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ABSTRACT
This paper investigates how network and traffic heterogeneities influence the accu-
racy of a simulation based on the Macroscopic Fundamental Diagram (MFD). To
this end, the MFD modeling of a simple grid network is compared to the outputs
of a mesoscopic kinematic wave model simulating traffic in the same network. Het-
erogeneous distributions of demand and supply at the boundaries are set to the
local entries and exits of the mesoscopic model to generate heterogeneous network
loadings. These boundary conditions challenge the MFD simulation, as significant
discrepancies are observed between both modeling approaches in steady state. While
the accurate calibration of the MFD and the average trip length can reduce the dis-
crepancies for heterogeneous demand settings, no simple solution exists for hetero-
geneous supply settings, because they may drive very different internal congestion
patterns in the network. We propose a correction method to adjust the MFD model
outputs in such a case.
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1. Context and study framework

1.1. The impact of network heterogeneities on the MFD

The Macroscopic Fundamental Diagram (MFD) has received much attention in the
literature over the last decade, in particular for control applications, (e.g. Keyvan-
Ekbatani et al. 2012; Aboudolas and Geroliminis 2013; Haddad and Mirkin 2017;
Ampountolas, Zheng, and Geroliminis 2017). Partitioning a city into a multi-reservoir
system characterized by MFDs also appears to be an appealing and computation-
ally efficient method for simulating urban multimodal networks at a large scale (e.g.
Knoop and Hoogendoorn 2014; Yildirimoglu, Ramezani, and Geroliminis 2015). The
concept of MFD was first introduced by Godfrey (1969), Herman and Prigogine (1979)
and Mahmassani, Williams, and Herman (1984). However, Daganzo and Geroliminis
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(2008) were the first authors to present a well-defined MFD based on real data. Since
then, numerous studies have investigated the conditions for good MFD definition. It
has notably been shown that network and/or traffic heterogeneities are strong sources
of MFD scattering. Heterogeneities can be driven by: (i) non-consistent network defi-
nition (Buisson and Ladier 2009), (ii) data sources and processing methods (Leclercq,
Chiabaut, and Trinquier 2014), (iii) the spatial distribution of vehicles within the net-
work (Mazloumian, Geroliminis, and Helbing 2010; Geroliminis and Sun 2011b; Saberi
and Mahmassani 2012), (iv) time of the day (Gayah and Daganzo 2011), (v) network
layout and configuration (Knoop, De Jong, and Hoogendoorn 2014; Ortigosa, Menen-
dez, and Gayah 2015; Muhlich, Gayah, and Menendez 2015), (vi) traffic signal settings
(de Jong, Knoop, and Hoogendoorn 2013; Zhang, Garoni, and de Gier 2013; Gayah,
Gao, and Nagle 2014; Girault et al. 2016), (vii) the definition of the Origin-Destination
(OD) matrix (Doig, Gayah, and Cassidy 2013; Leclercq et al. 2015) and (viii) traveler
information (Zhao et al. 2014). Furthermore, heterogeneities may be observed not only
inside the area but also at its border. Keyvan-Ekbatani et al. (2016) notably focused
on balancing queues at a network perimeter to improve its gating, and showed how
this manipulation of boundary conditions may affect the MFD shape.

1.2. How does this affect the accuracy of MFD-based simulation?

In the above-mentioned studies, the main focus is often on the impact the MFD shape
or existence. However, little attention has been paid to assess the effect of hetero-
geneities on the accuracy of MFD-based simulation. As heterogeneities not only affect
the MFD shape but also the distance traveled in an area (Leclercq et al. 2015; Batista,
Leclercq, and Geroliminis 2019), the impacts on simulation results may be even more
considerable. A simple way to assess the accuracy of MFD-based simulation results
is to compare them with those of more refined traffic flow models using microscopic
(e.g. Gipps 1986; Barcelo et al. 2006) or mesoscopic approaches (e.g. Ben-Akiva et al.
2002; Mahut, Florian, and Tremblay 2003; Burghout, Koutsopoulos, and Andreasson
2005; Leclercq and Becarie 2012). Geroliminis and Daganzo (2007) were the first to
compare MFD simulation in a single region (also called “reservoir”) with a microscopic
simulator on a 2.5 square mile area of Downtown San Francisco. They showed that
the results from the reservoir model fit the microsimulation outputs quite well, mainly
because the network studied exhibits a low-scattered MFD which seems independent
from OD tables. But this low scattering is not universally expected, as suggested by
the above-mentioned studies on network heterogeneities. Yildirimoglu and Geroliminis
(2014) also compared the evolution of the perimeter flow estimated by a multi-reservoir
MFD model with microscopic simulation. The results are more mitigated as consis-
tency is obtained by integrating a feedback mechanism that adjusts the accumulation
in the MFD model from time to time, depending on the current state predicted by the
microscopic model. In this paper, the authors also clearly pinpointed that assuming a
single and constant trip length for all vehicles within a network may lead to strong bias
with the microscopic simulation results. This was recently corroborated by Paipuri,
Leclercq, and Krug (2019). Such an assumption was first conjectured by Daganzo
(2007). Since then, most papers that have used MFD simulation (mostly for control
applications) have taken advantage of this simplification. This can be supported by
the promising results of the perimeter control applied in microsimulation by Keyvan-
Ekbatani, Papageorgiou, and Papamichail (2013); Keyvan-Ekbatani, Papageorgiou,
and Knoop (2015) with a simple MFD model, which benefits from a good homogene-
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ity of traffic states in the network studied. However, recent results (e.g. Yildirimoglu
and Geroliminis 2014; Leclercq et al. 2015; Lamotte and Geroliminis 2018) are now
questioning the simple MFD model with a constant average trip length for the most
general cases. They show that not only traffic conditions but also the OD matrix may
significantly affect the mean travel distance in a network.

1.3. Towards a better understanding of MFD-based simulation accuracy
in an heterogeneously loaded network

In this study we aim to characterize how MFD-based simulation is sensitive to net-
work heterogeneities generated by uneven demand and supply settings at the local
entries and exits that define the perimeter of a single reservoir (i.e. an urban region).
In the following, for the sake of simplicity we use the terms “exit supply” or some-
times “supply” to mean the capacity of the exit nodes (expressed in [veh/s]). Such
capacities can simulate downstream link-level restrictions due to spillbacks from an
adjacent region for instance. The question of uneven perimeter loading is very critical
for MFD simulation, because this modeling approach automatically considers homoge-
neous loading as all entry and exit link flows are aggregated. By definition of the single
reservoir model first introduced in Daganzo (2007), only one inflow and one outflow
are plugged into the MFD simulation. If heterogeneity at the perimeter can be catch
in this framework, this can only be visible in the MFD and/or the average trip length
estimation. Therefore, our study addresses the following steps: (i) first investigate the
impact of heterogeneous distributions of demand and supply on a network MFD and
average trip length, (ii) then analyze and quantify the resulting errors on traffic state
predictions by MFD simulation, and (iii) finally propose some methods to correct the
inaccuracies in MFD simulation. The main contributions are thus (i) a better under-
standing on the impact of uneven perimeter loading on network performances, and (ii)
a step forward the validation of MFD-based simulation with clearer insights on some
shortcomings that have been overlooked in the literature.

1.4. General layout and methodology

Our methodology is based on simulation comparison to assess the accuracy of MFD
modeling under uneven loading. MFD simulation results for a single region are com-
pared with a mesoscopic simulator (Leclercq and Becarie 2012) capable of reproducing
local dynamic effects in the network and in particular spillbacks between intersections
during congestion. This link-level simulator is used in our study as the ground truth
to identify possible limitations in the MFD model. Our case study uses the same 2×4
network as presented in Leclercq et al. (2015) because this network, although very sim-
plistic, permits generating a wide range of different heterogeneous loadings. Its features
(asymmetrical shape, one-way streets, etc) are deliberately exaggerated to emphasize
heterogeneities and thus identify possible shortcomings while simulating traffic states
with the MFD. This network is not meant to be general, dense and homogeneous,
but rather to represent a simplified version of the irregular and asymmetrical reservoir
shapes often exhibited by partitioning algorithms (see e.g. Ji and Geroliminis 2012;
Saeedmanesh and Geroliminis 2016). We focus on the ability of the MFD model to
predict accurate traffic states in the steady phase, i.e. after the initial network loading.
Comparisons are based on the dynamic evolution of the vehicle accumulation within
the reservoir, and inflows and outflows.
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This paper is organized as follows. Section 2 introduces the case study and the two
modeling approaches, the mesoscopic one in subsection 2.1, and the MFD-based one in
subsection 2.2. In particular, we present the demand and supply settings and how we
define homogeneous or heterogeneous distributions of flows at the network perimeter.
In section 3 then, the simulation findings are presented in two parts: subsection 3.1
is about the MFD and average trip length estimations made with the link-level simu-
lations for different boundary settings, and subsection 3.2 deals with the comparison
of the simulation outputs in steady state between the two modeling scales. Guidelines
will be proposed on the best way to set up the MFD-based model. Finally, Section 4
discusses the major findings of this study while presenting new results obtained on a
bigger network.

2. The network studied and its settings

2.1. Mesoscopic simulation settings

2.1.1. Network configuration and geometry

In this study, we focus on a very simple 2×4 Manhattan-type network where all the
links are one-way and have one lane. Thus, the network has 6 entries and 6 exits, see
Figure 1(a). The West-East inner links are more than twice as long as the North-South
ones. All the intersections are controlled by traffic lights with the same green and red
times equal to 30 s. All the signals have the same offset. This asymmetrical network
configuration has been designed to favor heterogeneous loadings. The geometry ensures
highly variable trip lengths as a function of the OD matrix, as the West-East routes are
much longer than the North-South ones (Leclercq et al. 2015). Furthermore, uneven
supply distributions at the exits will trigger many different congestion patterns. We
keep the network configuration simple as a large number of mesoscopic simulations
must be run in order to investigate the influence of the demand and supply distribution
over the entries and exits.

2.1.2. Origin-Destination matrix

Since our aim is to investigate the impact of boundary loadings on MFD-based simula-
tion, we consider only transferring trips for the sake of simplicity. By ignoring internal
trips, we decided to limit the number of potential parameters in the demand settings
to keep the analysis simple. Moreover, the treatment of internal trips might differ from
that of transferring trips in MFD-based simulation. Consequently, considering only the
latter allows omitting this research question which is out of the scope of this study.
Thus, in the following, origins and destinations refer to the 6 entries and 6 exits defin-
ing the network perimeter, see also Figure 1(a). In the whole study, the distribution
of destinations among users starting from a unique origin remains constant, i.e. the
coefficients of the normalized OD matrix in Figure 1(b) are time-invariant. Such a dis-
tribution guarantees that homogeneous demand loadings (same demand at all entries)
will correspond to a homogeneous flow distribution at the exits. This does not imply
a homogeneous use of the network however. Here, the OD flow matrix depends only
on the demand values assigned to each entry.
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2.1.3. Traffic simulation settings

The mesoscopic simulator in this study is fully described in Leclercq and Becarie
(2012); Joueiai et al. (2015). This simulator is based on the space-Lagrangian resolu-
tion of the LWR model (Lighthill and Whitham 1955; Richards 1956) and provides
the exact solutions of this model for links (Laval and Leclercq 2013). At the link level,
traffic flow is characterized by a triangular fundamental diagram (FD) with the follow-
ing parameters: free-flow speed u = 25 m/s, wave speed w = 5 m/s, and jam density
kj = 0.2 veh/m. Outputs of one simulation provide the passing times of all the vehicles
at each node.

2.1.4. Assignment and convergence

One simulation lasts 5000 s including a 1000 s warm-up period. For all local OD pairs,
a maximum of the three shortest routes in distance may be used by vehicles. The flow
distribution over the different routes is calculated by the mesoscopic simulator based
on the first Wardrop principle (user equilibrium), i.e. all users travel on the paths with
the minimum travel time. To distribute the users between the different routes, different
simulations are run iteratively using the Method of Successive Averages (MSA). The
travel time values are based on the free-flow speed for the first simulation, and on
the previous simulation output for the next iterations. The traffic assignment process
converges once the mean travel time of 95% of all the link lengths is almost constant
(less than 5% variation over two successive iterations).

250 m50 m

50 m

100 m

O1

O2

O3 O4 O5 O6

D2

D1

D6D5D4D3

D1 D2 D3 D4 D5 D6

O1 1/6 0 1/3 1/4 1/4 0

O2 0 1/6 1/3 1/6 1/6 1/6

O3 0 0 1/3 1/4 1/6 1/4

O4 1/4 1/4 0 1/3 1/6 0

O5 1/4 1/4 0 0 1/4 1/4

O6 1/3 1/3 0 0 0 1/3

(a) (b)

Figure 1. (a) Network configuration. (b) Normalized origin-destination matrix

2.1.5. Demand scenarios

A wide range of constant demand values at the entries and constant supply (capacity)
values at the exits are applied to this network. The reference scenario, named SC0
hereon, corresponds to a uniform distribution between the entries for the total demand
and uniform distribution between the exits for the total supply, see Figure 2(a). The
demand at each entry is equal to qDin (in [veh/s]) and the supply at each exit is qSout

(in [veh/s]). Heterogeneous network loadings will be obtained by either using uneven
demand distribution over all the entries (scenario SC1), see Figure 2(b), or uneven
supply distribution at the exits (scenario SC2), see Figure 2(c). Demand and supply
patterns are considered linear by the network directions. For a given value of qDin (or
qSout in the case of scenario SC2), a single parameter a1 (or a2 in the case of scenario
SC2) which ranges from 0 to 1 is thus sufficient to define the demand values at all
the entries (or the supply values at all the exits for SC2), see Figure 2(b) and (c).
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Parameters a1 and a2 are called the heterogeneity coefficients. Note that a1 and a2 =
0 for SC0. Also note that the sum of the demand flow on all the entries (or the sum
of the flow restrictions on all the exits) is always the same, i.e. independent from the
heterogeneity coefficients. It is equal to QD

in = 6qDin for the demand, and to QS
out = 6qSout

for the supply.

qout
S

qout
S

q in
D

q in
D

(1+a1)q in
D

(1-a1)q in
D

(1+a1)q in
D

(1-a1)q in
D qout

S

qout
S

(1+a2)qout
S

(1+a2)qout
S

(1-a2)qout
S

(1-a2)qout
S

q in
D

q in
D

(a) – SC0 

(b) – SC1 (c) – SC2

Figure 2. (a) Scenario SC0: Homogeneous demand and supply distribution. (b) Scenario SC1: Heteroge-

neous demand distribution at the entries with homogeneous supply distribution at the exits. (c) Scenario SC2:
Heterogeneous supply distribution at the exits with homogeneous demand distribution at the entries.

2.2. Single reservoir implementation of the MFD-based model

In parallel to the mesoscopic simulations, the traffic states in the network are estimated
using an MFD-based model (Daganzo 2007; Geroliminis and Daganzo 2007). Here, we
consider that the whole network is described by a single reservoir with a total inflow
Qin(t) and a total outflow Qout(t) (in [veh/s]). Traffic states within the reservoir are
characterized by the vehicle accumulation n(t) (in [veh]), which is the number of
vehicles circulating at time t. Cumulative count curves Nin(t) and Nout(t) (in [veh])
are also calculated by respectively integrating inflows and outflows to monitor the
reservoir perimeter. The network MFD is defined as the relationship between the
travel production P (n) (in [veh.m/s]) and the accumulation n. The existence of a
well-defined MFD will be tested against the mesoscopic simulation results in the next
section 3.1.1. According to Daganzo (2007), the evolution of n(t) is given by the
following conservation equation:

dn

dt
= Qin(t)−Qout(t) (1)

The same author makes the following crucial assumption: the outflow Qout(t) is pro-
portional to the MFD travel production P (n(t)), where the proportionality factor is
the inverse of the average trip length L (in [m]) in the reservoir, as detailed in equa-
tion 2. This means that all vehicles have almost the same travel distance whatever
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their origins and destinations.

Qout(t) =
P (n(t))

L
(2)

When capacity restrictions are applied to the exits, the outflow formulation must
be updated to account for the exogenous boundary condition (total supply) QS

out;
see equation 3. Similarly, the total demand inflow QD

in may be reduced to adjust the
reservoir supply function I(n(t)), see equation 4. Note that Qin(t) is set at the maximal
demand value during the whole period during which a stock of vehicles is waiting to
enter the reservoir due to capacity supply regulation. Note also that we do not consider
internal flow generation in the reservoir as this does not occur in the mescoscopic
simulation.

Qout(t) = min

[
P (n(t))

L
;QS

out

]
(3)

Qin(t) = min
[
I(n(t));QD

in

]
(4)

The definition of the supply or entrance function I(n(t)) is introduced in Gerolimi-
nis and Daganzo (2007) and its shape is presented in Figure 3(b). The role of this
function is to simulate spillbacks reaching the reservoir entry when studying transfer
flows through a reservoir. However, considerations of its use and shape are still being
discussed in the literature1. Thus, as there is no clear consensus on this question and
to keep our model simple, we chose to adopt the definition of Knoop and Hoogendoorn
(2014); Hajiahmadi et al. (2013); Lentzakis, Ware, and Su (2016), which is based on
the supply function of a cell in the Cell Transmission Model (CTM) of Daganzo (1994),
see equation 5. Since our goal is to study steady state flows in this paper, this choice
does not have any impact on the final results. We will actually see that the role of
I(n(t)) is basically to ensure that the equilibrium flow is equal to the total supply
QS

out in congestion for the MFD-based simulation.

I(n) =

{
Pc/L = maxO(n) if n < nc = argmax O(n)

O(n) else
(5)

where O(n) = P (n)/L is the outflow function, and Pc the maximum network produc-
tion estimated with the MFD P (n). O(n) may be also referred to as the outflow-MFD,
while P (n) is denoted the production-MFD to avoid confusion. Such a distinction was
proposed in Lamotte and Geroliminis (2018).

Figure 4 synthesizes the MFD-based modeling approach. For a given and constant
set of boundary conditions

(
QD

in;QS
out

)
, the network steady state can be directly cal-

culated by solving Qin(t) = Qout(t). Note that at this aggregated level, neither the
total demand QD

in nor the total supply QS
out depends on the heterogeneity coefficients

a1 and a2. This is because the MFD-based model considers homogeneous perimeter
flows. Thus in this model, the network steady state depends only on

(
QD

in;QS
out

)
, the

production-MFD P (n) and the average trip length L. However, a crucial question is
whether P (n) or L may be affected by heterogeneous network loadings and therefore
by a1 or a2. This will be investigated in the next section.

1Most large-scale control applications do not even consider it because of the feedback loop introduced with

the controller, thus protecting the reservoir from over-saturated states. But in our case, I(n(t)) is needed to
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Figure 3. (a) Typical shape of the outflow function O(n) and (b) the supply or entrance function I(n)
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D Qout
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global
supply

n

P
MFD

L

Trip length

Figure 4. MFD-based model definition

3. Simulation findings

3.1. Influence of the boundary settings on the MFD and the average trip
length

3.1.1. MFD estimation based on the mesoscopic outputs

The production-MFD P (n) is estimated by simulating different traffic loadings with
the mesoscopic framework. One simulation corresponds to one particular loading, and
the steady state reached after the warm-up period defines a single point in the (ac-
cumulation, production) plane. The different states for the free-flow part of the MFD
are obtained from simulations with local demand values varying from qDin = 0.1 to
0.5 veh/s and a supply value fixed to qSout = 1 veh/s at each exit. On the other hand,
the dots for the congested part of the MFD are obtained by varying the supply at
the exits from qSout = 0.1 to 1 veh/s and fixing the demand at its highest level qDin =
0.5 veh/s at each entry. These two simulation settings allow us to almost completely
estimate the network MFD.

For one simulation, the steady state accumulation is calculated as the mean differ-
ence between the entering and exiting cumulative count curves during the time period
[1000; 5000 s]. The count curves are direct outputs from the simulation because the
mesoscopic simulator provides all the entering and exiting times for all vehicles. On
the other hand, the steady state production is calculated as the mean circulating
flow Qcircu multiplied by the total network length Lnet. Qcircu is obtained with Edie’s
formula (Edie 1963):

Qcircu =
1

LnetTobs

Nveh∑
i=1

di (6)

simulate congested steady states
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where Tobs is the duration of the observation period [1000; 5000 s], Nveh the total
number of vehicles circulating during the same period, and di the distance traveled by
the ith vehicle during this period.

The MFD is estimated for homogeneous loadings (SC0) but also for different degrees
of heterogeneous loadings (SC1 and SC2), i.e. when coefficient a1 varies from 0 to
0.8, and a2 from 0 to 0.6. The resulting MFDs and their fits by a semi-parabola
and semi-linear function can be seen in Figures 5(a) and (b). A clear impact of the
heterogeneity coefficients appears on the MFD shape. Figure 5(a) shows the results
for SC1. It can be seen that the more heterogeneous the demand on entries is, the
lower the MFD capacity is. This is because the flows concentrate on a few entries
when the demand distribution becomes heterogeneous. In this case certain OD pairs
are almost not used. This has no effect when the demand rates are low, but creates
uneven density distribution between the links when the demand reaches its highest
level. This uneven density distribution is therefore responsible for the decrease in the
networks global capacity, as shown previously by Geroliminis and Sun (2011a); Knoop,
Van Lint, and Hoogendoorn (2015) in bigger networks. Zhang, Garoni, and de Gier
(2013) also studied the influence of anisotropic demand settings at network boundaries
on the MFD shape. Likewise, their simulations show a decrease in the network capacity
when anisotropy exists in the demand distribution.

On the other hand, heterogeneity among the supply values at the exits does not af-
fect the MFD capacity, see Figure 5(b). This is because the network capacity is reached
for network loadings where the exit flows are not limited, whatever the heterogeneity
coefficient a2 is. However, a clear decrease of the average flow in the congested part
is observed. This underlines that traffic states become even worse as congestion in-
creases, when the heterogeneity coefficient a1 is high. Reducing outflow at some exits
may lead to severe congestion on several network links, which may also affect other
exits when spillbacks occur.

Figures 5(c) and (d) show the increase of spatial heterogeneity among link traffic
states when the spatial mean density increases for both scenarios SC1 and SC2. These
two graphs are based on the same data points we used for the MFD estimations. For
one simulation, link densities are calculated as the mean of link accumulation over the
period [1000; 5000 s], divided by the link length. Then, the spatial mean density k
and the spatial link heterogeneity σk respectively correspond to the arithmetic mean
and the standard deviation of all these link densities. This definition of spatial link
heterogeneity has already been used in Zhang, Garoni, and de Gier (2013); Zhao et al.
(2014); Knoop, Van Lint, and Hoogendoorn (2015). Figure 5(c) shows the results for
SC1. The more heterogeneous the demand distribution is, the more heterogeneous
the link traffic states. On the contrary, Figure 5(d) shows the results for SC2. It
obviously appears that high heterogeneity coefficients for supply values lead to highly
heterogeneous link densities in congestion. In free-flow however, the heterogeneity
coefficient a2 has no impact, see also Figure 5(b). In both figures, a linear trend can
also be seen between the spatial mean density k and the spatial heterogeneity σk. This
trend was noticed by Knoop, Hoogendoorn, and Van Lint (2012), and by Mahmassani,
Hou, and Saberi (2013); Kim and Mahmassani (2015) about the variability in travel
times.

3.1.2. Mean trip length estimation based on the mesoscopic outputs

The average trip length L can be estimated in two ways. First, the mesoscopic model
provides the trip distances directly for all exiting vehicles. The average trip length for
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Figure 5. (a) MFD estimation for SC1 (heterogeneous demand / homogeneous supply), a1 = 0 to 0.8. (b)

MFD estimation for SC2 (homogeneous demand / heterogeneous supply), a2 = 0 to 0.6. (c) Spatial hetero-
geneity (standard deviation) of link densities vs spatial mean link density in SC1 with a1 = 0 to 0.8, and (d)

in SC2 with a2 = 0 to 0.6

a given simulation can then be calculated as the arithmetic mean of these distances
during the observation period. This estimation is denoted Lsimul as it refers to one
single simulation setting. The second method consists in determining the slope of the
linear fit between the outflow and the production values; see equation 2. For each level
of heterogeneity, i.e. a couple of a1 and a2 values, a linear regression is applied to
all the simulation results to estimate the mean trip length, here referred to as LMFD

because it corresponds to one MFD estimation.
Lsimul values are presented in Figures 6(a) and (b) for the two scenarios SC1 and

SC2 respectively. For each simulation, Lsimul is given versus the corresponding steady
state accumulation. Figures 6(c) and (d) show the same data points, but versus the
heterogeneity coefficient a1 (resp. a2). The network state, i.e. free-flow or congested,
related to the MFD estimation (see section 3.1.1) is mentioned in the figure. The
second estimation LMFD is also presented in these two graphs for each heterogeneity
coefficient, including the 95% confidence interval of the slope estimation in the linear
regression. It clearly appears that the average trip length greatly depends on the
boundary conditions and may have significant variability (from 350 to 500 m). An
interesting observation is that although the confidence intervals are small for the LMFD

values, the second estimation method proved to be insufficient to capture the great
variability that may exist between the different simulations. Other network-specific
trends of lesser importance can also be noticed. Such observations are more specific
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to the network studied and should not be expected as universal results. First, one
counter-intuitive phenomenon is that the average trip length decreases as congestion
becomes heavier, because the inflow is more reduced drastically for the longest routes
when congestion propagates. Second, the heterogeneity in the demand distribution at
entries has a clear impact on the average trip length in free-flow: Figures 6(a) and
(c) show that higher heterogeneity coefficient values increase the user flow on longer
routes, see also Figure 2(b). On the other hand, in Figures 6(b) and (d) the average
trip length is independent of the heterogeneity coefficient in free-flow (a2 characterizes
the heterogeneity on supply). This is because the demand is homogeneous in scenario
SC2. The impact of these differences in MFD and/or trip length estimations on the
reservoir simulation will be examined next.
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Figure 6. (a) Average trip length Lsimul versus accumulation for SC1 (heterogeneous demand), a1 = 0 to

0.8. (b) Lsimul vs accumulation for SC2 (heterogeneous supply), a2 = 0 to 0.6. (c) Lsimul and LMFD vs a1 in
SC1. (d) Lsimul and LMFD vs a2 in SC2

3.2. Comparisons of MFD and mesoscopic simulation results for
different network loading cases

3.2.1. Comparison between mesoscopic and MFD-based approaches for
homogeneous loadings

In this section we present the simulation results on a simple network loading case:
the simulation starts with an empty network and then reaches a steady state defined
by the demand level in free-flow, or the supply level in congestion. Both levels are
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constant during the whole simulation period. We first focus on two typical network
loadings: (i) the free-flow case, defined by qDin = 0.2 veh/s and qSout = 1 veh/s; (ii)
the congested case, characterized by qDin = 0.5 veh/s and qSout = 0.1 veh/s. These are
the reference values for one entry or one exit in SC0. The effective local inflows and
outflows are then derived based on the a1 and a2 coefficients in SC1 and SC2, see
section 2.1. At the aggregated (reservoir) level, we have QD

in = 1.2 veh/s and QS
out =

6 veh/s for free-flow, and QD
in = 3 veh/s and QS

out = 0.6 veh/s for congestion.
We first compare the simulation results between the mesoscopic and MFD-based

approaches for the homogeneous case SC0, when a1 and a2 are set to 0. The evolution
of accumulation and N -curves are presented in Figures 7(a) and (b) for the free-flow
situation, and in Figures 7(c) and (d) for the congested situation. Overall, a good
concordance is observed between the two modeling frameworks in steady state. Of
course, the traffic description at the aggregated (reservoir) level cannot capture all
the variability which is rendered at the lower (link) level by the mesoscopic simulator.
Note that the scattering is considerable in congestion for the mesoscopic results.
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Figure 7. Comparison between the mesoscopic and the MFD-based framework when a1 = 0 and a2 = 0. (a)
Evolution of accumulation n(t) for the free-flow case (b) Nin(t) and Nout(t) for the free-flow case (the time
window was reduced to improve the graph’s readability). (c) Evolution of accumulation n(t) for the congested

case (d) Nin(t) and Nout(t) for the congested case

3.2.2. Comparison between mesoscopic and MFD-based approaches for
heterogeneous demand and homogeneous supply loadings – scenario SC1

We now focus on the impact of heterogeneity in SC1, by setting the a1 value to
0.8 (highly heterogeneous distribution) and a2 to 0 for both free-flow and congested
situations. Several options are available for calibrating the reservoir model, i.e. the
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MFD shape and the mean trip length value. We can either consider that the reservoir
model has been calibrated for the homogeneous case, i.e. when a1 = 0 and that we
are not aware of the change of the demand distribution; or we can re-calibrate the
reservoir model using heterogeneous data observations. We consider updating the MFD
shape and the trip-length separately, which makes four cases in total: the estimated
MFD with a1 = 0 (initial calibration), or with a1 = 0.8 (re-calibration), and the
estimated average trip length when a1 = 0 (estimation by regression LMFD), or a1 =
0.8 (the estimation from the mesoscopic simulation results Lsimul). These calibration
cases are summarized in Table 1. The results for these four calibration options are
presented in Figures 8(a) and (b) for the free-flow and congested cases respectively.
It appears that the reservoir model fails to reproduce the mean steady state value
given by the mesoscopic simulator if no re-calibration is performed on the MFD and
the average trip length. On the other hand, the steady state is properly estimated
when the two components of the model are fully re-calibrated. This demonstrates how
sensitive the reservoir model is to local changes in demand distribution, which requires
re-calibration. Figure 8(a) shows that the improvements gained by re-calibrating the
trip length only are much better than re-calibrating the MFD only for this case. This
suggests that the average trip length is indeed a key parameter that should be updated
as soon as the mobility pattern changes in the reservoir. This can be seen in Figure 6(a),
where Lsimul varies greatly with respect to a1, whereas the free-flow part of the MFD
is not really influenced by a1; see also Figure 5(a). The opposite observation can be
made for the congested case; see Figure 8(b). The main improvement comes from the
MFD calibration. This can be explained when looking at Figure 5(a) and 6(a). The
trip length is less sensitive than the MFD to a1 for congested situations. A synthesis
of the improvements due to the different possible calibration methods is presented in
Table 2.

Table 1. The four calibration cases for the MFD model

Calibration case no calibration MFD calibration L calibration both calibrations

MFD used MFD (a1 = 0) MFD (a1) MFD (a1 = 0) MFD (a1)

Trip length used LMFD(a1 = 0) LMFD(a1 = 0) Lsimul(a1) Lsimul(a1)
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Figure 8. Comparison between the mesoscopic and the MFD-based framework when a1 = 0.8 and a2 = 0 –

SC1. Different calibrations are considered for the MFD-based model: MFD and/or mean trip length calibrated
from data corresponding to a1 = 0 or a1 = 0.8. (a) Evolution of accumulation n(t) in free-flow, and (b) evolution

of accumulation n(t) in congested conditions
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It should be noted that the relative error on the steady state accumulation pre-
dicted by the reservoir model can be directly calculated for a given MFD, L and the
boundary conditions

(
QD

in;QS
out

)
. In fact, the steady state related to equation 1 can be

analytically determined without resorting to simulation. We use equation 2 to estimate
the error propagation in the reservoir model. Assuming that there is an absolute error
∆P on the steady state production P and an absolute error ∆L on the average trip
length L, the absolute error ∆O on the steady state outflow O is:

∆O =
1

L
∆P − O

L
∆L (7)

This error is related to the absolute error ∆n on the steady state accumulation n
via the derivative O′(n) of the outflow function, which satisfies |O′(n)| = ∆O/∆n in
the first approximation. Then, for the free-flow situations, we can neglect ∆P and
estimate ∆L at 100 m by referring to Figures 5(a) and 6(a). In free-flow steady state,
the outflow value should be O = QD

in = 1.2 veh/s, and the value of L corresponds to
Lsimul = 515 m given by the mesoscopic simulation, see Figure 6(a). The derivative
O′(n) = P ′(n)/L = 0.012 s−1 is determined from the MFD plot for n = nmeso =
66 veh in Figure 5(a). As a result, the relative error ∆n/nmeso from the mesoscopic
approach can be roughly estimated at 30%, which corresponds quite well to the error
given in Table 2 when the MFD-based model is not re-calibrated. Similarly, for the
congested situation, we can estimate ∆P = 230 veh.m/s for n = nmeso = 232 veh, and
neglect ∆L. We obtain L = Lsimul = 370 m in Figure 6(a) and |O′(n)| = 0.016 veh/s
in Figure 5(a). Thus, the relative error ∆n/nmeso is estimated at 16%, which again
provides a good prediction of the error given in Table 2 for congestion situations and
the initial MFD-based model setting.

Table 2. Comparison of accumulation values in steady state between the mesoscopic and the MFD-based

approaches for scenario SC1 (a1 = 0.8 and a2 = 0). Lowest errors are indicated in bold face

value mesoscopic
MFD-based

no calibration MFD calibration L calibration both calibrations

n (free-flow) [veh] 66 44 46 58 63

error from meso [%] 0 33 29 12 4

n (congestion) [veh] 232 264 220 269 225

error from meso [%] 0 14 5 16 3

We now present the evolution of MFD-based errors for different heterogeneity co-
efficients varying from a1 = 0 to 0.8 when a2 = 0. The same free-flow and congested
situations are studied, as described in section 3.2.1. The relative errors are calculated
for the steady state accumulation, and now also for the outflow. Note that the inflows
and outflows have the same values in steady-state. The steady state outflow is esti-
mated by calculating the mean slope of the exit count curve Nout(t) over the analysis
period [1000; 5000 s].

Figure 9 shows the relative errors in the MFD model in comparison with the meso-
scopic one. It can be seen clearly that the higher the heterogeneity coefficient is, the
higher the relative error. These results above all confirm that an accurate estimation
of the mean trip length is essential in free-flow to obtain good simulation results from
the MFD-based approach; see Figure 9(a). On the contrary, re-calibrating the MFD
shape is crucial during congestion, see Figure 9(b). If the MFD shape and the mean
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trip length are not re-calibrated when the demand or supply distribution changes
at the reservoir boundaries, simulation errors up to 30% can be observed. When re-
calibration is performed for these two key elements, the errors fall below 5% for all
levels of heterogeneity.

Figures 9(c) and (d) show very different patterns when considering outflow errors.
They appear to be independent of the calibration methods. This is because the total
flow in steady state is completely defined by the global demand QD

in in free-flow,
and the global supply QS

out in congestion. Thus we would have expected a perfect
estimation of the in- and outflows in steady state using the MFD-based approach
whatever the calibration method applied. However, some small discrepancies (around
or less than 5%) can still be observed in Figures 9(c) and (d). These are due to
numerical approximations in the mesoscopic framework as the outflows are discretized
in vehicle units.
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Figure 9. Relative comparison of the MFD-based and the mesoscopic simulation results for SC1 (a2 = 0).
(a) Relative errors for steady state accumulation n for different heterogeneity levels, in free-flow and (b) in

congestion. (c) Relative errors for steady state outflow Qout for different heterogeneity levels, in free-flow and

(d) in congestion.

3.2.3. Comparison between mesoscopic and MFD-based approaches for
homogeneous demand and heterogeneous supply loadings – scenario SC2

We now focus on free-flow and congested network loadings with homogeneous demand
distribution a1 = 0 and heterogeneous supply distributions a2 = 0.6, i.e. scenario
SC2. The total demand and supply values are the same as in section 3.2.2. As in the
previous section, mesoscopic and MFD-based simulation results are compared when
the MFD and the mean trip length are re-calibrated or not with respect to the fully
homogeneous case a1 = 0 and a2 = 0.

Figure 10 presents the evolution of accumulation for the mesoscopic and the MFD-
based simulations with the four calibration cases. Figure 10(a) shows the results in
the free-flow situation. It appears that the different calibration methods have no effect
on the MFD-based simulation outputs, and that the steady state accumulation is
rather well estimated in this case. This is not surprising because heterogeneous supply
distributions only affect network loadings when exits act as bottlenecks, which is not
the case in free-flow. This is confirmed by Figures 5(b) and 6(b), where neither the
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free-flow part of the MFD nor the estimated average trip length in free-flow depend
on the heterogeneity coefficient a2. The results are different in the congested situation;
see Figure 10(b). The same conclusions are observed as in scenario SC1: re-calibrating
the MFD allows reducing the error when estimating the steady state accumulation.
The re-calibration of the average trip length has little impact in this case. This can be
explained by the differences observed between cases a2 = 0 and a2 = 0.6 in Figure 5(b)
for the MFD, and in Figure 6(b) for the mean trip length. A synthesis of the errors in
steady state for SC2 is proposed in Table 3.
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Figure 10. Comparison between the mesoscopic and the MFD-based approaches for SC2 (a1 = 0 and a2 =

0.6). (a) Evolution of accumulation n(t) in free-flow, and (b) evolution of accumulation n(t) in congestion

Table 3. Comparison of accumulation values in steady state between the mesoscopic and the MFD-based

frameworks for scenario SC2 (a1 = 0 and a2 = 0.6). Lowest errors are indicated in bold face

value mesoscopic
MFD-based

no calibration MFD calibration L calibration both calibrations

n (free-flow) [veh] 49 43 44 45 46

error from meso [%] 0 11 10 8 7

n (congestion) [veh] 223 264 209 275 216

error from meso [%] 0 18 6 23 3

As in section 3.2.2, we now present the evolution of MFD-based errors for different
heterogeneity coefficients varying from a2 = 0 to 0.6 when a1 = 0.

Figure 11 shows the relative errors in the MFD model in comparison with the
mesoscopic one. The trends oppose each other as in scenario SC1 when considering free-
flow and congested situations. In congestion, errors may increase up to 30% and almost
vanish when proper calibrations of both MFD and mean trip length are performed;
see Figure 11(b). In free-flow, Figure 11(a) shows that there is almost no observable
error because the heterogeneous supply distribution has no impact in this case.

As in SC1, almost no errors are observed for the outflow in free-flow conditions, see
Figure 11(c). This is no longer the case for congestion as huge errors that increase
with the heterogeneity coefficient (almost up to 150%) are observed in Figure 11(d).
The phenomena behind this unexpected result will be described extensively in the
next section. In brief, discrepancies between the mesoscopic and the MFD models
can be explained by congestion patterns that propagate within the reservoir in the
mesoscopic simulation. The total outflow Qout from the network falls below the global
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supply limitation QS
out in the mesoscopic outputs, while Qout remains exactly equal

to QS
out in the MFD-based approach. The mesoscopic simulator is able to account

for congestion spillbacks between internal intersections that induce flow reduction at
several local exits. This phenomenon is not reproduced by the MFD-based approach
as the perimeter flow is always considered as uniform. In fact, this phenomenon also
influences the accumulation values in steady states, but this is hardly visible in Fig-
ure 11(b) as the differences in accumulation are relatively small for severe congestion.
Moreover, the range of accumulation errors is of the same magnitude as the variability
of the n(t) outputs from the mesoscopic simulation. Unlike in SC1, this shows that,
while being sufficient to accurately estimate the mean steady state accumulation, the
proper calibration of the reservoir model (MFD shape and mean trip length) cannot
ensure a good estimation of steady state flow in congestion.
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Figure 11. Relative comparison of the MFD-based and the mesoscopic simulation results for SC2 (a1 = 0).

(a) Relative errors for steady state accumulation n for different heterogeneity levels, in free-flow and (b) in

congestion. (c) Relative errors for steady state outflow Qout for different heterogeneity levels, in free-flow and
(d) in congestion.

3.2.4. Studying drops in total outflow due to internal congestion patterns

This section investigates in detail the congestion patterns that appear within the reser-
voir when using the mescoscopic simulator. We notably aim to propose a correction
method capable of reducing the discrepancies observed in the outflow for the MFD
simulation and that cannot be improved by simply re-calibrating the MFD or the trip
length.

Let us now focus on the evolution of the global outflow Qout(t) given by the meso-
scopic simulator for different supply values at the exits. Both scenarios SC1 and SC2
are studied. Figure 12 shows the simulation results when the total demand QD

in is equal
to 3 veh/s and QS

out = 0.6 to 6 veh/s. Figure 12(a) shows the results for SC1, and
Figure 12(b) the results for SC2. In these figures, one point corresponds to the steady
state global outflow Qout obtained in the mesoscopic simulation for a given global
supply QS

out. Two reference lines have been added to the graphs: the MFD capacity
(maximum outflow) obtained with homogeneous boundary conditions (SC0) and the
first bisector that corresponds to total outflow equal to the total supply. Two very
distinct situations are observed for scenarios SC1 and SC2. For SC1, the steady state
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outflow matches either the network capacity (gray area in the graph) or the available
total supply QS

out. It should be recalled that the network capacity depends on the het-
erogeneity coefficient a1 in SC1, see Figure 5(a). For SC2, the total outflow starts to
decrease well before the supply becomes a constraint at the aggregated level. Further-
more, the difference between the total outflow and the available total supply increases
with the level of heterogeneity. As already mentioned, this is the result of internal and
local congestion patterns with spillbacks between intersections that reduce the local
outflows even below the available local capacity.
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Figure 12. Steady state total outflow versus total supply in the mesoscopic framework. (a) Results for scenario

SC1 (heterogeneous demand distribution), and (b) scenario SC2 (heterogeneous supply distribution).

A simulation example including internal congestion patterns that leads to a drop
in outflow is presented in Figure 13. The N -curves corresponds to scenario SC2 with
a2 = 0.6. In the MFD-based modeling it can be seen that the steady state outflow
corresponding to the N -curve slopes is QS

out = 0.6 veh/s. However, the total outflow
starts decreasing after t = 1500 s in the mesoscopic simulator, and then stabilizes to a
value of almost half of the total supply. This can be explained as follows. At the link
level, due to heterogeneity in supply distribution, only a small fraction of vehicles can
exit through D2; see Figure 2(c). This makes the route O2-D2 increasingly congested.
Before the congestion propagates through the whole route, the outflow still corresponds
to the maximum flow allowed for each exit. This is the situation at time t1 for instance,
for which the network state (density in each link) is described in figure 13(b). However,
after a certain time (around 1500 s) route O2-D2 becomes fully congested. This makes
all the users go to destinations other than D2, but travel on at least one link of the
arterial O2-D2, thus exiting the network at a lower rate. As a result, the other exits
D1 and D3 to D6 do not function at full capacity; see time t2 in Figure 13(c). As a
result, the total steady state outflow is below the sum of all the exit capacities.

We further analyze this internal congestion pattern to implement a possible correc-
tion in the MFD-based model. We observe that such a pattern is actually characterized
by two parameters: the time Tc at which a slope break appears in Nout(t), and the new
value of the slope, i.e. the effective global outflow Qeff

out, see figure 14(c). Note that this
new value defines the steady-state situation. Several simulations were run in scenario
SC2 with a2 = 0 to 0.9 and QS

out = 0.6 to 3 veh/s to study the evolution of these
two parameters. The results are presented in Figure 14(a) for Tc and Figure 14(b) for
Qeff

out. The results for Tc are only given for QS
out lower than 1.2 veh/s. This is because as

the supply value increases, the drop in the total outflow occurs near t = 0 during the
warm-up period, before the first equilibrium state has been reached. Thus for QS

out >
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Figure 13. An example of outflow drop due to a local internal congestion pattern in the mesoscopic framework

– SC2 with a2 = 0.6. (a) N -curves calculated by the mesoscopic and the MFD-based approaches, (b) traffic

states at the link-level (density on each link calculated with the mesoscopic simulator, the black color meaning
null density) at time t1, and (c) at time t2.

1.2 veh/s we can consider that Tc is equal to 0.
When a drop in outflow is actually observed, we find that the two parameters Tc and

Qeff
out may be well approximated by a bilinear function of the heterogeneity coefficient

a2 and the global supply QS
out:

Tc
(
a2, Q

S
out

)
=

{(
αtQ

S
out + βt

)
a2 + γtQ

S
out + δt if a2 ≥ 0.2 and QS

out ≤ 1.2 veh/s

0 otherwise

(8)

Qeff
out

(
a2, Q

S
out

)
=
(
αqQ

S
out + βq

)
a2 + γqQ

S
out + δq (9)

where αt = 1.8×103 veh−1.s2, βt = -4.2×103 s, γt = -2.1×103 veh−1.s2, βt = 4.9×103

s, αq = -1.1, βq = 0.071 veh/s, γq = 1.1, and δq = -0.051 veh/s. Note that the fit for
Qeff

out is still consistent when a2 = 0 (scenario SC0), as the bilinear function gives Qeff
out

almost equal to QS
out.

As we now have a complete description of the effect of the congestion pattern on
outflow, it is easy to implement a correction method in the MFD-based model to
account for the outflow limitation Qeff

out

(
a2, Q

S
out

)
after the time Tc

(
a2, Q

S
out

)
. The

result of this correction method is presented in Figure 14(d) for the same example we
analyzed in Figure 13(a). It shows that the correction method greatly improves the
MFD-based results compared to Figure 13(a).
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4. Discussion

In this study, we compared steady state simulation results for an MFD-based model
and a mesoscopic model when considering a simple network. The MFD-based model
describes traffic states at the aggregated (reservoir) level, while the mesoscopic tool
provides a complete description of traffic dynamics at the link level inside the reser-
voir. The purpose of such a comparison was to test the robustness of the aggregated
approach to different heterogeneous loadings at the network perimeter. Two heteroge-
neous scenarios were considered. SC1 assumes a heterogeneous demand distribution at
the network entries, while the supply distribution is homogeneous. The reverse case,
i.e. SC2, considers a heterogeneous supply distribution at the network exits, while the
demand distribution is homogeneous. The results on the network studied showed that
heterogeneity coefficients a1 and a2 have a strong impact on its MFD shape and its
average trip length. While such impacts may not be universally expected for other
network configurations, we showed that the proper calibration of these two crucial
features of the MFD-based approach is essential to avoid errors (up to 30% in our case
study) when predicting steady traffic states.

More interestingly and more generally, we highlighted a major difference between
the two scenarios. In SC1, a proper re-calibration of the MFD and the mean trip length
allows reducing the prediction errors completely (down to 5%). However, in SC2, the
appearance of internal congestion patterns including spillbacks between intersections
close to the reservoir perimeter makes the re-calibration almost inefficient. In this
case, the MFD-based model fails to reproduce the network’s internal dynamics. In
particular, we noticed significant drops in the total outflow in the mesoscopic outputs
that were not reproduced by the MFD-based approach. Analyzing congestion patterns
with spillbacks using the mesoscopic simulator makes it possible to propose a correction
method to account for the outflow drop in the MFD-based model.

With our simple configuration, it should be kept in mind that the congestion ob-
served with highly heterogeneous supply values is emphasized by the constraints of
our simple network, i.e. the users are forced to exit through a specific link. In a con-
text of a multi-reservoir system, a dense and well-connected grid network would offer
several re-routing options to avoid local congestion at the exit border of a reservoir.
If such a border has many connections to the downstream reservoirs, the spillbacks
and resulting outflow drops observed may be less severe in reality. Nevertheless, sparse
connectivity between reservoirs is very likely to be observed in European type cities,
in the case of bridges or major arterials that connect different urban areas. In such
a configuration, the users are forced to exit through a specific connection point in
their trip, unless major re-routing is imposed. Our study is specifically intended to
question the robustness of MFD-based simulation when the capacities of such critical
connection points are heterogeneously distributed along the reservoir border.

4.1. Study of a bigger network

As one of the most critical limitation of the present work is the relatively small size
of the network, and thus the lack of redundancy and routing options, we provide
additional results for a bigger grid network with the same kind of configuration, see
Figure 15. This new topology consists of a 6×6 one-way Manhattan network with
West-East links more than twice as long as North-South ones. The same scenarios
SC1 and SC2 have been applied to this network. Figure 16 shows clearly that the
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various boundary settings significantly influence the MFD shape. Nevertheless, a lesser
influence on the trip length is noticed in this case of a more redundant network: the
order of magnitude of its variations in free-flow is only around 7% for SC1.
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Figure 16. (a) Network MFD for different coefficients a1 in SC1 and (b) for different a2 in SC2; (c) vehicle

average trip length for different coefficients a1 in SC1 and (d) for different a2 in SC2

The relative errors in the MFD model compared with the mesoscopic simulations
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are presented in Figure 17 for SC1 and in Figure 18 for SC2. Regarding the steady
state accumulation, both figures show that the errors can be reduced to acceptable
values once the MFD and the trip length are well calibrated. Similar conclusions
are found with this new network in free-flow, i.e. re-calibrating the trip length only
improves the MFD simulation results much more than re-calibrating the MFD only.
Regarding the steady state outflow, we observed huge errors for congested situations
in both scenarios. In SC2, these errors can be explained by outflow drop phenomena,
similar to what we observed in the 2×4 network, as Figure 19(b) suggests. However,
the major difference with this 6×6 network is the significant error (more than 20%) in
outflow made for the homogeneous case (a1 = a2 = 0). This is also due to an outflow
drop, independent of the heterogeneity coefficient, as presented in Figure 19(a). This
means that even homogeneous loadings can trigger internal congestion patterns in this
bigger network. Such an outflow drop phenomenon was in fact impossible to present
with our smaller network. While this new mechanism should be further investigated,
a simple outflow correction method can still be implemented in the reservoir MFD
model to account for it. Note that such a correction does not depend on the boundary
settings in SC1, therefore the total effective outflow Qout eff can be estimated one for
all as shown in figure 19(a), and then implemented in the MFD model to modify the
outflow Qout during congestion. This is completely different from the heterogeneous
supply case (SC2), where the correction method we propose actually depends on the
boundary settings, see section 3.2.4.
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Figure 17. Relative comparison of the MFD-based and the mesoscopic simulation results for SC1 (a2 = 0).

(a) Relative errors for steady state accumulation n for different heterogeneity levels in free-flow and (b) in

congestion. (c) Relative errors for steady state outflow Qout for different heterogeneity levels in free-flow and
(d) in congestion.

4.2. General conclusion

While being specific to the kind of grid networks studied here, the results of this paper
permit highlighting possible shortcomings in MFD-based simulation due to heteroge-
neous link-level settings at reservoir boundaries. In particular, this paper clearly shows
that unlike the hypothesis made in the seminal paper on MFD, the OD matrix and
the flow distribution between local entries and exits may matter when studying traffic
dynamics at the network level. Large changes for these elements are likely to require
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Figure 19. (a) Total effective outflow vs total exit supply for different coefficients a1 in SC1 and (b) for

different a2 in SC2

re-calibrating both the MFD and the mean trip length, especially for irregular and
asymmetrical networks. In practice, this is critical for applications based on the MFD
like perimeter control, where the re-calibration should then be done on a regular time
basis to account for changes in OD patterns. In further studies, it would be inter-
esting to investigate the time scale of the re-calibrations, i.e. how often we should
re-calibrate, and if both time scales for MFD and trip length are similar or not. One
may still argue that the re-calibration could be avoided when directly integrating a
level of uncertainty in the MFD, as this concept is notably studied in Gao and Gayah
(2018) and in the robust control strategy from Haddad and Shraiber (2014). Neverthe-
less, our conclusions show that in some cases, even an accurate calibration may not be
sufficient to reproduce the network dynamics well with the MFD-based model. More
detailed knowledge of local capacity at exits, meaning a more detailed description of
how congestion propagates from the links connected with the reservoir neighborhood,
is required to catch the outflow drops that may occur. Note that this crucial issue has
not been addressed when studying multi-reservoir systems (Yildirimoglu, Ramezani,
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and Geroliminis 2015) and thus will need further research. Interestingly, we showed
that a simple correction method based on network observations in different configura-
tions may be sufficient to update MFD-based simulation outputs.

Further research is needed to study the propagation of simulation errors in multi-
reservoir systems to guaranty that such an approach can be a valid option for sim-
ulating large-scale urban areas and making traffic predictions. Efficient methods for
re-calibrating the model in real time should also be investigated.
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