or technically viewed as a con-

catenation of different phases, each of which 

can be analyzed separately. For example, 

whether for interpersonal communication or 

in sport situations, each 'phase' can be ana-

lyzed separately. The resulting sub-

sequences are defined manually by the user 

according to the more general context of the 

analyzed gesture. The result of this partition-

ing is illustrated in Figure 1.d. 

 Temporal mapping between media 

sources (optional). The user can add a tem-

poral mapping between media sources. As 

mentioned before, one of the features of our 

system is the ability to compare the gaze dis-

tribution of various viewers on different se-

mantically equivalent gestures. Segmentation 

is a first step in this direction. However, for 

any given piece of semantic information, the 

gestures present different kinematic features 

(in particular regarding speed and accelera-

tion, or the beginning and the end of move-

ments). To overcome this problem, our tool 

gives the user the possibility to create a tem-

poral correspondence between any chosen 

reference sequence of movement and any 

other selected sequences. This temporal cor-

respondence is performed by the dynamic 

time warping algorithm. This process is ex-

plained in detail in the third section. 

Viewers' experimental information. Viewers' infor-

mation consists of a list of captures for each viewer. Each 

capture is defined by three types of information: 

 Basic information. The name and the index 

of the capture order during the experiment. 

Note that the name is important since the us-

er will be able to compare different media 

sources by groups, by associating one or var-

ious parts of the name to different groups; 

 Eye tracking samples. This is a list of eye 

tracking samples. Each sample is defined by 

the coordinates of the eyes onto the screen 

and its corresponding time; 

 Sample joint mapping. For each sample, an 

AOI is defined either by the name of the 

body part of the viewed character, or by an 

empty string. The list contains n values. Re-

garding the naming of body parts (i.e. joints 

of the skeleton), our system accepts the clas-

sical nomenclatures used by the major soft-

ware products such as motion builder, mixa-

mo, unity or kinect. In the next sections, we 

will explain how we calculate this sample 

body part mapping in 2D and 3D. 

 

Visualization features. In this section, we ex-

plain how we combine the spatial and temporal in-

formation related to one or several viewers (in the 

same representation).  

Fixation calculation. From the list of samples re-

lated to each capture, only fixations are used to com-

pute visualization information. As described by 

(Salvucci & Goldberg, 2000), we consider a fixation 

as 'a pause over informative regions of interest' which 

lasts >100ms and has a spatial dispersion of gaze 
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points with a threshold set at 1°. To extract this in-

formation from the list of samples, we use the Disper-

sion-Threshold Identification (I-DT) algorithm (Stark 

& Ellis, 1981; Widdel, 1984). Then, from the map-

ping between eye coordinates and intersected body 

parts, we compute a new fixation-joint mapping 

which corresponds to the fixations which intersect an 

AOI area on the character. From this new mapping, 

we obtain a fixation time T(j) for each joint. Note that 

if we calculate the sum T = sum_{j in K} T(j), T is not 

equal to the global fixation duration of S since we ex-

clude eye tracking coordinates that are too far away 

from the skeleton as well as data recorded during sac-

cadic eye movements.  

Spatial information. One of the main techniques 

used to visualize gaze patterns is known as heat maps. 

Introduced by Mackworth and Mackworth in 1958 

(Mackworth & Mackworth, 1958), this simple and in-

tuitive technique provides qualitative information 

about the gaze behavior of the viewers. In 3D, some 

studies (Maurus, Hammer, & Beyerer, 2014; 

Stellmach et al., 2010) used attention maps on 3D ob-

jects (object-based or surface-based). The graphical 

results provided by our method look like those pro-

vided by a surface-based method, but the difference 

between the classical studies and our method lies in 

the fact that we build the heat map from data previ-

ously quantified via body area annotations, instead of 

directly calculating the attention map with eye track-

ing data. 

In our system, the color is defined based on the 

concept of skinning, commonly used in computer 

graphics. Skinning (Lewis, Cordner, & Fong, 2000) is 

a process which associates each vertex of a mesh with 

one or several joints of a skeleton. A weight is then 

attributed to each joint bound with a vertex. Usually, 

this technique allows to naturally animate and deform 

a mesh controlled by a skeleton. For example, the ver-

tices located around a joint and influenced by two 

bones are impacted by the weighted transformations 

of two joints. With our system, the mesh is colored 

according to these weights and the joints attached to 

each vertex. This step creates a shading between the 

different parts of the body. Thus the scalar color of a 

vertex vc is calculated as: 

𝑣𝑐 = ∑

𝐽_𝑎𝑡𝑡𝑎𝑐ℎ𝑒𝑑_𝑡𝑜_𝑉

𝑤(𝑣, 𝑗) ∗
𝑇(𝑗)

𝑇𝑀𝐴𝑋

 ,                   (1) 

where w(v, j) is the weight which associates the 

vertex v and the joint j. To have a good overview of 

the distribution of the data, we propose three metrics 

to calculate TMAX. First, TMAX  represents the total du-

ration of the interval concerned (i.e fixations in and 

outside of the mesh, and saccadic movements). Sec-

ond, TMAX  represents the sum of T(j) only on the 

character during a given interval. Third, TMAX  repre-

sents the maximum value calculated on every part of 

the body (during a given interval). 

 
Figure 2. Overview of the different features of our sys-

tem. 
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Figures 1.d and Figure 2 (Output/left column) 

show examples of the mesh coloring for various 

viewers with a dynamic motion picture, partitioned 

into sub-sequences (Figure 1.d). 

In the case of multiple viewers, the mesh color is 

obtained by averaging the fixation durations Tviewer(j) 

(for each viewer ) and applying Equation 1. The result 

is illustrated in Figure 2 (left column at the top). 

Our skinning definition contains 51 joints divided 

into: 5 joints for the body trunk, 2 joints for the neck 

and the head, 4 joints for each leg, 3 joints for each 

arm, 15 joints for the fingers of each hand. 

Timeline visualization.  In line with recent work 

on viewer timeline visualization (Kurzhals et al., 

2014; Wu, 2016), our system represents spatial and 

temporal features of viewers' gaze patterns in a single 

figure. The originality of our contribution lies in the 

decoupling of areas into separated blocks of timelines. 

Thus, for each block, we present separate timelines 

stacked horizontally, as well as fixation percentages 

by viewer and watched body part. 

As illustrated in Figure 2, we propose various op-

tions to visualize the temporal information. First, as 

for spatial information, we only use the fixations to 

calculate the temporal visualization. Second, we dis-

tinguish two modes of timeline visualization: single or 

aggregated. In the single mode, each timeline repre-

sents one motion picture. The distribution of the 

watched body part is represented by two colors: red 

when the region is watched and blue when it is not 

watched. In the aggregated mode, a timeline repre-

sents the gaze distribution on several motion pictures. 

Here we use a 'heat' line to represent the information. 

If the motion pictures to aggregate are the same (i.e 

we want to aggregate various occurrences of the same 

motion), we just average the set of occurrences for 

each time step of the captured gaze pattern. If the mo-

tion pictures / sequences are not the same (but seman-

tically equal), we use the correspondence mapping 

previously introduced to aggregate them. Specifically, 

for each viewer, the color of each value on the time-

line is normalized by the maximum value calculated 

among all parts visualized (this, for a given interval). 

As explained before, the user can choose to visual-

ize several media sources or/and several viewers, and 

each media source can be represented by several in-

tervals. So, considering the two modes of visualiza-

tion previously introduced, several visualization pos-

sibilities are available. For one viewer and a given in-

terval, it is possible to display, for each body part, ei-

ther all captures, or the aggregation of all occurrences 

of the same media source, or the aggregation of all 

media sources. Additionally, the user can filter or 

compare various media sources. For several viewers 

and a given interval, the options are the same but the 

user can also compare or filter the viewers. 

AOIs / Fixations visualization. The last proposed 

feature concerns the visualization of the "time spent" 

on body parts (Figure 2 (Output/bottom of the right 

column)). Considering a given interval, for each AOI, 

it is possible to display the number and the average 

duration of fixations, as well as the number and dura-

tion of the sum of adjacent fixations on this AOI. The 

selecting options for AOIs/Fixations visualization are 

the same as for timeline visualizations.  

 

2D use case: evaluation of gymnas-

tics judges 

Eye tracking plays a central role in developing a bet-

ter understanding of the relationship between gaze behav-

ior and decision making in sports. In this context, the aim 

of this experiment was twofold: First, investigate how 

gymnastics judges analyze a gymnastic gesture, and sec-

ond, determine if there are differences in the gaze pattern 

of judges of different levels of expertise. 

While eye tracking is often used in sport applications 

to analyze perceptual-cognitive skills, sports official are 

often overlooked. Hancock and colleagues (Hancock & 

Ste-marie, 2013) recently performed an experiment as-

sessing gaze behavior, decision accuracy, and decision 

sensitivity of ice hockey officials. In gymnastics, Bard & 

al.(Bard, Fleury, Carriere, & Halle, 1980) conducted a 

study analyzing the gaze pattern of gymnastics judges. 

They specifically measured the number and location of 

ocular fixations. They found that experts had fewer fixa-

tions of longer duration. This has been confirmed by 

several studies in gymnastics (Williams, Davids, Burwitz, 

& Williams, 1994), in handspring vaults (Page, 2009), 

and in rhythmic gymnastics (Korda, Siettos, Cagno, 

Evdokimidis, & Smyrnis, 2015). 
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In our first use case experiment, official gymnastics 

judges had to evaluate and mark the performance of 

gymnasts on the horizontal bar. Video footages of gym-

nasts' performances were shown to the judges and we 

recorded their eye movements. This kind of animation 

material constituted an excellent benchmark for our sys-

tem because: (i) each sequence can be segmented into 

several phases; (ii) the movement is rich in information 

(the character uses all parts of his/her body and rotates 

around him/herself); (iii) finding out whether oculomotor 

behavior differs between participants and trying to link 

these behaviors with the attributed marks has a functional 

relevance. 

Material preparation 

To work with video sequences, we created an applica-

tion to annotate them manually by adding a skeleton 

which follows the video character, i.e the AOIs are de-

fined by the skeleton (Figure 1.b shows an example of the 

2D skeleton mapped on the related video material).  The 

skeleton creation and annotation were performed by one 

user, a member of the research team. In this experiment, 

the skeleton contained 26 joints and 30 segments which 

were set up with a width and a depth level. The depth 

level notably determines which segments are displayed 

on the front plane in case of 'overlap', thereby managing 

masking between objects. The number of joints corre-

sponding to a low-resolution skeleton (less than the 50 

joints possible introduced in the previous section) was 

arbitrarily defined to simplify the task for the user. This 

aspect constitutes a direct limitation of the use of video 

format, i.e., it is impossible to have a high resolution of 

the subjacent skeleton. The skeleton annotation required 

approximately 1 hour for every 30-second sequence of 

video.  On average, the user annotated a skeleton every 

four frames, the remaining animation being automatically 

computed by interpolation between the annotated frames. 

Figure 1 (upper part) provides an overview of the ex-

periment. 

Eye gaze-sample joint mapping. As mentioned 

before, to calculate gaze data distribution, the visualized 

body part must be provided for each sample. The sample 

joint metric that we used is similar to existing metrics 

used to calculate mean gaze duration and proportion of 

time spent on each dAOI (Jacob & Karn, 2003), here 

represented by the areas linked to the joints of the skele-

tons (see Figure 3).  For each frame of the sequence, we 

measured the eye tracking coordinates on the screen ck = 

(ck
x
, ck

y
) where k represents the current frame. The associ-

ated joint is determined by a function f which calculates 

the shortest distance between the bones of the joints of 

the skeleton as well as the coordinates ck. As illustrated in 

Figure 3, f excludes the coordinates which are too far 

away from the skeleton. This distance of exclusion is 

directly given by the user accordingly to the accuracy of 

the eye-tracker used. In our case, the accuracy of the 

system allowed us to use a distance of 0.25° to 0.5°. If the 

coordinates are valid, f calculates the best-fitting bone, 

depending on the shortest distance between skeleton 

bones and the coordinates ck and taking into account the 

depth hierarchy between joints. 

Experiment 

We used the SR Research Eyelink 1000 Plus eye 

tracker to record eye movement data, sampling at 1000 

Hz. The angular distance between the two adjacent 

'closest' joints was 3.05 and the distance between the 

two adjacent 'most distant' joints was 8.1. 

 
 

Figure 3. Only the samples on and near the segments are 

taken into account (represented by blue and red dots, re-

spectively). Here for instance, the crosses are too far and 

will therefore not be taken into account. 
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Participants. 18 female gymnastics judges partici-

pated in the experiment. Nine judges had a Swiss level 

B.1 (Mage = 24.5 years, SD = 2.3 years) and the other nine 

a Swiss level B.2 (M(Page) = 32.8 years, SD = 5.6 years). 

The B.2 judges had more experience and expertise than 

the B.1 judges (they need to judge 6 competitions before 

starting the B.2 training which lasts one year). 

Procedure and Design. Each judge was presented 

with 9 videos of gymnasts performing a movement at the 

horizontal bar. The videos were filmed with 3 gymnasts 

of different levels (C5, C6 and C7 of the Swiss Gymnas-

tic Federation) who performed 3 occurrences of the same 

gesture. The point of view of the videos corresponded to 

the placement of judges during a competition. Each video 

lasted about 30s (~900 samples with a frequency of 30 

frames/second and ~200 annotated skeletons). During the 

experiment, viewers were placed in an ecological situa-

tion (i.e the distance between the viewer and the video 

character corresponded to what occurs during a competi-

tion). Two repetitions of each video were presented, for a 

total of 18 videos per judge. For each judge, the order of 

presentation of the videos was counterbalanced using a 

Latin square. 

Results. Figure 4 shows the results of randomly se-

lected sub-sequences for two different kinds of body part: 

a body part that was often visualized (the hips) and body 

parts that were seldom visualized (right and left foot). 

First, we can note that the heat mesh illustrates with clari-

ty the areas of interest (gazed at) in the selected sub-

sequences for one or more viewers.  

Concerning global fixation, as expected for gymnas-

tics experts, our results show that the body part that was 

the most scrutinized by the judges was the hips area, 

which is a central 'anchor' to evaluate performance in 

gymnastics. 

Concerning the timeline blocks visualization, Figure 4 

illustrates clearly the differences in synchronization be-

tween viewers for a given sample. Specifically, a viewer's 

timeline represents a sub-sequence of the movement, and 

is linked to a body segment / area. The red color indicates 

the time slots during which a given segment / area is 

gazed at. It is particularly interesting to notice that for 

definite areas, the majority of judges are 'synchronized' 

when fixing their gaze on peripheral areas. After verifica-

tion, these areas correspond to movements that were not 

executed correctly, i.e., movements that can be consid-

ered as ‘artifacts’. Therefore, our system allowed us to 

easily detect mistakes or incorrectly executed move-

ments, as well as elements and details that were missed 

by a judge. Gaze patterns related to the 'left foot' and 

'right foot' evidence shared oculomotor 'strategies' be-

tween viewers, as several of them show synchronized 

fixations. The percentages associated to each timeline 

confirm the observed tendencies. A comparison of the 

 
Figure 4. Illustration of viewers' gaze patterns. The colored 

mesh averages the data recorded with 18 viewers. Each 

block represents a body part and each line corresponds to a 

viewer (the red color shows the fixation times). The blue 

color means that the area is not watched at this time. The 

block percentage corresponds to the average time spent on 

the related body part by assuming that we considered only 

fixations on the body. The timeline percentage corresponds 

to the average time spent on the related body part. Specifi-

cally, these two percentage values have been calculated on 

all sequences.  
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two groups of judges with a general overview of gaze and 

fixation distribution is presented in Appendix Figure 8. 

For illustration purposes, we assessed whether the 

level of expertise of the judges could affect the synchro-

nization between viewers for the body parts that were 

infrequently scanned, namely less than 1% of the total 

scanning time. We considered that these fixations likely 

corresponded to detected errors. We expected the judges 

to look at these parts simultaneously because they detect-

ed the errors when they occurred. We also expected more 

expert judges to show more synchronization in this error-

detection process. To assess that, we first computed the 

total overlap duration for these body parts, i.e., the total 

duration during which at least a third of the judges were 

simultaneously watching these body parts. We then com-

pared the overlap duration between the two groups of 

expertise. 

The more experienced judges (B.2 level) had an aver-

age overlap of Moverlap
B2

 = 83 ms, SDoverlap
B2

 = 78 ms, 

whereas that of less experienced judges (B.1 level) was of 

Moverlap
B1

= 76 ms, , SDoverlap
B1 

= 49 ms. However, a Welch 

two sample t-test (data normally distributed and homoge-

neous variance between groups) indicated that this differ-

ence between the groups was non-significant (t(14)=-

0.222, p=0.827). Once again, this comparison was per-

formed for illustration purposes, and many more tests 

could be run on the data depending on the specific ques-

tion at hand. 

 

3D use case: Prediction of the direc-

tion of a penalty kick 

In the second use case experiment, goalkeepers had to 

scrutinize the run-up of the penalty taker to try to deter-

mine ahead of the kick in which direction the ball would 

be kicked. This experiment was conducted in virtual 

reality.  

Sport applications based on virtual reality technology 

are increasing almost exponentially. In particular, VR is 

very useful to analyze players / athletes' behavior or to 

improve sensorimotor learning. For example, Huang 

(Huang, Churches, & Reilly, 2015) proposed an applica-

tion to improve American football performance based on 

gameplays created by coaches. A survey dedicated to the 

use of virtual reality to analyze sport performance is 

given by Bideau and colleagues (Bideau et al., 2010). In 

our use case experiment, the motion picture of the penalty 

taker was in 3D format, namely a 3D animation. As ex-

plained by Bideau and colleagues, this format presents 

several advantages over video playback. In particular, it 

 
Figure 5. Overview of the steps and design of the second use case experiment assessing goalkeepers' performance and strategies 

in anticipating the direction of a penalty kick. 



Journal of Eye Movement Research Le Naour, T. & Bresciani, J. P. (2017) 

10(5):7 A skeleton-based approach to analyzing oculomotor behavior when viewing animated characters 

  10 

allows for easy editing of the scenes and adding embed-

ded 2D and 3D information. It also allows to flexibly edit 

the movement to modify the dynamic, the orientation of 

the joints, the display of certain parts of the body, or the 

juxtaposition of several movements. Concerning the use 

of both virtual reality and eye tracking for the analysis of 

animated characters, Bente et al. (G Bente et al., 2001) 

were among the firsts to compare the effects of vide-

otaped nonverbal interactions vs computer animations of 

the same behavior on perception. They found that the two 

media sources give rise to similar results. In their study, 

the animation of the virtual characters was based on in-

terpolations between wire-frame models which did not 

move. Since Bente, several studies combined virtual 

reality and eye-tracking for research on social interac-

tions. For example Lahiri & al. (Lahiri, Trewyn, Warren, 

& Sarkar, 2011) used virtual reality to provide dynamic 

feedback during social interactions. They wanted to better 

understand the gaze patterns of adolescents with autism 

spectrum disorders. To visualize data, they used the clas-

sical scanpath and AOI techniques as introduced by 

Rogriguez (Rodrigues et al., 2012). In another study, 

Bente and colleagues (Gary Bente, Eschenburg, & 

Krämer, 2007)  investigated the length of gaze fixations 

during virtual face-to-face interactions. More recently, 

Roth et al. (Roth et al., 2016) analyzed the impact of 

body motion and emotional expressions in faces on emo-

tion recognition.  They compared the visual attention 

patterns between the face and the body area and found 

that humans predominantly judge emotions based on the 

facial expression. In another context, Wilms and col-

leagues (Wilms et al., 2010) used the gaze behavior of 

viewers interacting with a virtual character to modulate 

the facial expressions of the virtual character (i.e., the 

facial expressions of the virtual character depended on 

the gaze behavior of the viewer). 

As mentioned in the previous section, eye tracking 

technology is often used to analyze gaze behavior to 

better understand decision making with athletes, coaches 

and officials. Concerning the striker-defender opposition, 

several studies (e.g., in tennis (Goulet, Bard, & Fleury, 

1989), or in soccer (Mann, Williams, Ward, & Janelle, 

2007; Williams et al., 1994)) have shown that expert 

players who make faster decisions and have more correct 

responses make more fixations. Hancock and Ste-marie 

(Hancock & Ste-marie, 2013) suggested that fixation 

duration depends on the type of sport and the experi-

mental conditions. Specifically, shorter durations are 

usually observed for interception (e.g., racket sports) and 

strategic sports (e.g., team sports) whereas longer dura-

tions take place in closed-skills sports. This has been 

confirmed by Woolley et al. (Woolley, Crowther, Doma, 

& Connor, 2015)  who investigated goalkeeper anticipa-

tion during a penalty kick and observed fewer fixations of 

longer duration on fewer locations. However, to our 

knowledge, no study has yet explored the differences and 

common synchronizations between viewers or groups of 

viewers.  

 

Anticipating the direction of the ball during a football 

penalty kick is a topic which has often been investigated. 

For instance, Savelsbergh and colleagues (Savelsbergh, 

 
Figure 6. Skeleton animation for two different gestures 

(top) and time warping matrix for these two animations 

(bottom). The blue areas correspond to the zone for which 

the distance between the posture of SkA and that of SkB is 

the lowest. The black curve represents the warping path.   
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der Kamp, Williams, & Ward, 2005) have shown that 

goalkeepers were more successful in anticipating the 

direction of the kick to come when fixating on the stance 

leg (i.e., non-kicking leg) prior to foot-to-ball contact. In 

contrast, Woolley et al. (Woolley et al., 2015) suggested 

that when trying to predict the direction of the kick, goal-

keepers could use a global perceptual approach by ex-

tracting information cues from various body segments of 

the body (e.g., kicking leg, stance leg, hips) rather than 

focusing on one particular body area. In our use case 

experiment, we assessed whether there are differences 

between novice and expert goalkeepers regarding the 

visual scanning strategy used to anticipate the direction of 

the kick, and how those affect the estimation perfor-

mance. 

 

Experiment 

The steps usually involved in the 'production' of a mo-

tion picture in 3D format and its use in a virtual reality 

setup are illustrated in Figure 5. As shown, several pre-

processing steps are required. The preparation of the 3D 

scene is decomposed into three steps: the capture of the 

actors (1.(a)), the creation of an animated skeleton (1.(b)) 

and the creation and binding of a mesh to this skeleton: 

1.(d).  

To capture the gestures of the actors, we used the 

Optitrack system with 12 infrared cameras rated at 240 

Hz. The actors were dressed in a suit equipped with 49 

markers. The animation of the skeleton (composed of 51 

joints) was automatically computed by the Motive soft-

ware. To create a mesh and bind it to the animated skele-

ton, we used the Mixamo and MotionBuilder softwares, 

respectively. Mesh creation takes about fifteen minutes, 

and five additional minutes are needed for every gesture. 

Finally the virtual scene was create and rendered with 

Unity3D. 

Twenty penalty kick gestures were motion-captured 

with five football players having on average fifteen years 

of experience in football. Each player performed four 

gestures, namely two kicks to the right side and two kicks 

to the left side. Each gesture included the full sequence of 

a penalty kick: laying of the ball, preparation, run-up and 

ball kick. For each trial, the whole sequence was present-

ed to the viewer, but only the run-up and the kick phase 

interested us for the analysis. Because the original se-

quences had different durations, the Dynamic Time 

Warping algorithm (DTW) was used to create a corre-

spondence between the sequences. Following this opera-

tion, all sequences 'fed' to our visualization system are 

mapped to the duration of the reference sequence. 

DTW. When all movements do not have the same du-

ration, and when the gestures have different dynamics 

and characteristics (e.g., different count of footsteps dur-

ing the run-up in our experiment), it is impossible to 

establish a linear mapping between the motion pictures. 

To temporally map the different motion pictures, we used 

the dynamic time warping algorithm introduced by 

Berndt and Clifford (Berndt & Clifford, 1994) on time 

series and applied in computer animation by Bruderlin 

and Williams (Bruderlin & Williams, 1995). This algo-

rithm calculates an optimal match between two given 

gestures. First, the algorithm calculates the matrix of 

distances (see Figure 6) between the postures of two 

given gestures. Next, it calculates the optimal path corre-

sponding to the best temporal warping to align the two 

sequences. 

In this study, we applied the algorithm to the analysis 

of 3D animations by using the distance function 

                    𝐷 (𝐾
𝑖
𝐴

, 𝐾
𝑗
𝐵

) =  ∑ 𝑑(𝜃
𝑘
𝐴

𝑛

𝑘=0

, 𝜃
𝑘
𝐵

).                     (2) 

In this equation, 𝐾𝐴 and 𝐾𝐵are the two skeletons which 

are compared, i and j are the indices of the postures in the 

sequences A and B, n the number of joints in the skeleton 

and 𝜃 the angle (represented by a quaternion) of the cur-

rent joint. 𝑑 = ‖Log (𝜃
−1
𝐴

𝜃
𝐵

‖ represents the geodesic 

distance (Buss & Fillmore, 2001) between two quaterni-

ons 𝜃𝐴and 𝜃𝐵. In Figure 6, D is represented by the black 

square. This procedure allows to compare various ges-

tures. The next section explains how we calculated the 

time spent on each part of the body. 
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Eye gaze-sample joint mapping. After collecting the 

gaze data, we used the OpenGL library (Woo, Neider, 

D3Ds, & Shreiner, 1999), provided by Unity3D, to map 

the eye coordinates and the objects displayed in the sce-

ne. Specifically, we used a ray cast algorithm to project a 

3D ray from the gaze screen coordinate through the cam-

era into the scene, and then check if that ray intersected 

any body parts. For each gaze sample collected at a spe-

cific time, we played the scene and used this algorithm to 

map the sample to a body part. 

Participants. Football players having between ten 

and twenty years (Mexp=15.4 years) of football experience 

participated in the experiment. 

Five of these players were expert goalkeepers 

(M(Page) = 23.5 years, SD = 1.7 years) whereas the other 

five were expert field players (M(Page) = 23.9 years, SD 

= 3 years) without any goalkeeping experience. 

Procedure and Design. The participants were pre-

sented with two repetitions of the twenty different penalty 

kick sequences, for a total of forty sequences per partici-

pant. The order of presentation of the sequences was fully 

randomized for each participant. Because the orientation 

of the head before the run-up sometimes provided im-

portant information regarding the future direction of the 

kick, the animation of the head was altered so that it did 

not provide any information regarding the kick. This 

modification was implemented because we were interest-

ed in the gaze pattern of the participants during the run-

up phase. For each trial, participants had to estimate 

whether the kicker would strike to the right or to the left 

of the goal, and give their response as fast as possible 

(i.e., as soon as they made their decision) by pressing a 

response key. 

Results 

 Regarding anticipation performance, we compared 

the results of the expert goalkeepers (GK) with that of the 

field players (FP) both regarding the percentage of antici-

pation error and the time of the response. On average, 

goalkeepers had an error rate of Merror
GK

 = 38%, SDerror
GK

 

= 9.3, whereas the field players had an error rate of Mer-

ror
FP

 = 38.5%, SDerror
FP

 = 8.9. A Welch two sample t-test 

(data normally distributed and homogeneous variance 

between groups) indicated that this difference between 

the two levels of expertise was non-significant 

(t(8)=0.086, p=0.932). Regarding the time of response, 

goalkeepers responded on average in Mtime
GK

 = 13 ms, 

SDtime
GK

 = 172 ms, before ball contact, whereas the field 

players responded on average Mtime
FP

 = 14 ms, SDtime
FP

 = 

126 ms before ball contact. Once again, a Welch two 

sample t-test (data normally distributed and homogeneous 

variance between groups) indicated no significant differ-

ence between the two levels of expertise (t(8)=-0.004, 

p=0.996). 

Concerning gaze behaviors, Figure 7 displays the dis-

tribution of gaze fixations recorded during the run-up of 

the kicker. Field players are characterized by a more 

diffuse visual scanning on the body and particularly on 

the head as compared to expert goalkeepers who focused 

their gaze primarily on the supporting leg. These results 

are in line with previous work on this topic though the 

setup and methodology were different (Savelsbergh et al., 

2005). However, after analyzing the graphical results of 

the top three expert subjects, unlike the study on gymnas-

tics, a gaze pattern is not obvious to establish.  

In line with the results reported in previous studies, 

and for illustration purposes, we compared the gaze be-

havior of expert goalkeepers vs field players. In particu-

lar, we focused on the total duration of fixation as well as 

the total number of fixations on the lower part of the 

supporting leg. For this analysis, we excluded the partici-

pants that did not look at this body part at all. In total, 

goalkeepers spent Mduration
GK

 = 3763 ms, SDduration
GK

 = 

2670 ms fixating the lower supporting leg, whereas the 

field players only spent Mduration
FP

 = 211 ms, SDduration
FP 

= 

97 ms. However, a Welch two sample t-test (data normal-

ly distributed and homogeneous variance between 

groups) indicated that this difference failed to reach sig-

nificance (t(3.0105)=2.6581, p=0.076).  

 
Figure 7. Difference of visual fixation between field play-

ers (left) and expert goalkeepers (right). The color scale 

represents the total duration of fixations on the different 

body parts 
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Regarding the total number of fixations, on average, 

the goalkeepers performed much more fixations  Mnum-

ber
GK

 = 11, SDnumber
GK

 = 7.9 than the field players 

Mnumber
FP

 = 1.33, SDnumber
FP

 = 0.58. But, as for fixation 

duration, this difference failed to reach significance, as 

indicated by a Wilcoxon rank sum test (data normally 

distributed but heterogeneous variance between groups, 

W=11.5, p=0.0718). 

Though non-significant, our results regarding fixation 

duration are consistent with those reported in previous 

studies. Indeed, the experts had longer fixation durations 

on the supporting leg. However, we also found that ex-

perts had a greater number of fixations, which is at odds 

with previously reported results showing the opposite 

pattern (appendix Figure 9). This discrepancy is intri-

guing and should be investigated more specifically in 

future research. In particular, it might be interesting to 

compare more systematically 3D stimuli and 2D video 

media sources to test to which extent they affect the gaze 

pattern of viewers. 

 

Conclusion and discussion 

In this paper, we presented an interactive 3D tool, 

based on AOI data, that allows for spatio-temporal inves-

tigation of large data sets of recorded eye movements. In 

particular, this tool allows the user to manage and analyze 

the gaze pattern of several viewers on several animated 

sequences. This tool is independent of the hardware used 

to record the eye movements and of the application used 

to generate the visual scene / experimental stimuli, mak-

ing it more flexible for general usage.  

Specifically, we presented a new approach to visual-

ize the oculomotor behavior of viewers watching the 

movements of animated characters in dynamic sequences. 

This approach allows to illustrate the gaze distribution of 

one or several viewers, i.e., the time spent on each part of 

the body on a 'heat mesh'. This is in line with previous 

work on heat maps (Blascheck et al., 2014) or surface-

based attention maps (Stellmach et al., 2010). Associated 

to this approach, we also proposed a new way to visualize 

viewer timelines using blocks of timeline linked to the 

heat mesh. As with classical systems, our system allows 

to visualize the 'heat' information (Maurus et al., 2014; 

Stellmach et al., 2010) and to have a good overview of 

the observed AOIs (Kurzhals & Weiskopf, 2013; Maurus 

et al., 2014). To our knowledge, the system presented 

here is the first which proposes to visualize the spatio-

temporal features of the gaze patterns of several viewers 

having watched animated characters within a unified 

figure. As with the interactive applications proposed by 

Stellmach (Stellmach et al., 2010) and Maurus (Maurus et 

al., 2014), our tool allows the user to visualize the spatial 

distribution on 3D objects. However, we introduce a 

graphical link between the timelines and spatial infor-

mation (Kurzhals & Weiskopf, 2013; Maurus et al., 2014; 

Stellmach et al., 2010), and provide a clear visualization 

of the synchronization and overlap between viewers. Our 

tool also allows the user to directly export the observed 

features for statistical analysis. These differences are 

summarized in Table 1. 

While our model is not specifically dedicated to the 

analysis of the AOI order (scanpath), the two use case 

experiments highlight its advantages. Regarding the first 

use case experiment, whereas classical studies in this 

domain focused on the number and the duration of fixa-

tions, our system allowed us: (1) to observe if a pattern of 

gaze exists not by using scanpath but by comparing the 

synchronization and the overlap between viewers' time-

lines; and also (2) to easily compare the synchronization 

between viewers. In the second use case experiment, our 

tool allowed us to clearly see the difference between 

expert goalkeepers and field players regarding the time 

spent on the different body parts. More interestingly, it 

allowed us to identify that the gaze behavior on certain 

body parts is not consistent with the literature.  

These two use case experiments demonstrate that our 

system is an efficient tool to quickly compare the oculo-

motor behavior of different viewers, and notably to iden-

tify the synchronization (or the lack of it) between view-

ers for each dynamic area of interest. In this respect, we 

believe that our system is ideal for users who want to 

quickly and easily compare the gaze pattern of different 

viewers or groups of viewers. 

Therefore, our system could serve as an excellent 

support for experiments dedicated to nonverbal behavior 

analysis, as for example in the study of Roth and col-

leagues (Roth et al., 2016) who analyzed how viewers 

look at avatars displaying affective behavior. Our system 

would notably have allowed these authors to compare the 

time spent on the body and the head, respectively. 
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Another straightforward application of our system is 

in research on cognition and learning in sport. Specifical-

ly, our system could be used to provide feedback to nov-

ices to help them better understand the difference be-

tween their strategy and that of experts, and to adapt their 

strategy accordingly to improve their performance. In 

other words, we believe that our system is particularly 

well-suited for improving performance in applications for 

which visual scanning strategies play a key role. These 

last points are all the more true as we believe our system 

is usable by a non-expert public. 

In future work, we plan to improve the number of 

AOIs by including the different areas of the face. Moreo-

ver, we project to include an automatic analysis of the 

data allowing to compare the differences which are sig-

nificant (using Test-T or ANOVA) between groups of 

viewers and/or groups of media sources. Concerning 

potential applications, after using our system in the sport 

domain (e.g., for judging or evaluating the interactions 

between players), we plan to test it in conversational 

situations, as for example with sign language.  
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 Display features stimuli   

 
spatial  

distribution 

time-

lines 

Synchro  

overlapping 
scanpath type AOI 

Comparing 

Several users 

Comparing 

Several media 

Maurus Yes No No No 3D no No No 

Stellmach 

(Tobii 1750) 
Yes Yes No Yes 3D 

Automatic 

(vertex based) 
No No 

Kurzhal 

(Tobii T60 XL) 
No Yes Yes Yes 2D rectangles Yes No 

Roth 

(SMI RED-

500) 

Yes(2D) No No No 3D rectangles No No 

Maurus Yes Yes Yes No 
2D/

3D 

2D: rectangles 

3D:automatic 

(vertex based) 

Yes Yes 

Table 1. Comparison of the features of our system with those of systems used in previous related works.  

http://biblio.unibe.ch/portale/elibrary/BOP/jemr/ethics.html
http://biblio.unibe.ch/portale/elibrary/BOP/jemr/ethics.html
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Figure 8. Gymnastic judgment. Top: Illustration of gaze distribution average for the two groups of judges (level B1 and B2). 

Bottom: Illustration of viewers' fixations for each group of judges. 
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Figure 8. Penalty anticipation. Top: Illustration of gaze distribution average for the two groups of viewers (expert goalkeepers 

(Expert) and field players (Novice)). Bottom: Illustration of viewers' fixations for each group. 
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Figure 8. Example of input file. 

 

 
Figure 8. Graphical User Interface: Overview of the commands. 


