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Introduction

The use of nanoparticles in everyday-life items available on the market place is now established 1 . Nowadays, industrials seek to optimize performance and quality of products already commercialized, thanks to the use of nanomaterials. Notably, the development of nanocomposite-based products allows for miniaturizing technologies. Nanotechnology has been a fast-growing science in the last few years. The number of nanomaterials-based products was multiplied by thirty in less than a decade [START_REF] Kornberg | The metabolism of C 2 compounds in microorganisms. 3. Synthesis of malate from acetate via the glyoxylate cycle[END_REF]3 . The scientists' interest for carbon nanoparticles such as graphene and its derivatives is particularly rising because of their specific properties 4 . The graphene nanomaterials' family encompasses graphene, strictly speaking (composed of a monoatomic carbon layer), and related materials including Few Layer Graphene (FLG). The particular properties of FLG are provided by the nanometric thickness of its planar carbon-based sheets. Several monoatomic layers composed of sp²bonded carbon atoms in a honeycomb lattice (graphene) are overlapped to form FLG. The thickness in the nanometric range confers industrially interesting properties such as lightness, bendability, and exceptional electrical and thermal conductivity [5][6][7][8] . All these properties move FLG from research laboratory to the market driven by demand from industries ranging from energy to biomedicine [9][10][11] . The use of these nanomaterials offers attractive economical perspectives in several industrial fields 12 .

Yet, no strict regulation is yet established for nanomaterials production 13 . Information about real quantities of carbon-based nanoparticles in circulation are not available, especially in the case of graphene. Thus, unknown nanoparticles' amounts may be discharged in waste water from industry and individual households, and then finally released in the environment.

Aquatic ecosystems are the final receptacle of pollution through different hydro-geochemical processes, such as atmospheric deposition, lixiviation and leaching of soils. In aquatic ecosystems, nanoparticles might interact with biological systems and cause disturbances.

Their theoretically exceptionally high specific area and the difficulty to predict the release and fate in the aquatic ecosystems make FLG a worrying emerging contaminant [14][15][16] . In spite of this, the evaluation of the environmental risk of FLG is still in its infancy and a strong lack of information persists regarding its potential impact on aquatic ecosystems 17 .

Diatoms constitute a particular branch of unicellular microalgae with the ability to produce a cell wall, called frustule, composed of silica with different ornamentations depending on species. Diatoms are known to play a major role in the global primary productivity of the aquatic ecosystem 18,19 . They represent the main cellular component of freshwater biofilm when environmental conditions are not optimal for green algae. Some diatom species are able to resist to organic pollution and the diatom community composition can be used as a bioindicator of the ecological state of freshwater 20 . Within biofilm, diatoms and other organisms are able to produce extracellular polymeric substances (EPS) mainly composed of polysaccharides and proteins 21 . Several roles are proposed to the excretion of EPS, but the primary and major role of this external matrix is to help diatoms to adhere and grow on a substrate. Secondly, the EPS matrix was found to procure a protection against pollutants such as metals 22 or carbon nanoparticles such as carbon nanotubes 23 or FLG 24 . Pollutants are then accumulated in the extracellular matrix and removed from the water column. However, the biochemical structure of substances responsible for the trapping of nanoparticles is still to be elucidated.

Environmental nanotoxicity studies assessing the effects of FLG are scarce. Most of the studies considering the impact of graphene family material focused on the graphene oxide, which carries (among others) epoxide functions on the surface of the carbon layer. Inhibition of root development followed by an adaptation of terrestrials plants exposed to 0.01 to 1 mg.L -1 was demonstrated 25,26 .. An interesting work carried out on zebrafish larvae exposed to 25 to 100 mg.L -1 graphene quantum dots (GQD; crystalline nanostructure smaller than a nanoparticle with high photoluminescence properties) revealed an acute inflammatory response linked to an activation of the detoxifying system 27 . Graphene nanoplatelets (GNP) toxicity on Pseudomonas aeruginosa was evaluated by Mortimer and his co-workers (2018) 28 .

The authors suggested that GNP (10 mg.L -1 ) had no antibacterial activity, but could affect bacterial physiology and metabolism.

Potential accumulation in the sediment and subsequent transfer of nanoparticles along the food chain through biomagnification justifies the relevance of ecotoxicological studies towards microbial organisms which are essential to the biogeochemical cycles of aquatic ecosystems. Despite the crucial role of photosynthetic organisms in the ecosystem functioning, only few studies evaluated the effect of graphene family nanoparticles on algae. Hu and co-workers (2014) 29 reported an internalisation of graphene oxide nanoparticles in Chlorella vulgaris cells, leading to the alteration of chloroplast structure and the increase in Reactive Oxygen Species (ROS) production. Few years later, the same authors demonstrated the contribution of the fatty acid metabolism to ROS levels, adding that cell plasmolysis was associated with a carbohydrate consumption 30 .

Materials and methods

Preparation of graphene suspension

The synthesis of FLG was carried out by an exfoliation process from expandable graphite flakes provided by Asbury Carbons (Ref. 3772). Expandable graphite was prepared by industrial intercalation of acids in order to facilitate the exfoliation process. A thermal expansion was performed from 12.95 g of expandable graphite flakes divided in batches.

Details of the synthesis method to obtain FLG is described in Appendix 1. The final equivalent weight of dry FLG was 530 mg which corresponded to a yield of 4.1 wt. % from the starting expandable graphite.

The wet FLG was diluted in SPE medium sterilized 20min at 121°C and bath sonicated for 10 min (Elmasonic S30H, 280W). Immediately after a second short bath sonication of 2 min of To evaluate the nanotoxicity on aquatic organisms, transcriptomics, proteomics and metabolomics are up-to-date powerful tools 31,32 . Indeed, they provide an accurate, highthroughput and hypothesis-independent description of the mechanisms involved in stress response. Omic approaches enables to establish the relationship between molecular endpoints and global metabolic response at low contaminants concentration and on all kind of organisms 33,34 . Transcriptomic and proteomic studies conducted on diatoms are limited [35][36][37][38] , and have hardly ever been applied to nanotoxicology. Transcriptomic approach was used to study the effect of zinc oxide nanoparticles on a marine diatoms 39 , but to the author's knowledge, no study was performed on the impact of carbon nanoparticles on freshwater diatoms.

Cellular responses of N. palea (Kützing) W. Smith (N. palea) exposed to FLG (0.1, 1, 10 and 50 mg.L -1 ) were assessed in a previous work studying the impact on cellular growth and photosynthesis activity 24 . Based on these endpoints, diatom response to FLG was detected only at 50 mg.L -1 . Moreover, the sticking of FLG nanoparticles in diatoms biofilm was appreciated thanks to a monitoring of FLG fate in the water column and in the biofilm. The current study aims at assessing the molecular response of this diatom exposed to FLG using a transcriptomic analysis. Here, we analysed the difference of the transcriptomic response of diatoms exposed to growth inhibitory and non-inhibitory FLG concentrations. We tested two doses of FLG: one dose, close to a potential environmental concentration (0.1 mg.L -1 ) and a high one (50 mg.L -1 ), which could correspond to an accidental release of nanoparticles. We also distinguished the shading part of the total impact of FLG exposure at high concentration.

the FLG suspension, dilutions were carried out under axenic conditions before the experiments in order to avoid contamination. Homogenous intermediary FLG suspension were then prepared at 0.167 and 83.5 mg.L -1 to reach a final concentration in the experimental device of 0.1 (FLG 0.1 ) and 50 mg.L -1 (FLG 50 ) respectively. Just before the addition of FLG to the diatoms culture, a last sonication was performed to ensure a good dispersion of nanoparticles in the exposure medium.

FLG characterization

A small quantity of FLG suspension was frozen and freeze-dried (Christ Alpha 2-4 LSC) in order to perform a Transmission Electronic Microscopy (TEM, JEOL JEM 1400) observation to determine their size and morphology. Sample was dispersed by bath sonication in ethanol for 10 min and then deposited on a TEM grid (Lacey carbon). Raman spectroscopy analysis on a Labram-HR800 (Horiba) was performed using a laser at 633 nm in confocal mode (x100 

Exposure conditions

The principle of the experimental device used was the same than the one developed earlier by Verneuil et al. (2014) and described in a previous study 24 where the shading effect of carbon nanoparticles could be distinguished from the overall exposure effect (combined direct exposure and shading). Experiments were performed in 750 mL culture flasks (FALCON® Cell Culture Flask, 175cm² straight neck vented cap) superposed on each other. These culture flasks were then placed in customised open-top opaque boxes by batches of 18 where the light perception was only provided by the top face of the flasks.

Before the beginning of the exposure to FLG, 15 lower flasks of each system were inoculated with 100 mL of algal culture (2.5x10 5 cells.mL -1 ) to establish the algal biofilm. After 48h, 150 mL of dispersed FLG suspension diluted to the appropriate concentration was added to the algal culture to obtain a final volume of 250 mL for each flask corresponding to the condition of total exposure to nanoparticles. In this way, the final FLG concentration were 0.1 and 50 mg.L -1 . For the shading exposition, only the highest FLG concentration was tested, which was the only one inducing shading effect on diatoms culture 24 . To test the shading impact on the molecular response of diatoms, 150 mL of FLG at a concentration of 83.5 mg.L -1 were placed only in the top flask of the experimental system. All of the flasks which did not contain a final volume of 250 mL were filled with SPE medium (250 mL in the superior flask of the total exposure condition, 150 mL in the lower flask and 100 mL in the upper one of the shading exposure condition). Flasks were placed in a growth room for 48h. Each experimental condition was conducted in triplicate.

RNA extraction and de novo sequencing

After 48h of incubation, the flasks were collected and all the supernatant was gently removed without resuspending the algal biofilm. Then the biofilm was scrapped into 50 mL of fresh medium, transferred in a 50 mL Falcon tube and centrifuge at 10 000 rpm for 10s. The supernatant was not completely removed and the pellet containing diatoms was transferred in a new 2 mL Eppendorf tube for a final centrifugation to pellet the cells. Once the supernatant removed, the pellets were immediately frozen in liquid nitrogen and store at -80°C until RNA extraction.

Extraction of total RNA was carried out using a modified QIAGEN ® kit protocol (RNeasy Plant Mini Kit, 74904, QIAGEN). A first step of cellular lysis was performed using 450µL of TRIzol ® Reagent (Invitrogen) combined to grinding with silica beads (Sartorius™ BBI-8541400) (200µL) using a FastPrep® (FastPrep ® -24 Classic Instrument, MP Biomedicals, 6.5 m.s -1 , 6x20s). Samples were then heated at 56°C for 10min to separate RNA from carbonbased nanoparticles, since these nanoparticles are known to strongly interact with nucleic acids through adsorption onto nanoparticles surfaces 41 . A first extraction step with 200µL of chloroform RECTAPUR (VWR) was followed by the RNA isolation and purification on QIAGEN ® RNeasy Mini Spin column to bind total RNA. Potential small quantity of DNA in the sample was suppressed thanks to a 15min DNAse I treatment at room temperature. The final elution was carried out in 40µL of RNase free water. The yield and quality of RNA samples were assessed using a Nanodrop spectrophotometer. RNA concentration ranged from 99 to 3,091.5 ng.µL -1 . The ratio of absorbance at 260 and 280 nm was higher than 2. RNA integrity was checked by a microgel electrophoresis on an Experion TM Electrophoresis Automated System using a Experion TM RNA StdSens Analysis kit. RIN ranged from 5 to 7.5.

Samples were stored at -80°C prior to sequencing. RNA samples were sent to GATC Biotech SARL platform for RNA sequencing. A next generation Illumina paired end sequencing was performed on each replicate with a strand specific cDNA library generated and insert size of 150pb resulting in about 30 million reads (± 3%). This Transcriptome Shotgun Assembly project has been deposited at DDBJ/ENA/GenBank under the accession GHBX00000000 in the BioProject named "Nitzschia palea Transcriptome" (Accession number: PRJNA489196).

The version described in this paper is the first version, GHBX01000000. Due to the low number of related and annotated diatoms sequences in databases, the interpretation of the results must be taken with care.

RNA-seq de novo assembly and quantification analysis

Reads assembly was performed using the De novo RNA-seq Assembly Pipeline (DRAP) 42 including the trimming of low quality bases. A transcriptome was generated for each conditions and a metatranscriptome was obtained. Reads were mapped on this assembled metatranscriptome using the Trinity Transcripts Quantification v2.4.0 43 applying the RNA-Seq by Expectation-Maximization method 44 . Annotation and Gene Ontology (GO) mapping of the N. palea metatranscriptome were carried out with the Blast2GO software using default parameters 45 . Transcripts were compared to the non-redundant 'nr' database using the BLASTx tool with a similarity and annotation parameter threshold (e-value) of 1.10 -3

(probability with which an alignment with greater similarity is expected to be found by chance). Differential expression analysis was inferred based on the normalized counts with the statistical open source software R 46 using the "DESeq2" package 47 . For all the differentially expressed genes (DEGs) with a p-value < 0.05, a GO Enrichment analysis was performed using the "topGO" R package 48 . The "topGO" outcomes were implemented in the open web-based tool QuickGO 49 to generate GO trees for each condition and each GO category (Biological Process, Molecular Function and Cellular Component). All the enriched GO terms for these DEGs were aggregated at the same GO level in order to simplify the

Results and Discussion

Characterization of FLG

The initial expandable graphite and the method used to produce FLG suspension were exactly the same as the ones used in a previous study 24 . The full description of FLG nanoparticles is thus provided in this previous study. Briefly, FLG nanoparticles present a number of layers estimated between 5 and 10 with an interlayer distance of 0.34 nm. Figure 1 shows TEM observations of FLG nanoparticles.

To avoid misinterpretations due to the presence of other pollutants in the FLG suspensions 53 which could be linked to the mode of production, ICP-OES analyses were also performed on previous FLG sample revealing the absence of release of metallic ions or absorption of nutrients by FLG in the culture medium.

Assembly and annotation statistics

Next Generation Sequencing and RNA-seq assembly generated an unprecedented N. palea transcriptome. A total of 15,906 transcripts ranging from 230 to 24,434 bp (N50 = 2,139 bp)

were obtained after running the DRAP pipeline. The generated N. palea transcriptome presented an estimated recovery of 69-97% of its sequenced genome (not published yet). The obtained N. palea transcriptome thus ensures a consistent analysis based on reads quantification. Functional annotation of N. palea transcriptome revealed that 17.5% of the transcripts did not match with referenced sequences in the database we used. Indeed, 15 to comparison of Biological Process involved between conditions. R packages "gplots" 50 and "RColorBrewer" 51 were used to generate heat maps of gene expression, and "VennDiagram" package 52 to represent the numbers of DEGs shared between conditions.

50% of the ten most up-and down-expressed transcripts (Log2FoldChange: Log2FC) could not be associated with a GO term (Table 1) in the conditions tested.

This non-negligible percentage revealed the lack of information for this species. Nevertheless, the percentage of annotation was relatively similar for Hook and co-workers ( 2014) 36 with the marine diatom Ceratoneis closterium transcriptome that contained 36.3% of non-annotated transcripts. In other transcriptomic studies on diatoms, this percentage was not reached, with 33% of annotation for Thalassiosira pseudonana 37 or 27.6% for the diatom Leptocylindrus aporus 38 . Only few transcriptomic or genomic studies have been performed on diatoms, mainly on marine species, leading to a persistent paucity of sequence information available 36 .

Indeed, the genome sequence of only four marine diatoms are currently available: T.

pseudonana 54 and Phaeodactylum tricornutum 55 , T. oceanica 56 , Fragilariopsis cylindricus 57 . 

Differential expression

The differential expression analysis was performed to identify DEGs after 48h under each exposure condition. Among the 15,906 transcripts, 1,953 DEGs (12.3 %) were differentially expressed. No selection on Log2FC values was applied on these DEGs in order to conserve the slightest up-or downregulated DEGs. This percentage of DEGs was higher than that found in previous studies carried out on the marine diatoms T. pseudonana, and C. closterium, in which DEGs with a Log2FC ≥ 1 or ≥ 3.3, accounted respectively for 6 and 2.5% 36,37 . In these studies, T. pseudonana was exposed to an ammonia concentration (4 mg.L -1 ) corresponding to 10% growth inhibition (IC 10 ), and C. closterium to IC 40 of the polycyclic aromatic hydrocarbon benzo-a-pyrene (36.45 µg.L -1 ). These concentrations were sufficiently high to impact the cellular growth rate but induced a slighter transcriptomic response than obtained in our study. This comparison highlight that conditions tested in our experiments, especially for FLG 50 exposure, represent considerable conditions inducing strong transcriptomic response. In our DEGs dataset the expression level varied between -4.7 and -0.6 for the down regulated and between 0.5 and 7 for the up-regulated DEGs. This transcript differential expression levels were comparable to that observed by Carvalho, Bopp, and Lettieri (2011) 37 in which the Log2FC reached 7.2. Others studies on diatoms revealed a maximum expression level of 4.9 for a reverse transcriptomic study on N. palea exposed to 1 µg.L -1 diuron 58 , and 2.8 in a work on Leptocylindrus danicus sexual reproduction 38 .

Exposure to the highest FLG concentration was associated with a high number of DEGs, compared to the low FLG concentration and shading condition (Figure 2a). Most of these DEGs were up-regulated in diatoms exposed to 0.1 and 50 mg.L -1 of FLG, while downregulated transcripts represented most of the DEGs in the shading condition. Overall, a consequent proportion of DEGs could not be associated with GO terms, where DEGs involved in diatoms exposed to FLG 0.1 presented the lowest functional annotation followed by diatoms directly exposed to FLG 50 and shading exposure in the end (Figure 2b). The comparison of expression profiles obtained in FLG 50 with the two others conditions showed that diatoms responses were mainly different, with only 13 DEGs shared with FLG 0.1 and 14 with shading condition (Figure 2c). None of the DEGs was shared between the shading and FLG 0.1 exposure. This is consistent with a previous study in which we did not detect any shading effect on cellular response 24 . Diatoms exposed to high FLG concentration exhibited a stronger and specific transcriptomic response compared to FLG 0.1 and shading conditions.

Within the amount of shared sequences, the number of transcripts regulated in the same way were also identified. Among the 13 transcripts differentially expressed in diatoms directly exposed to low and high FLG concentration, 9 were up-regulated in both conditions with a Log2FC ranging from 1.23±0.35 to 4.48±1.38. These results showed that responses shared between low and high FLG concentrations were weak. Among the 14 DEGs shared between direct and shading exposition to FLG 50 , only one was regulated in the same way. Shading exposure shared few DEGs with direct exposure for the same FLG concentration where the common DEGs were in majority inversely expressed. Regarding these first results, we could suppose that the response induced by direct exposure to FLG 50 might not be comparable to the response obtained in the shading condition. These results were in accordance with the shading effect observed in a previous study 24 revealing growth inhibition until the end of the experiment while diatoms directly exposed to FLG 50 showed a temporary growth inhibition after 48h of exposure with a growth recovery at the end of the experiment thanks to the sticking of nanoparticles in the biofilm matrix. 

Diatoms exposed to high FLG concentration

In the direct FLG 50 exposure, it was previously shown that after 48h diatoms presented cellular toxicity signs, as revealed by a growth rate inhibition and a loss of cell viability 24 . In the present study, 31.4% of the total DEGs presented a GO term and a BLAST homology (Table S1). The contribution to biological processes and Log2FC values of each discussed DEG is shown in the Table S2. suggested a genomic regulation in response to a stimulus. DNA helicases are also known to be the first agent encountering DNA damages, and then can be highly involved in the DNA repair after mutations due to chemical expositions or radiations 63 . As this transcript is downregulated in our study, exposure to high FLG concentration did not seemed to generate genetic damages in the diatom N. palea.

Several DEGs among the 10 most up-regulated ones presented GO terms related with DNA modification. One of these DEGs (TG01_diatome_k25_Locus_4662_Transcript_10_1) was described as a Rho termination factor with specific mRNA binding site. Rho termination factor acts as an helicase to disengage mRNA from DNA and RNA polymerase 64 . This transcription factor was primarily discovered in Escherichia coli and known to be present in bacteria 65 . A Rho termination factor-like protein was also identified in higher plants plastids 66 .

Interestingly, regulatory mechanisms associated with Rho termination factors have not been described yet in diatoms 67 . ). These putative proteins play a role in the transcription and post-transcriptional regulations 68 . In the 10 most down-regulated DEGs, the presence of three DEGs participating to the organic substance metabolic process, suggested a decrease in posttranslational protein modification process with a down-regulation of peptidyl-prolyl cis-trans isomerase (OG50_diatome_k49_Locus_999_Transcript_1_1), calcium calmodulin dependent kinase association-domain protein (TT00_diatome_CL2065Contig1_2) and peptidase S8 (TG01_diatome_k49_Locus_13094_Transcript_1_1). These results might suggest that cells established regulation processes in response to the stress generated by the presence of high FLG concentration. This response is likely to be linked with the growth recovery previously observed 24 after a temporary growth inhibition at 48h of FLG 50 exposure. Diatoms were then able to implement an efficient response to reduce toxic effects induced by FLG 50 exposure which is in accordance with the modification of regulation processes observed in this work.

3.4.2.3.

Cell wall alterations and cell adhesion system

Two up-regulated DEGs, participating to these biological processes, presented the same The analysis of transcripts annotated with a Cellular Component category of Gene Ontology revealed an interesting result. Indeed, 50 DEGs belonged to extracellular region and membrane, with a majority of up-regulated transcripts (76%). Notably, the DEG with the highest overexpression might encode for a protein located in the extracellular matrix (TT00_diatome_CL78Contig1_1, see Table 1). Among the extracellular proteins, adhesin protein (OG50_diatome_CL14Contig2_1), non-classical arabinogalactan 31 (AGP31) (TG01_diatome_k49_Locus_7415_Transcript_3_1), a lpxtg-motif cell wall anchor domain protein (OG50_diatome_CL37Contig1_3) and a filamentous hemagglutinin family Nterminal domain protein (OG50_diatome_CL11Contig3_2) were highly up-regulated (Log2FC = 5). AGP31 was found to be a proteoglycan that may contribute to the strengthening of cell walls in Arabidopsis thaliana 71 . Willis et al. (2014) 72 also hypothesized that a protein sharing weak similarities with AGP31 (PDC4) was involved in the adhesion of P. tricornutum directly on substrate. A protein homologous to a filamentous hemagglutinin domain was described as a bacterial adhesin, especially for the bacteria Bordetella pertussis, allowing for cellular adhesion 73 . Our results suggest that the excretion of proteins involved in adhesion process was highly activated in the FLG 50 direct exposure (Figure 4e-f).

Biofilm formation, by keeping cells close to each other, promote strong cells interactions including cell-cell communication and the formation of synergistic microconsortia 21 . After the detection of environmental stress, marine diatoms cells are able to modulate infochemicals synthesis, such as nitric oxide, to induce cell-cell communication but also biofilm formation 74 .

Thus, cell communication and adhesion process thanks to the EPS external production can both be consequences of environmental stress. Several molecular components of the extracellular matrix can be involved in the N. palea response to FLG 50 exposure, such as polysaccharides (in our dataset 9 chitin-binding protein were overexpressed in this condition), which are known to represent a non-negligible part of the EPS matrix 75 , and specific protein (adhesin and AGP31 for instance) 72 . The induction of adhesive protein excretion as a response to the presence of high FLG concentration is consistent with previous nanotoxicological 3.4.2.4.

Photosynthetic activity and redox process

One upregulated DEG probably encoded for a phosphoribosylamine-glycine ligase (Log2FC = 1.4). Among the most downregulated DEGs, 16 participated in the pigment biosynthetic pathway, encoding for 10 enzymes or proteins complexes (Table S3). The position of enzymes encoded by these transcripts in the pigment biosynthetic pathway are represented in the Figure 5. Among these DEGs, an Aminolevulinate (ALA) dehydratase started this metabolic pathway in the cytoplasm forming porphobilinogen, the first pyrrole. Moreover, an uroporphyrinogen III synthase and three uroporphyrinogen decarboxylase were found as potential products of DEGs being part of the most down-regulated transcripts. These tetrapyrroles enzymes are involved in the porphyrin biosynthesis which enter in the chlorophyll biosynthesis and then play a role in the photosynthesis process 79 . Enzymes catalysing reactions of the rest of the metabolic pathway, such as protoporphyrinogen IX oxidase, ferrochelatase, protoporphyrin IX methyltransferase, geranyl reductase and chlorphyll synthetase were all found in down-regulated DEGs. Two DEGs described as light harvesting complex and two others encoding for fucoxanthin chlorophyll a c binding protein were also included in this down-regulated DEGs group. Taken as a whole, the underexpression of these 17 transcripts suggest a reduction of photosynthesis as a result of exposure to FLG 50 . An hypothesis could be ventured to which genes encoding for enzymes involved in this pathway could be located in the plastid genome and then could be regulated by the Rho termination factor which is nuclear-encoded (for detailed discussion see Appendix 2) A reduction of photosynthetic activity thanks to photosystem II quantum yield measurement was previously demonstrated for diatoms directly exposed to FLG 50 24 , which is in full agreement with the transcriptomic response identified here.

studies. Verneuil et al., (2015) 23 demonstrated an EPS overproduction and excretion, especially the protein part of them, by N. palea exposed to carbon nanotubes. This is also supported by the observation of FLG sticking in the external matrix, which was already pointed as a mitigation to FLG toxicity 24 . Although EPS overproduction is a well-known mechanism occurring in a wide range of microorganisms exposed to many types of contaminants [76][77][78] , little is known about the structure, mechanisms and specificity of these over-produced EPS. Our study provided valuable insights into the biochemical characteristics of the EPS over-excreted by N. palea exposed to FLG. This defence mechanism may lead to a modification of biofilm composition with more extracellular matrix and less cells.

Besides, DEGs encoding for a glutathione S-transferase and a glutaredoxin (OG50_diatome_k43_Locus_7159_Transcript_3_1;TG01_diatome_k49_Locus_5581_Transc ript_1_1, Log2FC = -2.7; -2.6, respectively) were part of the most down-regulated transcripts.

These proteins are known to act against oxidative stress by maintaining redox homeostasis 80 , as demonstrated by Poirier and co-workers (2018) 81 studying P. tricornutum exposed to cadmium selenide nanocrystals. The down-regulation of these transcripts in our case suggests that FLG 50 exposure might be associated with a lower oxidative condition than in control. The down-regulation of oxidative stress management could be linked to the reduction of photosynthesis activity. Indeed, during photosynthesis, superoxide radicals production resulting in electron transfer from PS-I to oxygen is one of the major source of ROS generation in plants leading to oxidative damages 82 . As a result of the marine diatom P.

tricornutum acclimation to high light, Nymark and co-workers (2009) 83 revealed the upregulation of gene encoding for enzymes involved in photosynthetic pigment biosynthesis and genes encoding specific proteins involved in ROS scavenging. This supports the relationship between light intensity exposure and ROS production. In the case of FLG 50 exposure, we can hypothesize the reverse regulation process, where lower photosynthetic activity leads to a decrease in ROS production, then genes associated with oxidative stress were downregulated in order to reduced ROS scavenging.

These results suggest a global alteration of biological processes regulation to engage a response to contaminant, which can reveal an adaptive response to high FLG concentration.

The impact on catabolic process could reveal a modification of the energy produced by cells.

As evocated in previous works 24,40 , diatoms could be able to induce energetic allocation from growth energy to EPS excretion pathway and response to stress in order to maintain a viable physiological level. Furthermore, the transcriptomic response suggesting an increase of extracellular proteins and polysaccharides production was only observed at high FLG concentration but not at low FLG concentration. The response between low and high FLG concentration was partly different and did not engage the same metabolic pathways. Slight transcriptomic response with low impact on the diatoms physiology was induced in low FLG concentration, whereas a clear stress was detected in high FLG concentration with light harvesting decrease and a significant toxicity linked to a growth inhibition. Signs of cellular damages probably linked to physical interactions with nanoparticles could occur at low and high concentration but EPS overproduction was only induced when diatoms were exposed to FLG 50 where wounds were actually observed. Functional description of the DEGs involved in diatoms' response to FLG shading revealed the down-regulation of one DEG encoding for a glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (TC01_diatome_CL336Contig1_1), involved in glycolysis and gluconeogenesis processes. Enzymes involved in energetic metabolic pathways are represented in Figure 6 (Table S5 details the DEGs expression level and functional description). It was demonstrated that in Neurospora this enzyme activity was not influenced by environmental stresses such as nitrogen deprivation, high temperature or osmotic stress, but it was controlled by circadian clock, closely linked to light availability 84 . Studies undertaken on P. tricornutum demonstrated that GAPDH was activated during dark period 85,86 , which correspond to a period of time not exceeding 24h. Nevertheless, in the case of N. palea exposed to 48h of shading FLG 50 , which is longer than a dark period, this enzyme was down-regulated. This observation suggests that the duration of light limited access induced a modification of carbon metabolic pathway. This metabolic adaptation could help to maintain a physiological homeostasis during light deprivation. This might be at the origin of cell growth rate decrease observed in a previous study 24 .

In addition, three DEGs were respectively associated with a long-chain fatty acid protein with This suggest that once exposed to certain environmental stresses, such as pH or salinity, the induction of PEPCK allowed cells to manage stress. However, in the case of shading FLG 50 exposure, the under-expression of PEPCK could mean that diatoms were not able to undertake efficient response to the stress generated. Glyoxylate cycle is generally involved in the glucose production from lipids such as fatty acids, thanks to the OAA obtained. And yet, decarboxylation of OAA by the PEPCK generating PEP was also inhibited in this condition.

Our results highlighted that all these processes, needing energetic supply, were downregulated suggesting a strong alteration of energetic metabolism of N. palea after 48h of shading FLG 50 exposure.

94,96

FLG 50 shading seemed to more generally inhibit the energetic metabolism of diatoms despite the slight number of DEGs involved. The reduction of basic metabolism might evidence an energetic preservation waiting for optimal environmental conditions for proliferation.

Interestingly, this downregulation mechanism was effective after 48h of FLG 50 shading and co-workers (2008) 94 and Heydarizadeh et al., (2014) 96 .

The stress induced in the shading and the direct FLG 50 exposure was absolutely not the same despite the presence of shared DEGs. A majority of these was up-regulated in direct exposure while they were all down-regulated in the shading exposure. The low percentage of similar DEGs regulated in the same way was mostly lost after the GO enrichment analysis. Contrary exposure whereas it was undetected or even opposite after 48h of FLG 50 direct exposure (Figure 6). This phenomenon could be explained by the fact that under shading condition, cells response could not have an effective feedback on the shading stress. Indeed, in that case, cells were not in contact with nanoparticles and that sticking of FLG 50 in the extracellular matrix was not possible. An hypothesis could be that the down regulation mechanisms reported with FLG 50 shading might have occurred at the very beginning of the FLG 50 direct exposure, followed by a recovery of basal expression after FLG sticking associated with a clarification of the culture medium (i.e. mitigation of shading effect) before 48h 24 .

to the shading exposure, the direct contact of FLG 50 mostly up-regulated the transcription of DEGs involved in the fatty acids oxidation. Diatoms exposed to shading and direct FLG exposure exhibited a specific response to the stress caused by direct contact or shading, which could help to adapt their physiological functions. Production of extracellular proteins involved in the direct exposure was not found in the shading effect suggesting that the contact and/or the toxicity induced by direct exposure was at the origin of this response. Hence, the two exposure modalities used in this study made it possible to disentangle the FLG effects due to contact or shading.

Conclusion

A transcriptomic approach was used to assess the effects of low and high FLG concentration in direct contact or in shading condition to identify the genes involved and the metabolic pathway affected in the different conditions. At low FLG concentration, close to anticipated environmental conditions, a slight transcriptomic response was induced in order to maintain the diatoms physiological state in accordance with the absence of growth inhibition. On the contrary, diatoms directly exposed to high FLG concentration exhibited a stronger transcriptomic response with differentially expressed genes involved in cell division and response to stress. No oxidative stress was identified but a decrease in photosynthetic metabolism gene expression was noticed suggesting a decrease in primary production. At the ecosystem level, this could eventually lead to a reduction in resources for grazers. An increase of transcripts encoding extracellular proteins with a role in the cellular adhesion confirmed previous results showing a sticking of FLG nanoparticles in the EPS matrix. The accumulation of FLG nanoparticles in the biofilm may then represent a risk of bioaccumulation for upper organisms. Few DEGs were shared between diatoms exposed to low and high FLG concentration, but the biological processes and the metabolic pathways mainly differed except for cellular division induction. In the shading condition, light deprivation induced a global slowing down of the metabolic activity of N. palea. This study highlighted that the number of DEGs expressed in a condition did not reflect the cellular response. In fact, a low number of DEGs were detected in diatoms exposed to low FLG concentration and shading, and yet a growth inhibition was only observed in the shading condition. In transcriptomic analysis, the function of DEGs must be prioritized over the number of DEGs.

Overall, this study gave insights into the specific biological processes and pathways involved in diatoms response to different FLG concentrations and exposition conditions. Nevertheless, transcriptomic study on the species N. palea present limits because the paucity of genomic and transcriptomic data available on diatoms impacted the annotation quality.

Figure 1 .

 1 Figure 1. Transmission Electronic Microscopy of dried FLG.

Figure 2 .

 2 Figure 2. Description of the differential expressed genes in the different conditions. (a) Total number of DEGs with the proportion of up and down-regulated transcripts. (b) Percentage of DEGs assigned to a Gene Ontology term. (c) Venn diagram showing the number of shared DEGs between in each exposure condition.

  and enrichment analysis were performed to identify biological processes, molecular function and cellular components to which DEGs are related. The results shown in this paper primarily concern the Biological Process category, with an overview of Cellular Component category, especially in FLG 50 condition. Only 3 GO terms were overrepresented for 2 DEGs expressed in FLG 0.1 condition, 162 GO terms for 599 DEGs in FLG 50 and 37 GO terms for 8 DEGs in the shading condition. It should be noted that each DEG can be associated with several biological processes and hence carrying multiple GO terms. Study of the Biological Process involved in diatom's responses to FLG was performed on DEGs with enriched GO terms in each condition. Once enriched GO terms aggregated at the same GO tree level, one Biological Process term can be encompassed under multiple higher GO terms. Thus, the number of enriched GO terms do not correspond to the number of Biological Process involved in each condition. These Biological Processes and the associated DEG expression levels are displayed in Figure 3. The response of diatoms exposed to FLG 50 involved the highest number of Biological Processes (14) when compared to FLG shading condition (12) and low FLG concentration (6). The rest of the functional analysis, based on DEGs description, focused only on DEGs associated to enriched GO terms.

Figure 3 .

 3 Figure 3. Biological processes involved and regulation of gene expression in the three different conditions. Pie charts present the distribution of GO terms associated with the DEGs relative to the control condition. Heat maps show profiles of gene expression for each biological process represented in pie charts. Numbers in pie charts and heat maps indicated the number of DEGs contributing to biological process.

  participating to these biological processes could encode for a DNA helicase homologue. The down-regulation of this enzyme involved in several crucial cellular processes such as DNA replication and transcription 62

Figure 4 .

 4 Figure 4. Scanning electron microscopy images of N. palea at 48 h of growth in control culture (a) and in culture exposed to FLG 50 (b-f). Red arrows indicate a wound or distortion of the cell wall and yellow ones indicate EPS matrix.

  3.4.3. Diatoms exposed to FLG shading GO enrichment of DEGs in response to FLG 50 shading resulted in 12 as an ubiquitin super oxide dismutase. This protein is known to remove cellular superoxide radicals. The reduction of this mRNA expression suggested that cells response to oxidative stress was inhibited.

Figure 5 .

 5 Figure5. Chlorophyll a biosynthetic pathway in N. palea derived fromStenbaek and Jensen (2010) 68 . Coloured squares indicated the regulation of gene encoding for enzymes functioning (in bold) after 48h of exposure to FLG 0.1 (F0.1), FLG 50 (F50) and shading FLG 50 (ShF50). The scale on the right represents genes Log2FC value.Solid arrows indicate the conversion of each intermediate into the next and the involved enzymes are shown next one to each arrow. Dotted arrows indicate a reduction of chemical reaction to facilitate the reading of the figure. The red arrow indicates a transfer of chlorophyll a from cytoplasm to thylakoid membrane and the green arrow indicates a protein complex formation.

a

  CoA ligase activity (OG50_diatome_CL1759Contig1_2), an acyl-CoA dehydrogenase (TC01_diatome_k31_Locus_2434_Transcript_2_1), and a fatty acid oxidation . These three down-regulated DEGs were involved in the fatty acid beta-oxidation process which contribute to the production of energy from fatty acids, captured in the form of ATP. Another down-regulated DEG (TT00_diatome_k37_Locus_4335_Transcript_2_1) in this condition encoding for a 3ketoacyl participated to several biological processes linked to the cellular organization and localization (establishment of localization and cellular component organization). The description and the MF of this putative protein, suggesting an acetyl-CoA C-acyltransferase activity, were in accordance with the activity of a 3-ketoacyl-CoA thiolase, also involved in the fatty acid beta oxidation process. Thus we can hypothesize that the 3-ketoacyl protein described in our dataset is a 3-ketoacyl-CoA thiolase. This catabolic pathway provides the major source of energy for ATP production 87 , but to start the oxidation process, fatty acids must be activated by acyl CoA synthase to form acyl-CoA, which consumes ATP88,89 . In the literature, the effect of environmental conditions, such as light intensity, nutrient availability and temperature, are known, for a long time, to influence the content and the composition of fatty acids in diatoms90,91 . Exposition to high light intensity induced an accumulation of fatty acids in cells

Figure 6 .

 6 Figure 6. Hypothesized energetic metabolic pathways in N. palea. Colored squares indicated the regulation of gene encoding for enzymes functioning (in bold) after 48h of exposure to FLG0.1 (FLG 0.1 ), FLG50 (FLG 50 ) and ShF50 (shading FLG 50 ). The scale on the left represents genes Log2FC value. Solid arrows indicate the conversion of each intermediate into the next one and the involved enzymes are shown next to each arrow. Dotted arrows indicate a reduction of chemical reaction to facilitate the reading of the figure. For simplicity, the number of organelle membranes has been reduced in this figure. This schematic view was adapted fromKroth and co-workers (2008) 94 and Heydarizadeh et al., (2014) 96 .

Figure 7 .

 7 Figure 7.Adaptative pathways of N. palea in the response to direct FLG exposure at low (FLG 0.1 )(a) and high (FLG 50 )(c) concentration, and in shading exposure (Shading FLG 50 ) (b). Biological processes appearing in yellow were up-regulated and the ones appearing in blue were down-regulated. The transcriptomic response is compared to the cellular toxicity at 48h of FLG exposure assessed in Garacci et al. (2017) 24 indicated in the boxes.

Table 1 .

 1 Characteristics of the 'top ten' up and down-regulated differentially expressed transcripts (compared to the control condition) in each exposure condition: FLG 0.1 (FLG0.1), FLG 50 (FLG50) and shading FLG 50(Shading FLG50). The ten most upregulated transcripts are listed in the first part of this table and the ten most downregulated transcripts in the second part. Grey numbers indicate the standard error for the Log2FC values. The column Description corresponds to the output of the transcript annotation on Blast2GO.

	Transcript ID	Description	Log2FC	P-value	Number of GO term
	FLG0.1 -Up-regulated			
	TC01_diatome_k31_Locus_1015_Transcript_19_7	---NA---	3.98 0.87 5.42E-03	
	TG01_diatome_k49_Locus_8806_Transcript_3_1	predicted protein	3.36 0.74 5.74E-03	
	OG50_diatome_k49_Locus_3306_Transcript_2_1	peptide methionine sulfoxide reductase	3.14 0.80 3.64E-02	
	TT00_diatome_k25_Locus_10139_Transcript_2_1	hypothetical protein FRACYDRAFT_240855	2.90 0.42 1.10E-07	
	TC01_diatome_k25_Locus_143_Transcript_9_3	---NA---	2.82 0.63 7.87E-03	
	TG01_diatome_k31_Locus_216_Transcript_1_2	phosphatidylinositol-3-phosphatase myotubularin-2-like	2.79 0.48 5.30E-05	
	OG50_diatome_CL18Contig1_1	carbohydrate-binding module family 18	2.66 0.65 2.64E-02	
	TG01_diatome_k37_Locus_3478_Transcript_1_1	predicted protein	2.64 0.56 3.59E-03	
	OG50_diatome_k31_Locus_629_Transcript_1_1	---NA---	2.56 0.50 9.68E-04	
	TC01_diatome_k49_Locus_13493_Transcript_1_1	---NA---	2.55 0.59 1.35E-02	
	FLG50 -Up-regulated			
	TC01_diatome_CL15Contig1_1	---NA---	6.97 1.41 5.86E-05	
	TT00_diatome_CL78Contig1_1	extracellular matrix	5.82 1.30 3.86E-04	
	TG01_diatome_k37_Locus_8797_Transcript_1_1	Bv80 Bb-	5.80 1.36 8.12E-04	
	TG01_diatome_k49_Locus_6869_Transcript_1_1	vegetative cell wall gp1-like	5.72 0.84 5.33E-09	
	OG50_diatome_k31_Locus_8965_Transcript_2_1	---NA---	5.59 1.05 1.01E-05	
	OG50_diatome_k49_Locus_10629_Transcript_1_1	zinc finger	5.26 0.62 1.16E-13	
	OG50_diatome_CL11Contig3_2	filamentous hemagglutinin family N-terminal domain	5.06 0.79 6.88E-08	
	TC01_diatome_k49_Locus_10503_Transcript_2_1	ubiquitin thioesteraseVirion core 5.06 1.35 4.31E-03	
	TG01_diatome_k37_Locus_4954_Transcript_4_1	SPT2 homolog	4.96 0.72 3.97E-09	
	OG50_diatome_k43_Locus_9941_Transcript_1_1	non-classical arabinogalactan 31 4.80 0.82 1.11E-06	
	Shading FLG50 -Up-regulated			
	TG01_diatome_CL991Contig1_2	---NA---	1.94 0.48 3.65E-02	
	TC01_diatome_k31_Locus_1657_Transcript_18_1	cell surface receptor	1.38 0.29 3.64E-03	
	TG01_diatome_CL343Contig1_1	PIN2 TERF1-interacting telomerase inhibitor 1	1.04 0.23 9.88E-03	

Table 1 .

 1 Continued

  90,91 , but in the case of shading FLG 50 exposure, with limited access to light as previously demonstrated (Photosynthetic Active Radiation decrease)24 , the reverse phenomenon occurred and could result in a decrease of fatty acid oxidation.Moreover, a DEG presumably corresponding to a homologous of isocitrate lyase (OG50_diatome_k37_Locus_300_Transcript_5_3) was down-regulated in this condition. This protein is known to be a part of the glyoxylate cycle, resulting in the formation of succinate, generally involved in carbon source deprivation 92 , with ATP consumption 93 . This metabolic pathway is located in the peroxisome, where a part of oxidation reactions occur, as suggested byKroth and co-workers (2008) 94 . The down-regulation of this enzyme could be linked to the inhibition of fatty acids beta oxidation that produces acetylCoA which is a substrate of the glyoxylate cycle. Another product of the glyoxylate cycle is the oxaloacetate (OAA) which is involved in numerous metabolic pathways such as fatty acids biosynthesis or gluconeogenesis process. A DEGs described as a gene encoding a phosphoenolpyruvate carboxykinase (PEPCK) (TT00_diatome_k37_Locus_2515_Transcript_3_1) was also down-regulated in shading FLG 50 condition. This enzyme, located in mitochondrion, catalyses the chemical reaction of OAA in phosphoenolpyruvate (PEP), which is a primary step to enter in the gluconeogenesis process and lipids production. No evidence of effect of light intensity on this enzyme activity was found in the literature but a study demonstrated the increase of transcripts associated with PEPCK during the induction of pH stress on a marine diatom 95 .
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