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We discuss the Damour–Esposito-Farèse model of gravity, which predicts the spontaneous scalarization
of neutron stars in a certain range of parameter space. In the cosmological setup, the scalar field responsible
for scalarization is subject to a tachyonic instability during inflation and the matter domination stage,
resulting in a large value of the field today. This value feeds into the parametrized post-Newtonian
parameters, which turn out to be in gross conflict with the solar system measurements. We modify the
original Damour–Esposito-Farèse model by coupling the scalar to the inflaton field. This coupling acts as
an effective mass for the scalar during inflation. For generic couplings that are not extremely small, the
scalar (including its perturbations) relaxes to zero with an exponential accuracy by the beginning of the hot
stage. While the scalar exhibits growth during the subsequent cosmological stages, the resulting present
value remains very small—in a comfortable agreement with the solar system tests.

DOI: 10.1103/PhysRevD.100.104051

I. INTRODUCTION

Certain scalar-tensor theories of gravity result in the
spontaneous scalarization of compact objects—black holes
and/or neutron stars [1–5]. The essence of scalarization is
in the amplification of the scalar field in the vicinity of
compact objects relative to its cosmological value.
Consequently, one expects predictions in the strong gravity
regime to differ from the ones of general relativity (GR),
even if deviations from GR are unobservable in the weak
gravity and quasistatic regimes, e.g., in the solar system.
That situation is exemplified by the Damour–Esposito-
Farèse (DEF) model of scalarization [1,2], which is the
main focus of the present work.
The key ingredient underlying models exhibiting sca-

larization is the tachyonic instability experienced by the
scalar field due to its coupling to the curvature invariants.
The equation of motion for the scalar field always has
a trivial solution φ ¼ const. However, the latter is subject
to a tachyonic instability, which triggers the appearance
of scalar hair—a nontrivial profile of the scalar field in
the vicinity of compact objects. In the present work, we
will study cosmological manifestations of the tachyonic
instability. As a result of the latter, the scalar field
responsible for scalarization has runaway solutions in
certain cosmological backgrounds. For example, in the
model with the scalar coupled to the Gauss–Bonnet
curvature [3–5], there is a catastrophic instability devel-
oped during the inflationary stage [6]. Possible ways to

resolve the problem in the model with the Gauss-Bonnet
invariant fail essentially because of the huge (from the
point of view of particle physics) dimensionful coupling
constant needed to give rise to scalarization of astro-
physical objects. On the contrary, the original model of
scalarization by Damour and Esposito-Farèse does not
contain extra dimensionful parameters, and the only
additional dimensionless constant is of order of unity.
This feature makes the DEF model attractive from the
perspective of physically viable modifications.
In the DEF model of scalarization, the cosmological

tachyonic instability occurs whenever the trace of the total
matter energy density is larger than zero, i.e., always except
during the radiation-dominated stage. Unless the scalar
field is tuned to zero with high accuracy at the onset of
the matter-dominated stage, it grows to large values by the
present day—in conflict with the solar system tests [7–9].
In this work, we propose a modification of the original
DEF scenario where this tuning is automatic. This is
achieved by coupling the field φ to the inflaton χ, i.e.,
∼φ2χ2. This coupling gives an effective mass term for
φ during inflation. For generic super-Planckian values of
the inflaton and coupling constants that are not extremely
small, the mass is larger than the inflationary Hubble rate.
As a result, the field φ relaxes to an exponentially small
value. Note that upon the inflaton decay, the effective
mass for φ vanishes. Consequently, at postinflationary
times the model of interest reduces to the original DEF
scenario.

PHYSICAL REVIEW D 100, 104051 (2019)

2470-0010=2019=100(10)=104051(8) 104051-1 © 2019 American Physical Society

https://orcid.org/0000-0003-2868-3790
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.100.104051&domain=pdf&date_stamp=2019-11-26
https://doi.org/10.1103/PhysRevD.100.104051
https://doi.org/10.1103/PhysRevD.100.104051
https://doi.org/10.1103/PhysRevD.100.104051
https://doi.org/10.1103/PhysRevD.100.104051


This paper is organized as follows. In Sec. II, we review
the DEF model of scalarization. In Sec. III, we discuss the
cosmological tachyonic instability which leads to the
conflict with solar system tests. We propose a modification
of the DEF model, in which the conflict is resolved, in
Sec. IV. We conclude in Sec. V with discussions.

II. THE DAMOUR-ESPOSITO-FARÈSE MODEL
OF SCALARIZATION

We use the same notations as in the original work on
scalarization [1], but assume the ðþ;−;−;−Þ signature for
the metric. We begin with the Einstein frame action:

SE ¼
Z

d4x
ffiffiffiffiffiffi−gp
2κ

½−Rþ 2∂μφ∂μφ − 2VðφÞ�

þ Sm½A2ðφÞgμν;ψm�; ð1Þ

where κ ¼ 8πG, G is Newton’s constant, ψm is the
collective notation for matter fields, and the function
AðφÞ is defined as

AðφÞ ¼ e
1
2
βφ2

; ð2Þ

where β is a constant, which feeds into deviations from GR.
Following the notations of Ref. [1], we have chosen the
field φ to be dimensionless. In the original DEF model, the
potential VðφÞ is absent. We keep it, however, because it
plays a crucial role in our discussion later on. It is worth
mentioning that the action (1) implies the universal
coupling of all the matter fields to the metric. We proceed
with this assumption in the bulk of the paper. There are,
however, alternative options, e.g., of an inflaton coupled to
the Einstein metric gμν differently than other matter fields.
Though such a coupling appears to be rather unnatural, we
comment on this possibility in the concluding Sec. V.
In the Jordan frame g̃μν ¼ A2ðφÞgμν, where the matter

fields follow geodesics, the equivalent action is given by

SJ ¼
Z

d4x

ffiffiffiffiffiffi
−g̃

p
2κ

�
−φ̃ R̃þωðφ̃Þ

φ̃
g̃μν∂μφ̃∂νφ̃ − Πðφ̃Þ

�

þ Sm½g̃μν;ψm�;

where

�
d lnA
dφ

�
2

¼ ½2ωðφ̃Þ þ 3�−1 A2ðφÞ ¼ 1

φ̃
: ð3Þ

The potential Πðφ̃Þ is related to VðφÞ by

Πðφ̃Þ ¼ 2φ̃2Vðφðφ̃ÞÞ:

This potential is zero in the DEF model.
The essence of scalarization is as follows. The equation

of motion for the field φ derived from the action (1) reads,

□φþ κ

2
αðφÞTm þ 1

2

∂V
∂φ ¼ 0; ð4Þ

where αðφÞ≡ d lnAðφÞ
dφ ¼ βφ plays the role of the coupling

constant to the matter fields; the matter stress-energy tensor
is defined as Tm

μν ¼ 2ffiffiffiffi−gp δSm
δgμν and its trace as Tm ¼ gμνTm

μν.

One can see that φ ¼ 0 solves this equation for the potential
VðφÞ ¼ 0. For β < 0 and Tm > 0, the scalar acquires a
tachyonic effective mass, which hints at the existence of
other, stable solutions of Eq. (4). This is indeed the case for
β ≲ −4 in the strong gravity regime inside neutron stars [1].
Namely, the field φ acquires a nontrivial profile which
matches the constant cosmological value φ0 ≡ φðt0Þ,
where t0 ≈ 13.8 × 109 years is the present time.
In the model (1), parametrized post-Newtonian (PPN)

parameters are given by [10]

γPPN−1¼ −2α2ðφ0Þ
1þα2ðφ0Þ

βPPN−1¼ βα2ðφ0Þ
½1þα2ðφ0Þ�2

: ð5Þ

In the limit αðφ0Þ → 0, the PPN parameters coincide with
those of GR. This limit corresponds to φ0 → 0. Using the
constraint on the PPN parameter γPPN from the Shapiro
time-delay measurement: γPPN ¼ 1� ð2.1� 2.3Þ × 10−5

given in Ref. [11], we get for jβj ≃ 4 the following upper
bound on φ0:

φ0 ≲ 10−3: ð6Þ

For these values, the DEF model is indistinguishable from
GR in theweak field and quasistatic regimes. However, even
with a vanishing value of the field φ at cosmological scales,
neutron stars experience scalarization, leading to testable
deviations fromGR in the strong field regime [12,13].On the
other hand, as we discuss in the next section, in the original
DEF model with VðφÞ ¼ 0, the values (6) are nonrealistic.
Indeed, the tachyonic instability triggers runaway cosmo-
logical solutions for the field φ, so that φ0 ≫ 1—in direct
conflict with the solar system constraints [7–9].

III. SETTING THE PROBLEM: COSMOLOGICAL
INSTABILITY OF THE FIELD φ

In the present section, we estimate the effect of the
tachyonic instability in the DEF scenario. The presence of
the instability is evident from Eq. (4), and it has the same
origin as the instability responsible for the scalarization of
neutron stars. If VðφÞ ¼ 0 as in the original DEF scenario,
the second term on the left-hand side (l.h.s.) of Eq. (4)
mimics the mass term. Apart from the radiation-dominated
stage, when Tm ¼ 0 approximately, this mass term is
negative for β < 0 and thus leads to the tachyonic insta-
bility. Let us estimate the rate of this instability during the
matter-dominated stage. Neglecting backreaction of the
scalar φ on the metric, from Eq. (4) one obtains,
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φ̈þ 3H _φþ 3

2
βH2φ ¼ 0:

Recall that we work in the Einstein frame. Hence, the scale
factor aðtÞ and the Hubble expansion rate HðtÞ are defined
in this frame. However, in what follows we will not make a
distinction between the energy-momentum tensor in the
two frames, since Tm

μν ≃ T̃m
μν as long as φ ≪ 1. Later on, we

will see that φ is indeed extremely close to zero in our
scenario, so this assumption is justified. The above equa-
tion has the growing solution given by

φ ≃ φeq

�
t
teq

� ffiffiffiffiffiffi
1−8β

3

p
−1

2

;

where H ¼ 2
3t and the subscript “eq” denotes the matter-

radiation equality. From this relation, one can convert the
upper bound onφ0 inEq. (6) into a limit onφeq.We substitute
teq ≈ 5 × 104 years, t0 ≈ 13.8 × 109 years, β ¼ −4.5, and
obtain

φeq ≲ 10−10: ð7Þ

Note that we assumed the matter-dominated stage continues
up to the present day, but taking into account the current
accelerated expansion of the Universe does not alter this
estimate considerably.
Strictly speaking, the tachyonic instability is also

present during the radiation-dominated stage. The reason
is that Tm is slightly different from zero mainly due to the
dark matter contribution. However, this instability is very
mild, as we will show explicitly. The equation governing
evolution of the field φ during the radiation-dominated
stage is given by

φ̈þ 3H _φþ κ

2
βφρmatter ¼ 0:

The nonrelativistic matter energy density evolves as

ρmatterðtÞ ¼ ρmatter;eq ·
a3eq
a3ðtÞ :

We estimate ρmatter;eq as

ρmatter;eq ¼ ρrad;eq ≃
3H2ðteqÞ

κ
;

where HðteqÞ ≃ 1
2teq

is the Hubble rate at equality obtained

by extrapolating the Hubble rate HðtÞ ¼ 1
2t during

radiation-domination; ρrad;eq is the radiation energy den-
sity at equality. Putting everything together and substitut-
ing the scale factor aðtÞ ∝ ffiffi

t
p

, we obtain the equation

φ̈þ 3

2t
_φþ 3β

8t2eq

�
teq
t

�
3=2

φ ¼ 0:

We have checked that it has the growing solution:

φ ≃ 2φi
I1ð

ffiffiffiffiffiffiffiffi
6jβjp

ξ1=4Þffiffiffiffiffiffiffiffi
6jβjp

ξ1=4
;

where I1 is the modified Bessel function of the first kind
of order 1, ξ≡ t

teq
, and φi is the value of the field at the

onset of the radiation-dominated stage, i.e., in the formal
limit t → 0. Substituting known values of I1, one obtains

φeq

φi
≃ 10:

Combining with Eq. (7), we conclude that φi is con-
strained as

φi ≲ 10−11: ð8Þ

This means that to achieve consistency with solar system
tests, the postinflationary value of φ should be tuned to
zero with high accuracy. Note that the value φi is also
subject to BBN constraints. However, the latter are very
weak [8], typically φi ≲ 1. Hence, once we manage to
satisfy the constraint (8), the BBN limit will be auto-
matically obeyed.
One comment is in order here. We have assumed that

the field φ is homogeneous. In practice, there are small
inhomogeneities due to cosmological perturbations imposed
on the field φ. These inhomogeneities evolve differently
depending on their characteristic wavelength. Namely, there
is an upper bound on the wave number of cosmological
modes which experience the instability:

k
aðteqÞ

≲HðteqÞ: ð9Þ

Indeed, spatial inhomogeneities of the field φ characterized
by the wave number k yield the term ∼ k2

a2 φk in the
evolution equation of the corresponding mode φk:

φ̈k þ 3H _φk þ 3

2
βH2φk þ � � � ¼ 0: ð10Þ

Here the ellipses stand for the terms sourced by the
gravitational potential and matter energy density perturba-
tions, which give a negligible contribution. For perturba-
tions violating the upper bound (9), the second term in
Eq. (10) screens the term OðH2Þ, which would otherwise
give rise to the tachyonic instability. As a result, short
wavelength modes decay as φk ∝ 1

a, as it should be for the
case of a massless scalar field in the expanding Universe.
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Thus, we will focus on perturbations obeying Eq. (9) in
what follows.
The present work aims to explain the small value φi

constrained by Eq. (8). This problem is exacerbated during
the inflationary stage, when the field φ also experiences the
tachyonic instability. We show in the Appendix that even if
classically the field φ is set to zero at the onset of inflation,
its vacuum fluctuations get largely amplified beyond the
horizon, quickly shifting φ from zero to φ ≫ 1. The latter is
not only inconsistent with the solar system tests but also
with the existence of the inflationary stage.1 Note that
according to Eq. (3), φ ≫ 1 corresponds to a huge φ̃ ⋙ 1
in the Jordan frame. Hence, the field φ̃ quickly comes to
dominate the evolution of the Universe, and inflation
terminates. We conclude that the DEF scenario should
be modified at least in the very early Universe, and one
modification of this type is discussed in the next section.
Before that, let us briefly comment on the solutions of

the problem of the tachyonic instability existing in the
literature. In Ref. [8], it was proposed to endow the scalar
with a small mass m by promoting the potential VðφÞ to

VðφÞ ¼ m2φ2

2
. As the Hubble rate drops down to H ≃m, the

field φ starts to decay oscillating about the minimum of its
potential at φ ¼ 0. From this point on, it contributes to the
dark matter content of the Universe. Given postinflationary
conditions for the field φ assumed in Ref. [8], i.e., φi ≃ 1
and _φi ≃ 0, the mass m should be extremely tiny, i.e.,
m≲ 10−28 eV. For masses violating this bound, the field φ
gives an unacceptably large contribution to the energy
density of the Universe. Apart from tuning the mass m, the
instability during inflation remains an issue, as discussed
above and in the Appendix. As a result of this instability,
one should expect the initial condition φi ≫ 1 rather than
φi ≃ 1.
In passing, we would like to point out that the instability

during inflation and at later stages can be avoided by
promoting the function lnAðφÞ to [9]

lnAðφÞ ¼ βφ2

2
þ λφ4

4
: ð11Þ

Choosing the extra parameter λ > 0, one can stabilize the
field φ during inflation, so that it evolves close to the
effective minimum φ ¼ ffiffiffiffiffiffiffiffiffiffiffi

−β=λ
p

right until present.
Unfortunately, this scenario does not work, because with
φ0 ≠ 0 and λ ≠ 0, the scalarization of neutron stars does
not occur.
In this work, we follow another approach to the problem

of consistency with solar system tests. Namely, we will find
a way to relax the field φ to tiny values during inflation,
well below the upper bound in Eq. (8), while at the same

time retaining the original form of the DEF model at post-
inflationary times.

IV. COSMOLOGICAL RELAXATION OF
THE FIELD φ TO ZERO

The idea is to couple the field φ to the inflaton χ, i.e.,
consider the interaction of the form ∼φ2χ2. Such a coupling
induces a large effective mass for the field φ during
inflation, so that φ relaxes to an exponentially small value.
The effective mass term vanishes upon the inflaton decay,
so that we end up with the standard DEF scenario after
inflation. While the tachyonic instability during the matter-
dominated stage is still present, there is not enough time
for the field φ to grow to large values by cosmological
mechanisms. In other words, the inequality φ0 ≪ 10−3 is
always satisfied—in an agreement with the solar system
tests.
We assume that inflation is driven by the canonical

scalar field χ rolling down the slope of its (almost) flat
potential UðχÞ. In the Einstein frame its action is given by

Sm½A2ðφÞgμν;ψm� → Sχ ½A2ðφÞgμν; χ�

¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
1

2
g̃μν∂μχ∂νχ −UðχÞ

�
jg̃μν¼A2ðφÞgμν :

Note that unlike the field φ, the inflaton χ is assumed to
have a canonical mass dimension. We modify the DEF
model by assuming a nonzero interacting potential V:

VðφÞ → Vðφ; χÞ ¼ g2φ2χ2; ð12Þ

where g2 is some dimensionless coupling. Thus the field
φ has the effective mass g2χ2 due to the coupling to the
inflaton. We require that

g2χ2 ≫ H2: ð13Þ

Namely, the field φ is effectively superheavy meaning that
its effective mass is larger than the inflationary Hubble rate
(but still below the Planckian scale). In this case, φ relaxes
to zero within a few Hubble times. For typical values χ ≃
MPl and H ≃ 1013 GeV, the constant g2 can be as small as
g2 ≃ 10−12. Hence, the mechanism which cures the insta-
bilities can operate in a very weakly coupled regime. In the
Jordan frame, the potential (12) is transformed to

Πðφ̃; χÞ ¼ 2g2φ2ðφ̃Þφ̃2χ2 φ2ðφ̃Þ ¼ −
ln φ̃
β

:

Note that Eq. (3) implies φ̃ > 1 for β < 0. Hence, the
Jordan frame interacting potential Πðφ̃; χÞ is positive. We
see that modulo the logarithmic correction, the interacting
potential has a quadratic form in the Jordan frame as well.
Therefore it is not important in which frame the coupling to

1A similar issue is present for models with scalarization due to
the scalar-Gauss-Bonnet coupling. However, the instability there
is even stronger [6].
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the inflaton is introduced. We now list the set of equations
relevant for future purposes. Einstein-Hilbert equations are
given by

Rμν −
1

2
gμνR ¼ κTχ

μν þ Tφ
μν;

where

Tφ
μν ¼ 2∂μφ∂νφ − gμν∂αφ∂αφþ gμνVðφ; χÞ;

and

Tχ
μν ¼A2ðφÞ∂μχ∂νχ−

1

2
gμνA2ðφÞ∂αχ∂αχþgμνA4ðφÞUðχÞ:

ð14Þ

Note that the indices are raised and lowered with the
Einstein metric gμν The equations of motion for the field φ
and the inflaton are given by Eq. (4), where Tm is replaced
by Tχ, and

□̃χ þ Uχ þ
1

κA4ðφÞVχðφ; χÞ ¼ 0;

respectively.

A. Relaxing the background value of φ to zero

The Friedmann equation is given by

3H2 ¼ _φ2 þ Vðφ; χÞ þ κ

2
A2ðφÞ_χ2 þ κA4ðφÞUðχÞ:

The background evolution of the scalar φ is governed by
the equation

φ̈þ3H _φþ κ

2
αðφÞ · ½4A4ðφÞUðχÞ−A2ðφÞ_χ2�þg2χ2φ¼ 0:

ð15Þ

As usual, we assume that the inflaton potential dominates
the energy density of the Universe, i.e., 3H2 ≈ κA4ðφÞ
UðχÞ. Consequently, we drop the second term in the square
brackets of Eq. (15). The background equation for φ
simplifies to

φ̈þ 3H _φþm2φ ¼ 0;

where m2 is the full effective mass of the field φ defined by

m2 ¼ g2χ2 þ 6βH2:

Provided that the condition (13) is obeyed and jβj is not
very large, the field φ evolves as a superheavy field, which
relaxes to zero within a few Hubble times. In the exact
de Sitter space-time approximation, the solution for the
field φ is given by

φ ¼ C

a3=2
· cos

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −

9H2

4

r
tþ δ

�
;

where C and δ are irrelevant constants. We conclude that
starting from subplanckian values φ < 1, by the end of
inflation the field φ is relaxed to

φ≲ 10−39;

where the upper bound corresponds to the minimal duration
of inflation—about 60 e-foldings. Generically, the duration
of inflation is much larger, so one can safely set the
background value of φ to zero.
The background evolution of the inflaton is governed by

the equation:

χ̈ þ 3H _χ þ 2αðφÞ_χ _φþ A2ðφÞUχ þ
1

κA2ðφÞVχðφ; χÞ ¼ 0:

As φ → 0, one has αðφÞ → 0, AðφÞ → 1, and Vχ → 0.
Therefore, the evolution of the inflaton proceeds as in GR.

B. Relaxing the perturbations δφ to zero

One may naively expect the field φ to develop super-
horizon perturbations δφ ≃ H

MPl
for each mode. Taking into

account that for standard inflation scenarios H
MPl

∼ 10−6,
such perturbations would be a problem for the DEF
scenario, cf. Eq. (8). Such a situation would occur for
light fields during inflation. However, our case is different,
as the field φ is effectively superheavy. Below we prove
rigorously that perturbations δφ, which source the present
day cosmological value of φ, are exponentially suppressed
by the end of inflation.
In the Newtonian gauge linear metric perturbations are

given by

ds2 ¼ ð1þ 2ΦÞdt2 − a2ð1 − 2ΨÞδijdxidxj:
In the absence of the anisotropic stress, which is the case
here, Φ ¼ Ψ. We are primarily interested in the linear
perturbation δφ. The relevant equation is given by

δφ̈−
1

a2
∂i∂iδφ−2φ̈Φ−4 _φ _Φ−6H _φΦþ3Hδ _φþκ

2
αðφÞδTm

þκ

2

∂αðφÞ
∂φ Tmδφþ1

2

∂2V
∂φ2

δφþ1

2

∂2V
∂φ∂χ δχ¼0; ð16Þ

where

δTm ¼ 16A4ðφÞαðφÞUðχÞδφþ 4A4ðφÞ dU
dχ

δχ

− 2A2ðφÞαðφÞ_χ2δφþ 2A2ðφÞ_χ2Φ − 2A2ðφÞ_χδ_χ:
While this equation looks rather complicated, it is sim-
plified upon substituting the background value φ ¼ 0. We
obtain in terms of the Fourier modes δφk:

RECONCILING SPONTANEOUS SCALARIZATION WITH … PHYS. REV. D 100, 104051 (2019)

104051-5



δφ̈kþ3Hδ _φkþ
k2

a2
δφkþ

κ

2

∂αðφÞ
∂φ Tmδφkþ

1

2

∂2V
∂φ2

δφk ¼ 0:

This is a homogeneous equation, which describes a damped
oscillator with an almost constant large mass. The modes
δφk decay as 1

a3=2
in the superhorizon regime. Hence, they

have negligibly small amplitudes by the end of the infla-
tionary stage. We will make an exact estimate of the field φ
due to its perturbations shortly.
Before going into detail let us make two comments. First,

note that the vanishing background value of φ shields
perturbations δφ from the metric and inflaton fluctuations
δχ. Generally, the latter source adiabatic perturbations,
which turn out to be zero in our case. This is also evident
from the expression for adiabatic perturbations in the
superhorizon regime [14]:

δφad

_φ
¼ δχ

_χ
¼ 1

a
·

�
C1

Z
t

0

adt0 − C2

�
;

χ ¼ C1 ·

�
1 −

H
a

Z
t

0

adt0
�
þ C2

H
a
:

Here C1 and C2 are some constants defined by the
subhorizon evolution of the gravitational potential.
Independently of their values, we have δφad → 0, because
_φ → 0.
Second, we have considered only linear perturbations

δφ. However, using the same argument as above one can
show that once φ → 0 and the linear perturbation δφ → 0,
the second order perturbation δφð2Þ also obeys the homo-
geneous oscillator equation with the Hubble friction and a
very large mass. Hence, it should also decay as δφð2Þ ∝ 1

a3=2

in the superhorizon regime.
The above consideration shows that perturbations δφ are

indeed very small at the end of inflation. However, we still
need to estimate the amplitude of perturbations in order to
compare it with the constraint (8). We approximate infla-
tion by an exact de Sitter stage and switch to the canonical
variable δφ̂ related to the original field δφ by

δφ ¼
ffiffiffi
κ

2

r
δφ̂: ð17Þ

The solution for the field δφ̂ obeying Bunch–Davies
vacuum initial conditions is given by

δφ̂ ¼
Z

d3k

ð2πÞ3=2
ffiffiffi
π

p
2

Hjηj3=2½eπs
2Hð2Þ

is ðkjηjÞe−ikxA†
k

þ e−
πs
2Hð1Þ

is ðkjηjÞeikxAk�; ð18Þ

where η is the conformal time, ðA†
k; AkÞ is the pair of

creation-annihilation operators, Hð1;2Þ
is are the Hankel func-

tions of purely imaginary order [15];

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

H2
−
9

4

r
:

Note that the Hankel functions Hð1;2Þ
is are not complex

conjugate. Instead, the following relation is correct:

½Hð1Þ
is ðkjηjÞ�� ¼ eπsHð2Þ

is ðkjηjÞ, which explains the presence
of unconventional factors e

πs
2 in Eq. (18). For s ≫ 1, one

obtains in the limit kjηj → 0, cf. Ref. [15]:

Hð1;2Þ
is ðkjηjÞ ¼

ffiffiffiffiffi
2

πs

r
e�is ln ½−1

2
kη�∓iγs�πs

2 ;

where ∓γs are irrelevant phases. The choice of the upper
and the lower sign on the right-hand side (r.h.s.) corre-
sponds to the Hankel function of the first and the second
kind, respectively. We are interested in the quantity
hδφ̃2iunstable. The subscript “unstable” means that we focus
on the modes which are subject to the tachyonic instability
during the matter-dominated stage. These modes have the
cutoff kmax defined by the condition (9). By the end of
inflation, at the moment ηf, the dispersion hδφ̃2iunstable is
given by

hδφ̂2iunstableðηfÞ ¼
H2

12π2s
·

���� ηfη×
����
3

;

where η× is defined by kmaxjη×j ≃ 1.
In terms of the original field φ, one finally gets

hδφ2iunstableðηfÞ ¼
H2

3πsM2
Pl

·

���� ηfη×
����
3

:

Note that η× roughly corresponds to 50-70 e-foldings
before the end of inflation, when cosmological modes exit
the horizon. For the sake of concreteness, we assume 60
e-foldings. Taking also H ≃ 10−6MPl (high scale inflation)

and s ¼ 10, we find
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hδφ2iunstableðηfÞ

q
≃ 10−46. The field

φ will be roughly frozen at this value during the radiation-
dominated stage (modulo the factor “10” enhancement
discussed in Sec. III). At the matter-dominated stage and
later it experiences the tachyonic instability. However, the
resulting field φ0 is still well below the upper bound, i.e.,
φ0 ⋘ 10−3—in a comfortable agreement with the solar
system tests.

V. DISCUSSIONS

In the present work, we have proposed a way to extend
the original DEF model of scalarization to cosmological
scales, while retaining consistency with solar system tests.
In the cosmological context, the original model leads to a
runaway solution for the relevant field φ, making the
scenario inconsistent with existing PPN constraints unless
the initial value of φ is tuned to zero with high precision.
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We have found a modification of the original scenario in
which this tuning is automatic. Namely, we have shown
that if the field φ responsible for scalarization is equipped
with a coupling to the inflaton, it relaxes to zero with an
exponential accuracy. Upon the inflaton decay, the cou-
pling effectively vanishes, meaning that in our modified
scenario all the predictions related to neutron stars are the
same as in the original DEF model.
Recall that in this work we have assumed the universal

coupling of matter fields to the metric. Let us comment here
on modifications of the model where the coupling is
nonuniversal. For instance, one may consider the model
with a direct coupling of the inflaton to the Einstein metric.2

Contrary to the situation with the universal coupling, now
the scalar field φ does not receive an effective tachyonic
potential, and thus does not undergo the instability during
inflation. Hence, one may naively expect that the model is
viable even in the absence of the stabilizing potential
Vðφ; χÞ introduced in Eq. (12). In this case, however, the
scalar φ enjoys the shift symmetry, and hence can take on
any value. Modulo fine-tuning, this value is not small,
leading to a large value of φ0 now and consequently to the
conflict with solar system tests. Moreover, even if the
background value of φ is tuned to zero, perturbations φ are
still too large and give rise to φ0 ≫ 1 (see the discussion in
the first paragraph of Sec. IV. B). Once again, the problem is
avoided upon turning on the potential Vðφ; χÞ as in Eq. (12).
Yet another possibility is to couple the inflaton to the

Einstein metric with a conformal factor as in Eq. (2), but
with positive βinf > 0 (while at the same time keeping
β < 0 for the normal matter to ensure scalarization). In this
case, according to Eq. (4), the field φ acquires a positive
mass even if Vðφ; χÞ ¼ 0. Provided that βinf ≫ 1, the scalar
φ is superheavy. Thus it relaxes to zero exactly in the
same way as in the model with the stabilizing potential
Vðφ; χÞ. In fact, one can view this scenario as a variation
of the model discussed in the main body of the paper,
modulo the replacement of the coupling ∼φ2χ2 by the
coupling of the field φ to the trace of the inflaton energy-
momentum tensor.
It is worth it to contrast the results of this paper on the

modification of the DEF model with those of Ref. [6],
which raises a doubt in the validity of scalarization
scenarios involving the Gauss-Bonnet curvature invariant.
The mechanism which relaxes the field φ to zero presented
here is not applicable to the Gauss-Bonnet case for the
reason that the stabilization of the tachyonic mass during
inflation would require the coupling g2 in Eq. (12) to be of
order 1053 [6]. Such values of the dimensionless coupling
constant would put the theory in the strong coupling regime.
Note that the results of the present work are largely

insensitive to the structure of the conformal factor AðφÞ.
While we have focused on the simple quadratic function

lnAðφÞ ∝ φ2, involving higher powers of φ would leave
our analysis and conclusions intact. Moreover, the pro-
posed solution of taming the cosmological instability can
be applicable to other models of scalarization akin to the
DEF model. Indeed, starting from the action (1), one can
make the disformal transformation of the metric as
gμν → CðXÞgμν þDðXÞ∂μφ∂νφ, where CðXÞ and DðXÞ
are functions of the kinetic term X ¼ ð∂φÞ2. The trans-
formation results in a new scalar-tensor action [16],
belonging to the class of degenerate higher-order scalar-
tensor theories [17]. In the context of scalarization such
extensions have been discussed in Refs. [18,19]. We
believe that our solution for the cosmological instability
presented in this paper may also work for such an
extension. However, the detailed analysis of this issue is
beyond the scope of our paper.
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APPENDIX: EVOLUTION OF THE FIELD φ
DURING INFLATION IN THE ORIGINAL

DEF MODEL

In this appendix, we discuss the inflationary evolution of
the field φ in the original DEF scenario. This evolution is
subject to a tachyonic instability. As a result, the field φ
acquires large values inconsistent not only with the solar
system constraints, but also with the existence of the
inflationary stage. This conclusion holds even if classically
the field φ is set exactly at φ ¼ 0 initially. Inevitable
vacuum fluctuations of the field φ are quickly enhanced
during inflation leading to the large overall value of φ.
In the following, we quantify the effect of vacuum
fluctuations assuming the exact de Sitter approximation
characterized by the Hubble expansion rate H. Switching
to the canonically normalized field φ̂ defined by Eq. (17),
we write for perturbations δφ̂ obeying the Bunch–Davies
vacuum initial conditions:

δφ̂ ¼
Z

d3k

ð2πÞ3=2
ffiffiffi
π

p
2

Hjηj3=2½Hð2Þ
ν ðkjηjÞe−ikxA†

k

þHð1Þ
ν ðkjηjÞeikxAk�;

where Hð1;2Þ
ν ðkjηjÞ are the Hankel functions of order

ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9
4
þ 6jβj

q
, and ðA†

k; AkÞ is the pair of creation-

annihilation operators. The expectation value of δφ̂ is
drawn from

2We thank Gilles Esposito-Farèse for pointing out this
possibility.
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hðδφ̂Þ2i ¼
Z

dkk2

8π
H2jηj3jHð1Þ

ν ðkjηjÞj2:

We are interested in superhorizon modes, i.e., kjηj → 0,
which add up to the classical background of the field φ̂.
In this limit, one has for the Hankel functions

Hð1;2Þ
ν ðkjηjÞ ¼ ∓ iΓðνÞ

π
·

�
2

kjηj
�

ν

:

The result reads

hðδφ̂Þ2ifkg ¼
22νΓ2ðνÞ

8ð2ν−3Þπ3 ·H
2 · ½ðkminjηjÞ3−2ν−ðkmaxjηjÞ3−2ν�:

Here fkg denotes the range of momenta ðkmin; kmaxÞ. Given
that ν ≃ 5 and assuming kmax ≫ kmin, the second term in
the square brackets is irrelevant. Conservatively, one can
take kmin ≃H0 (we set the scale factor a ¼ 1 today)
corresponding to the longest mode interesting in cosmol-
ogy. The final expression in terms of the original field φ is
then given by

hðδφÞ2ifkg ¼
22νΓ2ðνÞ

2ð2ν − 3Þπ2 ·
H2

M2
Pl

·

���� η�η
����
2ν−3

;

where η� denotes the time when the cosmological mode
with wave number kmin exits horizon. It is evident thatffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðδφÞ2ifkg

q
is very large for jη�j ≫ jηj. Given the minimal

duration of inflation, which should last for at least 50–70
e-foldings, we end up with an unacceptably large φ. This
huge φ clearly violates existing solar system constraints,
and also threatens the existence of the inflationary stage.
One solution to this problem is discussed in the main

body of the paper. That is, to equip the field φ with the
coupling to the inflaton. Another approach is to take into
account higher order terms in the function lnAðφÞ. Namely,
if a quartic term is present in the expansion of lnAðφÞ, as
is written in Eq. (11), the field φ rolls toward its minimum
set at φ ¼ ffiffiffiffiffiffiffiffiffiffiffi

−β=λ
p

and resides there up to the present day.
However, in this latter approach with λ > 0, a non-zero
cosmological value of φ is inconsistent with the scalariza-
tion of neutron stars [9].
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