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Abstract. Excitation-energy transfer in multichromophoric as-
semblies is often pictured in terms of excitonic models whereby the
underlying diabatic states correlate with the ground (acceptor) and
excited (donnor) electronic states of well-defined separated frag-
ments. Poly(phenylene ethynylene) dendrimers also exhibit ultrafast
unidirectional excitation-energy transfer; however, the definition of
the fragments is no longer straightforward, as adjacent chromophores
share a common meta-substituted phenylene ring, which cannot be
viewed as a spectator bridge from an electronic perspective. Here,
we show how a pseudofragmentation scheme can be used to define
the relevant diabatic representation, provided the interacting sites
are based on orbital subsets rather than atomic clusters. This is
illustrated with the smallest meta-substituted oligomer, for which
we characterised a conical intersection responsible of nonadiabatic
internal conversion between the first two excited electronic states,
consistent with a diabatic picture based on para-conjugated pseud-
ofragments sharing a ring.
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1 Introduction

A crucial aspect for any study involving so-called grid-based quantum dynamics
is the availability – hence, the actual production in a preliminary stage – of a
potential-energy surface (PES), given as an analytic, high-dimensional function
of the nuclear coordinates. In the context of nonadiabatic dynamics, beyond the
Born-Oppenheimer approximation, the electronic Hamiltonian for the subset of
coupled electronic states is not reduced to a single of its eigenvalues, but rather
expressed as a matrix, most often in a diabatic representation, with potential
energies on the diagonal part and potential couplings on the off-diagonal part.

As opposed to what occurs for the adiabatic representation, the values of
the diabatic matrix elements on the relevant set of molecular geometries are
not computed directly from quantum-chemistry calculations and first depend
on a nontrivial adiabatic-to-diabatic transformation, called diabatisation, of the
quantum-chemistry data as a prerequisite. A review on this topic is out of
the scope of the present work. Let us mention perhaps one of the most stan-
dard procedures in this context, resorting to what is known as a “diabatisation
by ansatz”, namely, the vibronic-coupling Hamiltonian model developed in the
1980s by Köppel et al., which has been used since then with great success in
numerous quantum-dynamics simulations [1, 2].

By definition, diabatic states preserve their character (electronic distribu-
tion; in particular bonding pattern) when the molecular geometry changes. In
molecular systems baring a single chromophore, such states will often be labelled
according to dominant electronic configurations (e.g., nπ∗ or ππ∗, as in pyrazine
[3]) or to the change in the electronic distribution with respect to the ground
state (e.g., charge transfer (CT) or locally excited (LE), as in aminobenzonitrile
[4]).

Although seemingly more complex, systems made of several weakly inter-
acting chromophores, such as supramolecular light-harvesting antennae, yield
diabatic states that are somewhat more obvious to define, as they correspond
to local excitations that involve only one specific site at a time. In this context,
excitation-energy transfer (EET) [5] if often pictured in terms of local excitonic
models whereby each elementary act occurs from a donor site in its excited state
to an neighbouring acceptor site in its ground state. The underlying states are
essentially diabatic and correlate with the ground and excited electronic states of
well-defined separated fragments. This is for example the basis for the fragment
excitation difference (FED) scheme aimed at addressing EET in this context
[6, 7].

In other words, EET among diabatic states can be regarded as a nonadiabatic
process. Accounting for the motion of the nuclei means that EET essentially
boils down to internal conversion, likely to occur around conical intersections
or weakly avoided crossings among locally excited (LE) states within the whole
system.

In much the same way, poly(phenylene ethynylene) (PPE) dendrimers ex-
hibit ultrafast unidirectional EET through LE states. These are tree-like, hyper-
branched multichromophoric macromolecules, designed to mimic natural photo-
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synthesis artificially. The most famous one is called the nanostar and was first
synthesised by J. S. Moore et al. in 1994 [8].

Dendrimers present a huge potential in the context of organic nano-optoelectronics
[9, 10]. They are made of building blocks of increasing length from the pe-
riphery to the core, which yields an excitation-energy gradient responsible of
unidirectional energy transduction along several, converging branched path-
ways, inducing fluorescence-efficiency enhancement of the fluorophore at the
core [11, 12, 13, 14].

Much effort has been made over the last thirty years to unravel the mech-
anisms governing the behaviour of PPEs on the atomistic scale. First insights
into the electronic structure of PPEs were provided by steady-state spectroscopy
experiments [12, 15]. These established that the absorption spectrum of the
nanostar is almost additive and dominated by individual contributions of ππ∗

LE states on linear para-conjugated building blocks. This was later confirmed by
other experimental and theoretical studies on various types of PPE dendrimer
subunits; see e.g. Refs. [16, 17, 18, 19, 20, 21, 22] and references therein.

However, the definition of the coupled fragments in PPE dendrimers is no
longer straightforward, since adjacent chromophores share a common meta-
substituted phenylene, which cannot be viewed as a spectator bridge [23]. Here,
we show that a pseudofragmentation scheme is able to generate the relevant
diabatic representation, provided the definition of the sites is based on or-
bital subsets rather than atomic clusters. This is illustrated with the smallest
meta-substituted oligomer, meta-diphenylethynylphenylene, for which we char-
acterised a conical intersection likely to be responsible of ultrafast and efficient
internal conversion between the first two excited electronic states.

The energy landscapes of the first two excited electronic states are first
described, including minima, transition states, and a minimum-energy conical
intersection. A discussion of the relevant molecular orbitals in then provided,
setting the foundations for a description of the adiabatic states in terms of
diabatic states corresponding to pseudofragments sharing a common ring.
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2 Computational Details

All calculations were performed with the Gaussian16 package (revision A03) [24]
using DFT (ground states) and TD-DFT (excited states) at the CAM-B3LYP/6-
31+G* level of theory, the validity of which having been already assessed in a
previous work [25] on para-conjugated PPE oligomers with two, three, and four
rings, yielding vibronic absorption spectra in excellent agreement with exper-
iments (DFT: density-functional theory; TD-DFT: time-dependent DFT, i.e,
first-order linear-response DFT). LE states (the focus of the present work) in
meta-substituted oligomers are thus expected to be described adequately at
this level of theory. However, states with large CT contributions may be over-
stabilised, which is well known, and their energies should be considered with
caution, as for example pointed out in this context in Ref. [26].

Minima and transition states were obtained and characterised with analytic
first- and second-derivative calculations in the ground and excited electronic
states. The minimum-energy conical intersection within the C2v subspace was
obtained upon minimising the gradient average, projected out of the gradient
difference. Both are totally symmetric, while the derivative coupling here is
not; we did not look for broken-symmetry conical intersections, as the energy
landscape in the vicinity of the C2v minimum-energy conical intersection seems
to indicate that this is the lowest-energy crossing point. The branching-space
vectors of the minimum-energy conical intersection (directions of first-order de-
generacy lifting) are the (halved) gradient difference (obtained directly from the
two gradients) and the derivative coupling at this point. The latter was gener-
ated from a two-Hessian-based, “wavefunction free”, procedure, detailed in Ref.
[27]. Molecular orbitals displayed in the following are canonical Kohn-Sham
DFT orbitals (0.02 a.u. isovalue surface plots). The Cartesian coordinates of
all critical points discussed below are provided in Supplementary Information.

For the C2v point group of symmetry, we used Mulliken’s convention, so that
z (A1) is the C2 rotation axis, y (B2) lies within the molecular plane (left-
right direction), and x (B1) is orthogonal to it (up-down direction). Only in-
plane deformations were considered, and the Cs point group of lower symmetry
mentioned below corresponds to mirror symmetry with respect to the molecular
plane (A1 and B2 both become A′).
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3 Results and Discussion

3.1 Multistate Energy Landscape

Here, we characterise the energy landscape corresponding to the first and second
excited singlet electronic states, S1 and S2, of the meta-diphenylethynylphenylene
species, denoted m22 from now on. In particular, we show how the symmetry
breaking at the S1 equilibrium geometry, and subsequent electronic localisation
on either one of the two equivalent sides, is consistent with the presence of a
conical intersection between S1 and S2.

The m22 species belongs to the C2v point group of symmetry at the S0 equi-
librium geometry, minS0 ; see Figure 1. The values of the internal coordinates
are almost identical to those of the 2-ring linear species (diphenylethynylene,
also known as diphenylacetylene or tolane, further on denoted p2) in its ground
electronic state, as illustrated for the bond lengths in Table 1, exhibiting a typ-
ical alternation of single-triple-single CC bonds between rings. Note that the
small differences for the central phenylene ring indicate that it behaves as if it
had been rotated through ±60◦ to account for symmetrical meta-substitution.

At this geometry, also called Franck-Condon (FC) point, the S1 and S2 states
are almost degenerate: the corresponding vertical transition energies are 4.43
and 4.47 eV, respectively. The S0 state is 11A1, the S1 state 11B2 (bright; oscil-
lator strength: 1.707), and the S2 state 21A1 (bright; oscillator strength: 0.367).
Further details on the electronic structure will be given below, in Sec. 3.3. S1

and S2 can be identified to two diabatic states, determined by symmetry, thus
noninteracting over the whole C2v subspace. We will show later on that these
delocalised diabatic states can be recast as the normalised sum and difference
of two localised diabatic states. The latter two both involve local excitations of
either the “left” or “right” p2 subunits contained within m22. In addition, we
will rationalise how these can be understood in terms of a pseudofragmentation
scheme, whereby the pseudofragments share the meta-substituted central ring.

The two excited states cross within the C2v subspace. The minimum-energy
conical intersection within this subspace, denoted CoInS2/S1

, occurs at 4.29 eV
above the S0 minimum (see Figure 6). It is lower in energy than the FC point in
S2, and thus potentially accessible (see Table 1). Two transition states in the S1

PES lye on either side of the conical intersection, each behaving as an apparent
minimum within the C2v subspace. One corresponds to 11B2 at 4.25 eV (same
side as the FC point), the other to 21A1 at 4.29 eV (beyond the crossing). They
will further be denoted TSB2

and TSA1
, respectively (see Table 1). The TSA1

point is almost identical to the CoInS2/S1
point. More precisely, CoInS2/S1

is
essentially the same as the crossing point occurring along the interpolation path
in internal coordinates between TSB2 and TSA1 , near TSA1 (see below) where
the gradient average, projected out of the gradient difference, is already small
before further optimisation.

Owing to the respective PES topographies, the CoInS2/S1
point also occur

to play the role of the actual minimum (conical, but not stationary, due to
the two-dimensional cusp) of the S2 PES. The gradient difference calculated
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at the conical intersection essentially corresponds to the direction connecting
TSA1 on one side to TSB2 on the other side. As will be shown soon, the
derivative coupling is essentially the direction leading to the pair of equivalent
lower-symmetry S1 minima.

The main difference between the geometry of TSB2
and TSA1

is localised
on the central ring, in particular the length of its quinoidal bonds, which is
shorter for TSB2 (see Table 1). They can be represented in terms of Lewis
structures as a biradical quinoidal ring (Dewar-benzene bonding) for TSB2

, and
a combination of two single-bond-linked allyl radicals in TSA1

; see Figure 2.
This agrees with the topologies of the relevant near-frontier orbitals (see Sec.
3.2).

The transition vector (unstable mode) of each transition state is of B2 sym-
metry (in-plane, left-right symmetry breaking). Both are displayed in Figure 3.
They directly connect the two mirror-image S1 minima of Cs symmetry on both
sides of the S1 unstable ridge, further denoted minS1

and min′S1
(see Figure 1

and Table 1). At each of these two equivalent minima, the system shows an
alternation of single-triple-single CC bonds on one side (similar to a ground-
state p2 moeity) and a cumulenic (double-double-double) bonding scheme on
the other one, typical of an excited-state p2 moiety (see Figure 1 and Table
1). In other words, such geometries reflect two equivalent local excitations, on
either one or the other p2 pseudofragment sharing the same meta-substituted
central ring.

Energy pathways, obtained as linear interpolations in internal coordinates,
between the aforementioned points are shown in Figure 5. They are smooth,
nearly harmonic, energy curves, which confirms that the relevant “anchor points”
of the two-state energy landscape have all extensively been identified within the
operational energy window accessible from the FC point. By this, we mean that
the representative topographies, governed by local-curvature variations, of the
S2 and S1 PESs, are fully determined by the presence of both TSB2 and TSA1

on the same higher-symmetry ridge within the C2v subspace. Each occurs on
either side of the minimum-energy CoInS2/S1

point, and both are connected –
directly – downhill to either minS1

or min′S1
, which are mirror-image minima

(Cs symmetry). This ideal picture was confirmed quantitatively with steepest-
descent paths originated from the FC point. First, minimising the S2 energy
from the FC point directly leads to the CoInS2/S1

point. Second, the intrinsic-
reaction coordinate started along the S2 gradient also goes directly to the TSA1

point via the CoInS2/S1
crossing. It further continues on S1 to one of the two

broken-symmetry minima. A more detailed analysis of the deactivation mecha-
nism awaits quantum-dynamics simulations, which will be addressed in a future
work.

When approaching either one of the two S1 minima, one can notice a weakly
avoided crossing between S2 and S3 (around 4.6 eV), which is expected to be
of little consequence on the photodynamics, once the system has escaped the
original region of near-crossing between S2 and S1 (especially owing to the fact
that it lies higher in energy than the FC point on S2, at about 4.5 eV).

In principle, initial excitation will populate preferentially S1, given its larger
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oscillator strength. However, we are specifically interested here in the evolution
of the part of the system starting from S2, as a prototype of nonadiabatic energy
transfer in dendrimers. A schematic sketch of the plausible deactivation pathway
from S2 to S1 is displayed with arrows in Figure 5. After excitation to the S2

state at the FC point, the system will descend along a very narrow trench in the
S2 state towards the region around the minimum-energy conical intersection,
which is expected to act as an efficient “kitchen sink” to the S1 state. As
the energy difference is low all along this pathway, quantum or semiclassical
dynamics should predict large and early population transfer. In fact, this case
is quite exceptional, as the energy difference is significantly small – < 0.1 eV
– already from the original FC point, and a semiclassical description such as
surface hopping may be at risk regarding the relevance of a supposedly high
hopping repetition rate to be damped by a fewest-switch scheme.

Once in the region near the conical intersection at the bottom of the S2

PES, the system can branch to two sides when keeping C2v symmetry: turning
slightly aside to the TSB2

region on the same side of the crossing, whereby the
energy difference will increase as much as possible, thus separating efficienlty
the S1 wavepacket component from the original S2 one, or keeping to the TSA1

region, on the other side but not far from the crossing region, which is likely
to act as a turning point and send the system back again to the original side
for further crossings. In any case, it must be understood that the S1 PES
in this region essentially corresponds to a very narrow unstable ridge. The
adiabatic wavepacket component on S2 should thus spread strongly and early on
because it lives in a very narrow trench; correlatively, the wavepacket component
transferred from S2 to S1 will land on a very steep ridge, and is expected to also
keep spreading very fast on S1, so as to reach broken-symmetry regions typical
of the S1 minimum in a short time. In other words, the nonadiabatic coupling
between S2 and S1 is expected to be exceptionnally strong and efficient. The
present case is typically far from a Born-Oppenheimer situation, which makes
the adiabatic Born-Oppenheimer representation almost inadequate (in other
words, the two electronic states are too close in energy).

The surroudings of the conical intersection within the branching space are
displayed in Figure 6 (S2 and S1 energies along the plane spanned by the gra-
dient difference and derivative coupling). Geometric relaxation is obviously not
fully achieved for the TSB2 and TSA1 points, or for the minS1 and min′S1

ones,
within this subspace, but the energy landscape is representative of the S2 and
S1 PES topographies: the conical intersection is the actual S2 minimum; there
are two S1 transition states along the gradient difference (one on each side of
the conical intersection) connecting two equivalent S1 minima on both sides,
along the derivative coupling.
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Figure 1: S0 (bottom) and S1 (top) equilibrium geometries of m22 (right) and
p2 (left). Representative bonds are labelled according to bond lengths given in
Table 1. The typical bonding schemes (S0 alternated, bottom; S1 cumulenic,
top) of p2 are also indicated for reference.

aa ab bb bq E0 E1 E2 E3

p2 S0 min 1.210 1.431 1.389 0 4.48
p2 S1 min 1.255 1.374 1.377 0.32 4.14
m2 minS0

1.210 1.431 1.389 1.402 0 4.43 4.47 4.61
m2 minS1

/min′S1
1.210/1.254 1.429/1.374 1.389/1.377 1.415/1.438 0.32 4.12 4.66 4.74

m2 TSB2 1.233 1.396 1.381 1.419 0.18 4.25 4.33 4.52
m2 TSA1

1.229 1.405 1.384 1.447 0.19 4.29 4.30 4.53
m2 CoInS2/S1

1.230 1.404 1.384 1.444 0.19 4.29* 4.29* 4.52

Table 1: Selection of representative bond lengths (in Å) and corresponding
energies (in eV) of the first four electronic states of m22 at the five critical
points discussed in the main text. Similar quantities are provided for the S0

and S1 minima of p2 for comparison. Absolute energies at both S0 minima:
-846.19837 hartree (m22); -539.15684 hartree (p2). * The energy difference at
the S2/S1 conical intersection is 5.10−4 eV.
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1.42 1.45

Figure 2: Lewis representations of the bonding schemes on the meta-substituted
phenylenes of TSB2 (left) and TSA1 (right). Quinoidal bond lengths are given
in Å.
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Figure 3: Transition modes of TSB2
(left) and TSA1

(right). The original
positions of the C-atoms are in blue, the displaced ones in red (H-atoms are
not shown, as they barely move). Green arrows are schematic representa-
tions of the dominant motions. The corresponding imaginary frequencies are
ν̄(TSB2

) = i4891cm−1 and ν̄(TSA1
) = i15119cm−1 (the latter is unusually high

because of the presence of a conical intersection in the vicinity of TSA1
).
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Figure 4: Derivative coupling (left) and gradient difference (right) calculated
at CoInS2/S1

. The original positions of the C-atoms are in blue, the displaced
ones in red (H-atoms are not shown, as they barely move). Green arrows are
schematic representations of the dominant motions.
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Figure 5: Linear interpolations (from 0 to 10), augmented with extrapolations
(beyond 0 to 10), in internal coordinates between the most relevant critical
points (at either 0 or 10). Blue: 21A1 (C2v), S2 or S1; red: 11B2 (C2v), S1 or S2;
purple: 1A′ (Cs), S1 or S2; green: S3. Orange arrows: schematic deactivation
pathway.
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Figure 6: Conical intersection between the S2 and S1 PESs within the branching
space (GD: (halved) gradient difference; DC: derivative coupling). Cumulative
displacements over the whole set of nuclei along both gradient-type directions
are given in Å; energies are given in eV. The projected positions of TSB2 (blue),
TSA1 (red), and minS1 (purple) are marked with oval dots.
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3.2 Pseudofragment Orbitals

The excited electronic states of m22 can be rationalised via a four-electron-
in-four-orbital model. Below, we show how the four near-frontier molecular
orbitals (HOMO−1, HOMO, LUMO, LUMO+1) of m22 naturally arise from
two equivalent pairs of frontier orbitals (HOMO, LUMO) corresponding to the
two embedded p2 pseudofragments on the “right” or “left” within m22, sharing
a common ring (HOMO: highest-occupied molecular orbital; LUMO: lowest-
unoccupied molecular orbital).

As already pointed out in Ref. [23], the four near-frontier delocalised orbitals
of m22 at the C2v S0 minimum can be obtained from a rotation of two equivalent
pairs (HOMO, LUMO) of localised orbitals, on each p2 chromophore. Ignor-
ing orthogonalisation tails due to nonzero overlaps, such delocalised orbitals
simply are the normalised sum and diffferences of localised ones (45◦-rotation).
The HOMO and LUMO of m22 are of π-type and of symmetry a2, while the
HOMO−1 and LUMO+1 also are of π-type, and of symmetry b1; see Figure 7.
The orbitals of a2 symmetry are “minus” combinations of p2 frontier orbitals,
while b1 symmetry corresponds to “plus” combinations. The corresponding or-
bital diagram is depicted in Figure 7. Let us recall here that Mulliken’s axis
convention was used here for C2v: z (A1) is the C2 rotation axis, y (B2) lies
within the molecular plane, and x (B1) is orthogonal to it.

The frontier orbitals of p2 (see Figure 8) essentially involve first-neighbour
interactions between benzene and acetylene frontier π- and π∗-orbitals: all-
antibonding (most destabilised) benzene-acetylene frontier-orbital interactions
within the p2 HOMO, and all-bonding (most-stabilised) benzene-acetylene frontier-
orbital interactions within the p2 LUMO. The frontier π- and π∗-orbitals of a
single benzene form two pairs of degenerate orbitals. Only one per pair can
be combined with the nearest acetylene π- or π∗-orbital in p2, for symmetry
reasons.

The pairs of delocalised orbitals of m22 are nearly but not degenerate, due
to weak interactions between the orbitals localised on p2 pseudofragments (see
Figure 7). The interaction magnitude can be related to the overlap between p2
orbitals. For a bare benzene, the overlap between two degenerate, meta-oriented
orbitals (±60◦-rotated), either HOMO or LUMO, is equal to − 1

2 (see Figure 9).
The overlap between p2 orbitals is obviously closer to zero, as they expand
over a larger space, thus explaining that HOMO and HOMO−1 (or LUMO and
LUMO+1) are nearly degenerate in m22.

This essentially reminds of a fragmentation scheme (the limiting case being
a diatom for which the molecular orbitals are linear combinations of overlapping
atomic orbitals). However, there is a significant difference here: the localised
orbitals involve subsets of atoms (fragments) that have in common the central
phenylene ring. This is the very reason why we call the two p2 moeities “pseud-
ofragments”. The contributions on the central phenylene essentially correspond
to the normalised sum and difference of two degenerate, but nonorthogonal,
benzene orbitals oriented along either the right or the left phenylethynylene
substituent; see Figure 9. In other words, the fact that the central phenylene
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ring can bring contributions from two degenerate HOMOs and two degenerate
LUMOs within meta-substitution is the key explanation: a meta-substituted
phenylene somewhat behaves as a twofold site (within the framework of a first-
neighbour, tight-binding picture). In contrast, a para-substituted phenylene be-
haves as a standard site, involving only one local HOMO for the global HOMO
or one local LUMO for the global LUMO, for symmetry reasons, the other
staying noninteracting, hence nonbonding.

Figure 7: Orbital diagram describing the interactions between the frontier or-
bitals of the pseudo-fragments p2 to form the orbitals of m22 at the symmetrical
S0 minimum. The localised orbitals (`, `∗, r, r∗) on the left- or right-hand side
were obtained via a 45◦-rotation from the delocalised Kohn-Sham molecular
orbitals (b1, a2, a∗2, and b∗1) displayed in the central part.

Let us now consider one of the two equivalent S1 minima. The left-right
equivalence is lost between the two p2 pseudofragments: one of them is in its
ground-state geometry (alternated), while the other one is in its excited-state
geometry (cumulenic). The two pairs of near-frontier orbitals become polarised,
i.e., partly localised, as they no longer result from interactions between orbitals
of the same energy (see Figure 10).

The energy order of the orbitals within a pair is consistent with their re-
spective localisations on a given side. On Figure 11, the excited pseudofrag-
ment is on the right-hand side. The geometry of the pseudofragment on the
left corresponds to the ground-state equilibrium geometry of p2 (single-triple-
single), while that on the right to the excited-state equilibrium geometry of p2
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S0 min LUMO

S1 min LUMO

S0 min HOMO

S1 min HOMO

S0 min geometry S1 min geometry

S0 min bonding

(alternated)

S1 min bonding

(cumulenic)

Figure 8: Geometries, bonding patterns, and frontier orbitals of an isolated p2
at its S0 and S1 minima.
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Figure 9: Decomposition of the two degenerate pairs of frontier π- and π∗-
orbitals of benzene in terms of combinations of nonorthogonal meta-oriented
orbitals (±60◦-rotated). Normalisation factors are N± = 1√

1±S (according to

the sign of the combination); the overlap is equal to S = −1/2 in both cases,
such that N+ = 1 and N− = 1√

3
.
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(double-double-double). For the occupied orbitals, the first-neighbour interac-
tions between atomic orbitals along the CCCC chain between two rings are:
antibonding-bonding-antibonding. An alternated bonding pattern is thus sta-
bilised by single-triple-single bond lengths: HOMO−1 (stabilised) is localised
on the unexcited pseudofragment (alternated), while HOMO (destabilised) is
localised on the excited one (cumulenic). In contrast, the interactions for the
unoccupied orbitals are: bonding-antibonding-bonding. A cumulenic bonding
pattern is thus stabilised by double-double-double bond lengths: LUMO (sta-
bilised) is localised on the excited pseudofragment (cumulenic), while LUMO+1
(destabilised) is localised on the unexcited one (alternated). As a result, the S1

state at the S1 minimum essentially corresponds to a single HOMO → LUMO
excitation, and the electronic redistribution is consistent with the geometrical
changes.

Figure 10: Orbital diagram describing the interactions between the frontier
orbitals of the pseudo-fragments p2 to form the orbitals of m22 at the non-
symmetrical S1 minimum (alternated on the left, cumulenic on the right). The
Kohn-Sham molecular orbitals (∼ `, ∼ r, ∼ r∗, ∼ `∗) displayed on the central
part are approximately localised. The localised orbitals (`, `∗, r, r∗) on the left-
or right-hand side are those from Figure 7.
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BAB AB BABB

Figure 11: Bonding schemes along a CCCC chain and interpretation in terms
of first-neighbour interactions between p orbitals; alternated bonding scheme
(left), cumulenic bonding scheme (right). B stands for bonding interactions and
AB for antibonding interactions.
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3.3 Diabatic States

We now analyse the nature of the excited states and define delocalised and
localised diabatic states from the adiabatic ones, according to the pseudofrag-
mention scheme presented above.

As will be illustrated below, the S1, S2, and S3 states can be approximated in
terms of a simple four-electron-in-four-orbital model. The symetrical HOMO−1,
HOMO, LUMO, and LUMO+1 of m22 will be denoted b1, a2, and a∗2, and b∗1,
respectively. They read

b1 =
`+ r√

2
, (1a)

a2 =
`− r√

2
, (1b)

a∗2 =
`∗ − r∗√

2
, (1c)

b∗1 =
`∗ + r∗√

2
, (1d)

where ` and `∗ denote the pseudofragment orbitals localised on the left and r
and r∗ the same on the right (see Figure 7). As already mentioned, they are
almost identical to the frontier orbitals of two isolated p2 species (see Figure
8). Note that the orthogonalisation tails of `, `∗, r, and r∗, constructed as
orthogonal orbitals via a 45◦-rotation of b1, a2, a∗2, and b∗1 are tiny (they are
not even visible in Figure 7), which means that fully localised, nonorthogonal
orbitals would have negligible overlaps (in other words, `, `∗, r, and r∗ are
almost fully localised).

Let us then introduce the singlet configuration-state functions (CSFs) made
of single excitations within the four-orbital subset. The four delocalised CSFs
read

Φba =
|b1a∗2|+ |a∗2b1|√

2
, (2a)

Φab =
|a2b∗1|+ |b∗1a2|√

2
, (2b)

Φaa =
|a2a∗2|+ |a∗2a2|√

2
, (2c)

Φbb =
|b1b∗1|+ |b∗1b1|√

2
. (2d)

They correspond to HOMO − 1(b1) → LUMO(a∗2), HOMO(a2) → LUMO +
1(b∗1), HOMO(a2)→ LUMO(a∗2), and HOMO−1(b1)→ LUMO + 1(b∗1), respec-
tively. Lower-lying doubly occupied orbitals are implicit in the Slater determi-
nants involved in Eq. 2.
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The corresponding localised CSFs read

Φ`` =
|``∗|+ |`∗`|√

2
, (3a)

Φrr =
|rr∗|+ |r∗r|√

2
, (3b)

Φ`r =
|`r∗|+ |r∗`|√

2
, (3c)

Φr` =
|r`∗|+ |`∗r|√

2
. (3d)

The two sets are related through

Φba =
Φ`` − Φrr − Φ`r + Φr`

2
, (4a)

Φab =
Φ`` − Φrr + Φ`r − Φr`

2
, (4b)

Φaa =
Φ`` + Φrr − Φ`r − Φr`

2
, (4c)

Φbb =
Φ`` + Φrr + Φ`r + Φr`

2
. (4d)

The localised CSFs obviously play the role of zero-order, localised diabatic
states of pure LE or CT type,

Ψdia0
LE`` = Φ`` , (5a)

Ψdia0
LErr = Φrr , (5b)

Ψdia0
CT`r = Φ`r , (5c)

Ψdia0
CTr` = Φr` . (5d)

Delocalised diabatic states of pure LE or CT type are then obtained from the
latter via a 45◦-rotation,

Ψdia0
LE− =

Ψdia0
LE`` −Ψdia0

LErr√
2

=
Φ`` − Φrr√

2
=

Φba + Φab√
2

, (6a)

Ψdia0
LE+ =

Ψdia0
LE`` + Ψdia0

LErr√
2

=
Φ`` + Φrr√

2
=

Φaa + Φbb√
2

, (6b)

Ψdia0
CT− =

Ψdia0
CT`r −Ψdia0

CTr`√
2

=
Φ`r − Φr`√

2
=
−Φba + Φab√

2
, (6c)

Ψdia0
CT+ =

Ψdia0
CT`r + Ψdia0

CTr`√
2

=
Φ`r + Φr`√

2
=
−Φaa + Φbb√

2
. (6d)

Note that each delocalised CSF is thus an equal mixture of both LE and CT
contributions.
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At the S0 (11A1) minimum, minS0 , the first three adiabatic excited states,
S1 (11B2, bright: f = 1.707), S2 (21A1, bright: f = 0.367), and S3 (11A1, dark:
f = 0.001), result mainly from combinations of two single excitations involving
the four near-frontier orbitals discussed above, as shown in Table 2. The fourth
related state (within the space generated by the four CSFs) is S8 (41A1, almost
dark: f = 0.018) at 5.45 eV (f denote the oscillator strength).

minS0
minS1

deloc. CSF coefficient loc. CSF

S1

Φba 0.71 ∼ Φ`` -0.03
Φab 0.66 ∼ Φrr 0.91

∼ Φ`r 0.26
∼ Φr` 0.23

(94%) (94%)

S2

Φaa 0.87 ∼ Φ`` 0.08
Φbb 0.41 ∼ Φrr 0.05

∼ Φ`r -0.65
∼ Φr` 0.53

(92%) (72%)

S3

Φba -0.55 ∼ Φ`` 0.60
Φab 0.60 ∼ Φrr 0.27

∼ Φ`r -0.42
∼ Φr` -0.56

(66%) (93%)

Sn

Φaa -0.41 ∼ Φ`` 0.72
Φbb 0.85 ∼ Φrr -0.20

∼ Φ`r 0.41
∼ Φr` 0.38

(89%) (86%)

Table 2: Coefficients of the singlet CSFs, restricted to the four near-frontier or-
bitals, contributing to the first three excited states of m22 at minS0

and minS1

and to the fourth related state Sn (n = 8 at minS0
and n = 7 at minS1

). The
global weight of such contributions within the full configuration-interaction-like
TD-DFT expansion is indicated within parentheses.Note that S4 to S7 at minS0

are dark valence states involving noninteracting π orbitals on both external ben-
zene rings and in-plane π/π∗ acetylene orbitals. They correlate at minS1

with S4

to S6, and S8, where excitations are of LE character within p2 pseudofragments.

The TD-DFT configuration-interaction-like coefficients displayed in Table
2 show that each of the four states is an almost balanced combination of two
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delocalised CSFs. They can be recast as

Ψadia
1 (minS0) = 0.97(cos 43◦Φba + sin 43◦Φab) + . . . , (7a)

Ψadia
2 (minS0) = 0.96(cos 25◦Φaa + sin 25◦Φbb) + . . . , (7b)

Ψadia
3 (minS0

) = 0.81(− sin 42◦Φba + cos 42◦Φab) + . . . , (7c)

Ψadia
8 (minS0

) = 0.94(− sin 26◦Φaa + cos 26◦Φbb) + . . . . (7d)

For each state, the deviation of the global rescaling factor (e.g., 0.97 for S1; its
square, 94%, is the global weigth given in Table 2) with respect to an ideal value
of 1 is a measure of the contributions of other CSFs than the four dominant ones
spanning the four-state model subspace. Such contributions are small (slightly
less so for the S3 state). After rescaling (partial renormalisation), it is clear from
Eq. 7 that S1 and S3 (B2 states) are rotated together within the {Φba,Φab}
subspace through about 42-43◦, while S2 and S8 (A1 states) are rotated together
within the {Φaa,Φbb} subspace through about 25-26◦. Angle values of 45◦ would
correspond to the delocalised diabatic states of pure LE or CT type defined in
Eq. 6. In other words, the deviation from 45◦ is a measure of the admixture
between LE and CT contributions. The adiabatic states can thus be recast in
terms of the zero-order diabatic states,

Ψadia
1 (minS0

) = 0.97(cos 2◦Ψdia0
LE− − sin 2◦Ψdia0

CT−) + . . . , (8a)

Ψadia
2 (minS0

) = 0.96(cos 20◦Ψdia0
LE+ − sin 20◦Ψdia0

CT+) + . . . , (8b)

Ψadia
3 (minS0

) = 0.81(sin 3◦Ψdia0
LE− + cos 3◦Ψdia0

CT−) + . . . , (8c)

Ψadia
8 (minS0

) = 0.94(sin 19◦Ψdia0
LE+ + cos 19◦Ψdia0

CT+) + . . . , (8d)

i.e.,

Ψadia
1 (minS0

) = 0.97Ψdia0
LE− − 0.04Ψdia0

CT− + . . . , (9a)

Ψadia
2 (minS0

) = 0.90Ψdia0
LE+ − 0.33Ψdia0

CT+ + . . . , (9b)

Ψadia
3 (minS0

) = 0.04Ψdia0
LE− + 0.81Ψdia0

CT− + . . . , (9c)

Ψadia
8 (minS0) = 0.31Ψdia0

LE+ + 0.89Ψdia0
CT+ + . . . . (9d)

Such relationships correspond de facto to originating a diabatisation “by hand”
at the minS0 point. The diabatic representation is based on zero-order dia-
batic states (model subspace) but could be turned into a more refined effective-
Hamiltonian model (yielding the same eigenvalues as the target subspace defined
by the four adiabatic states) upon relaxing the definition of the diabatic states.

Squaring the coefficients yields the LE or CT character of each state: S1 is
93% LE, 0.2% CT (and 6% due to external CSF contributions); S2 is 82% LE,
11% CT (and 8% due to external CSF contributions); S3 is 66 % CT, 0.2 % LE
(and 34% due to external CSF contributions); S8 is 80% CT, 10% LE (and 11%
due to external CSF contributions). Note that the sum of such contributions do
not seem to sum up to 100% only because of rounding. This situation holds all
over the C2v subspace, in particular at the CoInS2/S1

, TSB2
, and TSA1

points,
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except that S1 and S2 swap their diabatic characters from one to the other side
of the conical intersection.

Let us now analyse the composition of the adiabatic states at one of the
two equivalent S1 minima, minS1

. The HOMO and LUMO orbitals are rather
localised on the excited p2 pseudofragment (cumulenic bonding pattern and
corresponding geometry), while HOMO−1 and LUMO+1 are rather localised on
the unexcited p2 pseudofragment (alternated) (see Figure 10). Note that HOMO
and LUMO are more localised than the other two. The S1 state (bright: f =
1.133) corresponds to an almost pure (82%) HOMO→ LUMO single excitation,
which clearly is an LE state on the excited p2 pseudofragment. As already
mentioned, the S2 and S3 states have crossed at a weakly avoided crossing along
the path from the conical intersection to the S1 minimum and thus swapped
their diabatic characters. The S3 state (bright: f = 0.931) is dominated by the
other LE state (HOMO−1→ LUMO+1, 36%) on the p2 pseudofragment having
a ground-state geometry, with significant CT contributions , while the S2 state
(dark: f = 0.015) is almost a pure combination of the two CT states, correlating
with the dark S3 (11A1) at the FC point. The fourth related state (within the
space generated by the four CSFs) is S7 (71A′, almost dark: f = 0.034) at 5.46
eV. It also is dominated by the other LE state (HOMO−1 → LUMO+1, 51%).

At the S1 minimum, the four near-frontier orbitals are only approximately
localised (see Figure 10), so that the interpretation is not so clear as for the S0

minimum where symmetry helps. However, analysing other properties supports
the diabatic picture discussed above. In particular, a comparison between the
energies of m22 and p2 reflect that m22 behaves as a pair of weakly coupled p2
chromophores, and not only at high-symmetry points. The ground-state energy
at the lower-symmetry S1 minimum (see Table 1) is 0.32 eV for both m22 and
p2. In other words, varying the geometry of m22 from the S0 minimum to the
S1 minimum requires the same energy as for a single p2 subunit, in agreement
with the pseudofragmentation scheme. At the S1 minimum of m22, the vertical
transition energy of the first LE state S1 (excitation of the p2 subunit that is in
its excited-state geometry) is 3.80 eV, while the vertical transition energy of a
bare p2 at its S1 minimum is 3.82 eV. The vertical transition of the second LE
state S3 (excitation of the other p2 subunit, being in its ground-state geometry)
is 4.42 eV, while the vertical transition energy of a bare p2 at its S0 minimum
is 4.48 eV.

This property is not coincidental. For example, we calculated the energies
of S1 and S2 from the FC point when varying the length of one of the two
acetylenic bonds in m22 and compared it to the S0 and S1 energies of a bare
p2 undergoing the same geometric change. The S1 and S2 vertical energies of
m22 are 4.43 and 4.47 eV, respectively. The underlying diabatic states should
thus cross at 4.45 eV (for a bond length equal to 1.210 Å), with an off-diagonal
coupling term equal to half the difference: 0.02 eV (much as a resonance integral
between two sites). The S1 energy of p2 was thus shifted from 4.48 to 4.45 eV
(to account for the small effect of CT contributions in m22 on the S1 and S2

energies), while the S0 energy of p2 was shifted to the energy of the crossing
point too. As can be observed in Figure 12, the agreement is almost perfect,
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such that the S1 and S2 curves in m22 can be regarded indeed as resulting from
a weakly avoided crossing between two p2 pseudofragments, one excited and the
other not.

4.2
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/ 
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Figure 12: Evolution of the energies of the first two excited states of m22 along
a variation of the bond length of one acetylenic bond, d, from its ground-state
minimum (full lines). Evolution of the energies of the ground- and first-excited
state of p2 along the same geometric change (dashed lines), shifted so as to make
the curves coincide at the avoided crossing point: d = 1.21 Å and E = 4.45 eV.
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4 Conclusions

We showed that the S1 and S2 states of m22 (meta-diphenylethynylphenylene)
are essentially a pair of LE states that cross at a conical intersection. They can
be described in terms of a two-state diabatic model (ignoring the CT states)
based on a pseudofragmentation scheme involving two p2 (diphenylethynylene,
also known as diphenylacetylene or tolane) subunits sharing a meta-substituted
phenylene ring, owing to the fact that this site contributes with two pairs (two
HOMOs and two LUMOs) of degenerate benzene orbitals.

Two equivalent zero-order diabatic representations can be used: the delo-
calised one is symmetry-adapted and coincides with the adiabatic one over the
high-symmetry C2v subspace; the localised one coincides with the adiabatic one
around both S1 minima so as to rationalise the double-well topography of the S1

PES as a symmetrical avoided crossing. The latter representation accounts for
the small energy gap between S1 and S2 over the high-symmetry C2v subspace
as resulting from a weak interaction between two identical p2 pseudofragments.

Localising the excitation on either one or the other pseudofragment is achieved
upon breaking the symmetry to Cs so as to relax the geometry of the ex-
cited pseudofragment from a single-triple-single-bond (alternated) to a double-
double-double-bond (cumulenic) geometry, according to the bonding pattern
induced by transitions among frontier orbitals. Changing from the delocalised,
{Ψdia0

LE−,Ψ
dia0
LE+}, for the localised, {Ψdia0

LE``,Ψ
dia0
LErr}, diabatic representation, using

Eq. 6, corresponds to a mere 45◦-rotation (normalised sum and difference),
known in this context as a Nikitin transformation [28, 29, 30].

The m22 species is the smallest subunit of PPE dendrimers for which EET
can be envisioned (single and unique meta-substitution between a pair of the
simplest linear peudofragments, p2). Due to symmetry, there will be no net EET
nor net CT in this system from a dynamical point of view, as such processes self-
compensate symmetrically between the left and right sides (the two localised
minima are mirror images of each other). However, this molecule is of interest
on its own sake, as it plays the role of the “leaves” of the “nano-trees” that
PPE dendrimers are expected to mimick. Also, m22 is a prototype for lesser-
symmetrical situations. Work is in progress, with a similar study being carried
out on m23 (to be submitted soon), whereby we identified a weakly avoided
crossing between S1 and S2, now related to a nonsymmetrical double well, in
perfect agreement with unidirectional EET regarded as nonadiabatic internal
conversion between LE states attached to either p2 or p3 pseudofragments (see
Figure 13). Our pseudofragmentation procedure is thus expected to be general
for the definition of practical diabatic representations in this context, and a
prerequisite for further nonadiabatic quantum-dynamics simulations of EET in
multichromophoric assemblies.

As a final word, let us mention that we focussed our study on in-plane
bond-stretching distortions, as such motions most directly affect the electronic
structure due to correlated changes in the bonding patterns. However, the effect
of soft modes such as local torsions and global (phonon-like) warpings deserve
special attention, as they will modulate π-conjugation. Along a similar line, let
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Figure 13: Schematic representation of symmetrical (m22, left) and nonsym-
metrical (m23, right) weakly avoided crossings responsible of EET in meta-
substituted PPE subunits.
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us mention that in-plane “zigzag” bending modes of CCCC chains may induce
significant changes in the nature of the electronic states, as hinted for the p2
species in Ref. [31]. Such open questions will be addressed in future work,
involving nonadiabatic quantum dynamics.

5 Supplementary Information

The Cartesian coordinates of the two p2 and five m2 critical points discussed
above are provided in Supplementary Information.
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[7] Cloé Azarias, Lorenzo Cupellini, Anouar Belhboub, Benedetta Mennucci,
and Denis Jacquemin. Modelling excitation energy transfer in covalently

28



linked molecular dyads containing a bodipy unit and a macrocycle. Phys.
Chem. Chem. Phys., 20:1993–2008, 2018.

[8] Zhifu Xu and J. S. Moore. Design and synthesis of a convergent and direc-
tional molecular antenna. Acta Polymerica, 45(2):83–87, 1994.

[9] Takahito Oyamada, Guang Shao, Hiroyuki Uchiuzou, Hajime Nakanotani,
Akihiro Orita, Junzo Otera, Masayuki Yahiro, and Chihaya Adachi. Op-
tical and Electrical Properties of Bis(4-(phenylethynyl)phenyl)ethynes and
Their Application to Organic Field-Effect Transistors. Japanese Journal of
Applied Physics, 45(No. 50):L1331–L1333, December 2006.

[10] Raymond Ziessel, Gilles Ulrich, Alexandre Haefele, and Anthony Harriman.
An Artificial Light-Harvesting Array Constructed from Multiple Bodipy
Dyes. Journal of the American Chemical Society, 135(30):11330–11344,
July 2013.

[11] Chelladurai Devadoss, P. Bharathi, and Jeffrey S. Moore. Energy transfer
in dendritic macromolecules: molecular size effects and the role of an energy
gradient. Journal of the American Chemical Society, 118(40):9635–9644,
1996.

[12] Michael R. Shortreed, Stephen F. Swallen, Zhong-You Shi, Weihong Tan,
Zhifu Xu, Chelladurai Devadoss, Jeffrey S. Moore, and Raoul Kopelman.
Directed energy transfer funnels in dendrimeric antenna supermolecules.
The Journal of Physical Chemistry B, 101(33):6318–6322, 1997.

[13] S. F. Swallen, R. Kopelman, J. S. Moore, and C. Devadoss. Dendrimer
photoantenna supermolecules: energetic funnels, exciton hopping and cor-
related excimer formation. Journal of Molecular Structure, 485:585–597,
1999.

[14] Devens Gust. Very small arrays. Nature, 386:21–22, 1997.

[15] Raoul Kopelman, Michael Shortreed, Zhong-You Shi, Weihong Tan, Zhifu
Xu, Jeffrey S. Moore, Arie Bar-Haim, and Joseph Klafter. Spectroscopic
evidence for excitonic localization in fractal antenna supermolecules. Phys-
ical Review Letters, 78(7):1239–1242, 1997.

[16] Valeria D. Kleiman, Joseph S. Melinger, and Dale McMorrow. Ultrafast
Dynamics of Electronic Excitations in a Light-Harvesting Phenylacetylene
Dendrimer. The Journal of Physical Chemistry B, 105(24):5595–5598, June
2001.

[17] Joseph S. Melinger, Yongchun Pan, Valeria D. Kleiman, Zhonghua Peng,
Benjamin L. Davis, Dale McMorrow, and Meng Lu. Optical and Pho-
tophysical Properties of Light-Harvesting Phenylacetylene Monodendrons
Based on Unsymmetrical Branching. Journal of the American Chemical
Society, 124(40):12002–12012, October 2002.

29



[18] Julio L. Palma, Evrim Atas, Lindsay Hardison, Todd B. Marder,
Jonathan C. Collings, Andrew Beeby, Joseph S. Melinger, Jeffrey L. Krause,
Valeria D. Kleiman, and Adrian E. Roitberg. Electronic Spectra of the
Nanostar Dendrimer: Theory and Experiment . The Journal of Physical
Chemistry C, 114(48):20702–20712, December 2010.

[19] S. Fernandez-Alberti, Adrian E. Roitberg, Valeria D. Kleiman, T. Nel-
son, and S. Tretiak. Shishiodoshi unidirectional energy transfer mechanism
in phenylene ethynylene dendrimers. The Journal of Chemical Physics,
137(22):22A526, 2012.

[20] Johan F. Galindo, Evrim Atas, Aysun Altan, Daniel G. Kuroda, Sebas-
tian Fernandez-Alberti, Sergei Tretiak, Adrian E. Roitberg, and Valeria D.
Kleiman. Dynamics of Energy Transfer in a Conjugated Dendrimer Driven
by Ultrafast Localization of Excitations. Journal of the American Chemical
Society, 137(36):11637–11644, September 2015.

[21] Sebastian Fernandez-Alberti, Dmitry V. Makhov, Sergei Tretiak, and
Dmitrii V. Shalashilin. Non-adiabatic excited state molecular dynamics
of phenylene ethynylene dendrimer using a multiconfigurational Ehrenfest
approach. Physical Chemistry Chemical Physics, 18(15):10028–10040, 2016.

[22] Tammie Nelson, Sebastian Fernandez-Alberti, Adrian E. Roitberg, and
Sergei Tretiak. Electronic Delocalization, Vibrational Dynamics, and En-
ergy Transfer in Organic Chromophores. J. Phys. Chem. Lett., 8(13):3020–
3031, July 2017.

[23] Alexis L. Thompson, Kevin M. Gaab, Jianjun Xu, Christopher J. Bardeen,
and Todd J. Martnez. Variable Electronic Coupling in Phenylacetylene
Dendrimers: The Role of Frster, Dexter, and Charge-Transfer Interactions.
The Journal of Physical Chemistry A, 108(4):671–682, January 2004.

[24] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb,
J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji,
X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts,
B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Son-
nenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings,
B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski,
J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota,
R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao,
H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta,
F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N.
Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P.
Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam,
M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Mo-
rokuma, O. Farkas, J. B. Foresman, and D. J. Fox. Gaussian16 Revision
A.03, 2016. Gaussian Inc. Wallingford CT.

30



[25] Emmeline Kim-Lien Ho, Thibaud Etienne, and Benjamin Lasorne. Vi-
bronic properties of para-polyphenylene ethynylenes: TD-DFT insights.
The Journal of Chemical Physics, 146(16):164303, April 2017.

[26] Jing Huang, Likai Du, Deping Hu, and Zhenggang Lan. Theoretical analysis
of excited states and energy transfer mechanism in conjugated dendrimers.
Journal of Computational Chemistry, 36(3):151–163, January 2015.

[27] Benjamin Gonon, Aurelie Perveaux, Fabien Gatti, David Lauvergnat, and
Benjamin Lasorne. On the applicability of a wavefunction-free, energy-
based procedure for generating first-order non-adiabatic couplings around
conical intersections. The Journal of Chemical Physics, 147(11):114114,
2017.

[28] E. E. Nikitin. Theory of Elementary Atomic and Molecular Processes in
Gases. Clarendon, Oxford, 1974.

[29] M. Desouter-Lecomte, C. Galloy, J. C. Lorquet, and M. Vaz Pires. Nona-
diabatic interactions in unimolecular decay. V. Conical and Jahn-Teller
intersections. The Journal of Chemical Physics, 71:3661–3672, 1979.

[30] M. Desouter-Lecomte, D. Dehareng, B. Leyh-Nihant, M. T. Praet, A. J.
Lorquet, and J. C. Lorquet. Nonadiabatic unimolecular reactions of poly-
atomic molecules. The Journal of Chemical Physics, 89:214–222, 1985.

[31] Christopher Robertson and Graham A. Worth. Modelling the non-radiative
singlet excited state isomerization of diphenyl-acetylene: A vibronic cou-
pling model. Chemical Physics, 510:17–29, 2018.

31


