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Avec le développement des maisons intelligentes, il est de plus en plus nécessaire de déployer des systèmes capables de s'adapter à des contextes fortement dynamiques ainsi qu'aux besoins des utilisateurs. Ces maisons sont de plus en plus équipées d'objets connectés qui manquent souvent de l'intelligence nécessaire à leur adaptation et coordination en ligne. Cet article a pour objectif d'analyser des approches susceptibles de répondre à ces défis et d'identifier des directions possibles de travaux futurs pour développer des systèmes multi-agents capables de combiner planification et action, en étant sensibles au contexte et dirigés par des buts, et qui pourront inspirer les générations futures de maisons intelligentes.

Introduction

With the advance of ubiquitous technologies, the physical objects and environments of our daily life are becoming more intelligent, capable of perceiving and acting in the world. But for the time being, such technologies have difficulties adapting to highly dynamic environments such as smart homes, and users also struggle to make different objects work together. This paper is motivated by a current smart home challenge: the ability to adapt to context in order to satisfy user evolving needs. Such complex behavior can only be achieved by embedding Artificial Intelligence (AI) techniques into Internet of Things (IoT) objects.

To tackle the aforementioned challenge, there are solutions in the literature that allow embedding intelligent entities (a.k.a. agents) with: acting capabilities, i.e. act in the world and react to predicted changes; and also planning capabilities, i.e. reason upon current context to find new solutions to a given need. In a smart home, for maximum user satisfaction, agents should be able to timely adapt to user needs, with minimum conscious and direct input from occupants. This online adaptation may be possible by endowing agents with planning and acting functions designed to execute together at run-time.

In this paper, we aim to bring up and renew questionings about adaptation capabilities of IoT objects, specifically focusing on online adaptation of plans and actions in a usercentric manner that respects user goals and user values. We analyze current state-of-the-art solutions, organizing them according to common properties we find in the literature. The understanding and exploring of the state-of-the-art approaches presented may allow future work to create a decentralised and coordinated planning and acting system. It would be: user-centric, gravitating towards enhancing human experience; goal-driven, intelligently reasoning about and pursuing user objectives; data-driven, adapting at runtime to environmental and user inputs; and trustworthy, being consistent with user values and expectations.

Based on these challenges we analyze the state of the art as follows: Section 2 presents the challenges we are interested in, with special focus on the smart home domain; Section 3 presents well-established solutions, especially in the planning and acting domains, that have potential to help addressing our challenges; Section 4 shows the interest in uniting planning and acting to ultimately have a synergistic solution; Section 5 identifies complementary domains, the goal and value reasoning, that add valuation to such a solution; Section 6 expands the envisioned solution to consider interaction and coordination in a decentralised system.

Motivation

This section elaborates the above stated challenges and interest in developing a system capable of adapting itself to context and users, in IoT environments such as smart homes. We consider publicly available solutions, their current state and limitations, that partially fulfill identified smart home requirements. It also shows aspects that can be improved or redesigned to better address our requirements. Since it explores a large domain, this paper is not expected to be an exhaustive study of the available literature.

Current IoT solutions

Current smart homes are becoming increasingly more complex, permeated by ubiquitous and heterogeneous elements designed by different vendors [START_REF] Kovatsch | Practical semantics for the internet of things: Physical states, device mashups, and open questions[END_REF]. Some solutions help with discovery of objects and composition of new services mixing available ones [START_REF] Kovatsch | Practical semantics for the internet of things: Physical states, device mashups, and open questions[END_REF][START_REF] Lécué | Composition de services web: Une approche basée liens sémantiques[END_REF], other popular solutions allow the development of IoT mashups 1 . For a great smart home user experience, the composition and delivery of user-centric services are important.

Although there is interest in ad-hoc mashups, often temporary and non-scalable, for small tactical and specific needs [START_REF] Guinard | Towards physical mashups in the web of things[END_REF], such applications do not present reasoning nor adaptive behavior. They simply perform tasks previously programmed by humans. Also, with discovery and composition of services but no intelligent entities to demand and use them, user experience tends to become cumbersomedue to constant need for manual actions, like system reconfiguration, user input, etc.

An IoT sub-domain, the growing Web of Things (WoT), allows objects to connect by means of the existing Web infrastructure [START_REF] Blackstock | loT mashups with the WoTKit[END_REF]. Nevertheless, the resulting system has a priori no coordinating abilities, therefore provided services may not be optimal, or can even conflict with each other.

Intelligent agents

In the previous section, we discussed the benefits in embedding intelligence into objects, giving them adaptive, reasoning, coordinating and self-managing capacities, which can be done by the use of AI techniques. In the AI field, an intelligent agent is a goal-driven entity capable of perceiving and acting upon its environment [START_REF] Russell | Artificial intelligence: a modern approach[END_REF]. An agent must have acting capabilities in order to interact with its environment, and this connection may have many forms.

An agent with direct and tight coupling to its environment performs reactive acting, i.e. a data-driven behavior where actions follow predefined models and plans.

One with a more flexible coupling performs adaptive acting, i.e. contextual changes trigger refinement 2 of avail-1 Such as https://nodered.org, and https://ifttt.com 2 Process of finding alternative actions applicable in the current context able actions to find possible alternatives to continue current plans, individually or collectively with other agents [START_REF] Ciortea | Responsive decentralized composition of service mashups for the internet of things[END_REF][START_REF] Vallée | Un intergiciel multi-agent pour la composition flexible d'applications en intelligence ambiante[END_REF].

Going further, an agent with a freely and relaxed coupling has a proactive behavior, presenting planning and reasoning capabilities. It is then able to reason upon available context information in order to find new solutions to a given need, allowing it to create new plans to achieve goals, which improves its adaptability.

Numerous solutions for industrial scenarios, such as manufacturing lines [START_REF] Ciortea | Repurposing manufacturing lines on the fly with multiagent systems for the web of things[END_REF], use intelligent agents, but these environments are predictable by design, being composed of agents that perform regular, repetitive and controlled processes. In highly dynamic scenarios, like smart homes, reasoners need to be both timely and context-aware in order to answer user needs fast and autonomously.

For an agent to be context-aware, it needs to perceive and understand the world. In order to do so, context collection, modeling and reasoning techniques [START_REF] Sorici | CONSERT: Applying semantic web technologies to context modeling in ambient intelligence[END_REF] are needed, specially in the IoT domain where sensors generate enormous amounts of raw data [START_REF] Perera | Context aware computing for the internet of things: A survey[END_REF].

We are interested in dynamic context modeling techniques because they present open and expandable models that can fit wide ranges of IoT environments [START_REF] Euzenat | Dynamic context management for pervasive applications[END_REF], and we know smart homes are highly heterogeneous and dynamic ones. In this paper we will consider that context is given ready-to-use by an external function.

Based on the analysis of this section, the agent of interest in a smart home is one capable of adaptive acting and context-aware planning.

Challenges and requirements

An advanced smart home is expected to perform responsive contextual adaptation in a user-centric manner. The use of agents to tackle this challenge allows us to identify some smart home requirements.

As said previously, such environments are highly dynamic, and the system's main objective is to satisfy user needs. Its final architecture must also take into account heterogeneous objects, while allowing flexible interaction among autonomous agents, creating a social IoT ecosystem [START_REF] Ciortea | Weaving a social web of things : Enabling autonomous and flexible interaction in the internet of things[END_REF], which we can call a multi-agent based smart home.

To identify smart home requirements the following scenario is presented: a user watching a movie receives a call.

In this case, the smart home has to be context-aware to perceive and understand the situation, and adaptive to change its plan at run-time, allowing the user to answer the call. It may, for example, mute the TV and activate subtitles. In this case the smart home needed no user input, being autonomous to pursue goals to satisfy user needs.

In the beginning of the scenario, when the user asked to watch a movie, it is interesting that the smart home is capable to perform goal reasoning and infer secondary related goals, such as turning of lights and closing windows.

Another aspect we tackle is the fact that a smart home is constantly interacting with humans, therefore it must be responsible, i.e. in accordance with user values. In our scenario, if the user privileges their leisure time more than their work, the smart home may decide to ignore the call if it was from the user's boss. But if family is of utmost importance, the system should never ignore a call from user's mom. This property goes beyond defining rules and constraints for system behavior [START_REF] Rust | Using message-passing DCOP algorithms to solve energyefficient smart environment configuration problems[END_REF], it dynamically reasons on the impact of user values on actions in current context.

The last property is coordination. The TV and the phone presented in the scenario must interact in order to perform any of the described adaptations.

It is important that all above properties are preserved during run-time, because smart home and ubiquitous systems in general must be constantly online and responsive.

Planning and Acting Agents

The previous section presented a global overview of the main motivation of this article, with special attention to smart homes. In these environments, we expect IoT objects to be intelligent agents, capable of acting upon and perceiving a dynamic world. This section will investigate the deliberation functions necessary to plan and act, and some state-of-the-art implementations. It is important to note that the word "deliberation" in this paper has the same meaning as in [START_REF] Ghallab | Automated Planning and Acting[END_REF], which can sometimes differ from the common meaning we see in multi-agent systems literature.

The adaptability, context-awareness and autonomy of a smart home depends on the sophistication of acting and planning functions. The acting function receives the context from the external world (see Figure 1). The planning function above gives plans to be used by the acting one.

Acting

The "Acting" shown in Figure 1 is a deliberation function, the one that has direct contact to the external world, responsible for following plans (a set of ordered actions built to achieve goals), and react to context (with every input it checks if plans are still feasible and chooses appropriate available actions to be executed), all driven by previously chosen goals.

Among existing agent architectures, a popular one is the BDI (belief-desire-intention) agent model [START_REF] Bordini | Programming Multi-Agent Systems in AgentSpeak using Jason[END_REF]. BDI agents have 3 components: beliefs, i.e. information about the current context; desires, i.e. goals the agent would like to achieve; intentions, i.e. agent's chosen goals to be achieved by executing a plan. BDI agents have a basic deliberation function that may be mapped to the "Acting" function described. The procedural plans building the plan library of BDI agent may be mapped to the "Know-How" appearing in Figure 1 in the sense that they define methods with their preconditions that can be used by the "Acting" function to execute and refine its execution based in context [START_REF] Ghallab | Automated Planning and Acting[END_REF].

The BDI architecture inspired several agent-oriented programming languages, such as Jason [START_REF] Bordini | Programming Multi-Agent Systems in AgentSpeak using Jason[END_REF], an implementation of AgentSpeak [START_REF] Rao | AgentSpeak(l): BDI agents speak out in a logical computable language[END_REF], technologies actively studied and expanded [START_REF] Ricci | AgentSpeak(ER): Enhanced encapsulation in agent plans[END_REF]. The BDI model has also been extended in many ways. For example, the suspension and resuming of goals, not present in the original model, is presented in [START_REF] Thangarajah | Suspending and resuming tasks in BDI agents[END_REF]. Also, a common goal notation called CAN (Conceptual Agent Notation) is proposed in [START_REF] Winikoff | Declarative & procedural goals in intelligent agent systems[END_REF].

Planning capabilities are not part of the BDI model. In Figure 1, the "Planning" step is executed before the agent becomes active -it means the agent will have access to a pre-compiled library of plans, but will not be able to create new plans during execution.

This behavior is similar to the Refinement Acting Engine (RAE) [START_REF] Ghallab | Automated Planning and Acting[END_REF]. RAE-enabled agents present adaptive acting capabilities -they do not perform search algorithms to build new plans, but simply execute available plans applicable in the current context to achieve desired goals.

There are similar approaches in the AI field to create adaptive systems, such as [START_REF] Diaconescu | Selfintegrating organic control systems: From craysh to smart homes[END_REF], and others that use machine learning techniques, like neural networks, etc. We will focus on intelligent agents because they have an explainable process, whose reasoning is often easier to follow and comprehend than other AI techniques.

Planning

"Planning" is a deliberation function which complements "Acting" by providing it a set of plans customized to achieve previously defined user goals.

Several planning techniques exist, such as first-principles planning (FPP, informally, the creation of new plans based upon lower-level actions to achieve a goal) [START_REF] Xu | A formal approach to embedding first-principles planning in BDI agent systems[END_REF][START_REF] Silva | First principles planning in BDI systems[END_REF], and markov decision process (MDP) [START_REF] Bellman | A markovian decision process[END_REF]. Hierarchical Task Network (HTN) is a well-known planning technique in which abstract actions are refined into lower-level actions, until tangible actions that can be sent to execution are obtained [START_REF] Herzig | On hierarchical task networks[END_REF]. In Figure 1, the HTN planner would be the "Planning" function. Its inputs are a set of user goals and an operational model (the "Know-What"), composed of more abstract actions than the commands in the "Know-How" set, which will be combined by the planner to create plans capable of achieving goals given a context. Its outputs are new plans. In this process, goals are the guiding elements of the planning process.

The difference between "Know-What" (descriptive model in [START_REF] Ghallab | Automated Planning and Acting[END_REF]) and "Know-How" (operational model in [START_REF] Ghallab | Automated Planning and Acting[END_REF]) in Figure 1 is: the former is a set of abstract actions used by the "Planning" function to create plans to achieve goals; the latter is a set of low-level commands used by the "Acting" to execute the abstract actions present in plans. 

Agent

Online Adaptation

Using planning and acting functions, described in the previous section, one can implement a basic agent, capable of planning by using known beliefs to create plans to react to predicted changes to achieve goals. But its "Planning" is not context-aware, therefore it provides plans compiled off-line, and does not adapt at execution since it has no feedback from "Acting" as shown in Figure 1.

To overcome the smart home challenge of being capable of adapting to context to satisfy user evolving needs, we thus seek to connect planning and acting capabilities. The expected synergistic result is an agent capable of performing online contextual and user-centric adaptation.

In our scenario from Section 2.3, if the smart home system never encountered the situation before (a call while playing a movie), it may need to perform planning in order to adapt to it. It may, for example, create a plan to pause the film and resume it when the call ends. By doing so, it performed online adaptation, a feature that highly improves system adaptability, context-awareness and autonomy.

Combining planning and acting

The original BDI model can be extended to perform lookahead planning. The integration of planning algorithms and agent reasoning was surveyed in [START_REF] Meneguzzi | Planning in BDI agents: A survey of the integration of planning algorithms and agent reasoning[END_REF]. An example is the embedding of FPP in BDI agents [START_REF] Xu | A formal approach to embedding first-principles planning in BDI agent systems[END_REF][START_REF] Silva | First principles planning in BDI systems[END_REF], giving it some planning capabilities. Another is the use of HTN libraries as guides for BDI reasoning [START_REF] Silva | BDI agent reasoning with guidance from HTN recipes[END_REF] aiming at combining HTN domain and BDI, allowing the latter to have access to the information contained in the former. A different approach fuses HTN planner with mental attitudes (beliefs, desires, and intentions) of the BDI architecture [START_REF] Wickler | Planning and choosing: Augmenting HTN-based agents with mental attitudes[END_REF].

In a smart home, agents should do their best to autonomously adapt at run-time to user needs and environmental changes. Therefore we have interest in merging planning and acting capabilities, and even further, in a solution that perform both in a synergistic and online manner.

HTN planning and BDI acting

BDI agents and HTN planners are both well-known solutions. The former is capable of adaptive acting by interleaving refinement and execution of actions, and the latter performs planning in order to create new plans to achieve goals. The previous section showed that BDI agents can use the outputs (plans) from HTN planners, but Figure 1 clearly shows there is no feedback from the "Acting" function to the "Planning" one. It will prevent "Planning" from being context-aware, and the resulting agent will not be able to adapt to non-predicted situations.

If we establish that connection, as we can see in Figure 2, we create a feedback loop that allows the agent to perform online adaptation, i.e. online planning and acting. Now "Planning" has access to the current context, and can provide new plans to the "Acting" whenever it encounters a new situation, performing planning at run-time.

The Refinement Engine for Acting and Planning (REAP) [START_REF] Ghallab | Automated Planning and Acting[END_REF] and the BDI agent programming language named CANPlan [START_REF] Sardiña | Hierarchical planning in BDI agent programming languages: A formal approach[END_REF][START_REF] Sardiña | A BDI agent programming language with failure handling, tive goals, and planning[END_REF] are solutions that aim to incorporate HTN-style planning into BDI-like agents, ultimately allowing agents to perform online planning and acting. Another solution is HTN Acting [START_REF] Silva | HTN acting: A formalism and an algorithm[END_REF][START_REF]Addendum to "HTN acting: A formalism and an algorithm[END_REF], whose approach also combines HTN planning with BDI behavior, i.e. performing interleaved deliberation, acting and failure recovery. By adapting HTN planning semantics, HTN Acting does the opposite of REAP and CANPlan, that is adapting BDI agents. 

Agent

Responsible Goal-driven Adaptation

Agents in a smart home are subject to environmental changes, and the agent architecture presented in the previous section is capable of online adaptation to those changes. In this section, we identify that agent adaptation must also take into account user goals and values, two concepts that deserve specialized treatment during agent deliberation by the performing of goal-and value-reasoning.

These two reasoners are able to give a smart home the goal-driven and responsible properties we are looking for.

Beyond planning and acting

In the previously presented scenario in Section 2.3, we saw the system chose to achieve secondary related goals. The agent capabilities were beyond online planning and acting, its behavior were augmented to perform goalreasoning. It gave the system a higher level of autonomy, improving user experience since it needed minimum to no user input.

The smart home from our scenario also presents valuereasoning capabilities, which increased system autonomy by helping the choice to answer or ignore the call from user's boss or mom. This function directly influences the goal-reasoning, the planning and the acting processes.

In the following sections we better elaborate the goaland value-reasoning.

Goal-reasoning automation

In the literature we find two main types of goals [START_REF] Riemsdijk | Goals in agent systems: A unifying framework[END_REF]: goals-to-be (a.k.a. declarative goals) -i.e. states the agent wants to achieve or maintain [START_REF] Duff | Maintenance goals in intelligent agents[END_REF]; and goals-to-do (a.k.a. procedural goals) -i.e. sets of actions the agent wants to successfully execute.

Goals are the guiding elements of the planning process. Most systems expect users to provide the goals to be pursued. In this case, they have automated planning and act-ing, but they do not deliberate about which goals should be pursued, i.e. they do not reason upon goals, nor create new goals, nor choose which ones to pursue, nor drop existing ones (except in cases of failure or inability to achieve).

In our example scenario, the creation and activation of "turn off lights" and "close window" goals can be performed by a goal-reasoner as shown in Figure 3, which using its current beliefs (e.g. lights are on, windows are open, user started watching a movie) would reason and decide to pursue those goals to maximize user comfort, bettering user experience.

The architecture presented in [START_REF] Cointe | Jugement éthique pour la décision et la coopération dans les systèmes multi-agents[END_REF][START_REF] Battaglino | Emotional range in value-sensitive deliberation[END_REF] is an example of a basic goal reasoning, which autonomously creates goals to redirect agent behavior if an user value is at stake. The work from [START_REF] Harland | Aborting, suspending, and resuming goals and plans in BDI agents[END_REF] gives operational semantics in the CAN [START_REF] Winikoff | Declarative & procedural goals in intelligent agent systems[END_REF] language that enables goal reasoning features necessary to manage goals and plans, such as abortion, suspension and resuming. Another approach presents a goal deliberation strategy called Easy Deliberation [START_REF] Pokahr | A goal deliberation strategy for BDI agent systems[END_REF], which allows activation and deactivation of goals in BDI agents, as well as defining relationships among goals to enable conflict free pursuing.

Value-driven responsibility

Smart home systems are designed for human users, and therefore they should be responsible systems by taking into account user values, which may include for example the user safety and privacy. The value-reasoning function shown in Figure 3 reasons based on current available beliefs, choosing to prioritize one value over another. In the scenario where a user receives a call while watching a movie, the system could prioritize work-related value over leisure-related value if, for example, the user calendar showed an important work meeting the next day, therefore if the boss was calling their call would not be ignored.

Figure 3 illustrates that the system reasoning process happens in the following order: first, it ranks the values based on the current context; second, it chooses goals that respect those values; third, it chooses or creates plans to achieve the chosen goals that respect the values; finally, it performs acting to realize those plans.

Value-based reasoning research have been highly influenced by The Theory of Basic Human Values [START_REF] Schwartz | Universals in the content and structure of values: Theoretical advances and empirical tests in 20 countries[END_REF], that identifies ten motivationally distinct values. For example, the article [START_REF] Cranefield | No pizza for you: Value-based plan selection in BDI agents[END_REF] performs value-reasoning by creating a constraint satisfaction problem in which all applicable plans are ranked using human values, and the plan that better suits user values is chosen. Note that the order of reasoning is the opposite of the one presented in Figure 3: here the agent first chose goals and create plans, then later ranks the available plans based in user values.

The architecture in Figure 3 has similarities to the emotional BDI agent architecture proposed in [START_REF] Cointe | Jugement éthique pour la décision et la coopération dans les systèmes multi-agents[END_REF][START_REF] Battaglino | Emotional range in value-sensitive deliberation[END_REF], which includes not only values but also emotional appraisal into the agent reasoning, but whose architecture works differently: its goal reasoning is not affected by the values, in-stead once the system interprets that the current context endangers user values, it will create a goal that tells the system to satisfy the endangered values.

Another approach use cultural values and rules to not only influence agent individual behavior, but to help coordinating it with other agents that, being in the same environment, have also similar cultural values and rules [START_REF] Vanhée | Using Cultures and Values to Support Flexible Coordination[END_REF]. An agent with the architecture presented in the previous section is capable of adapting itself in an online, goaldriven and value-based fashion. But its behavior is completely ignorant of the presence of other intelligent agents, ultimately simply sensing other agents actions in the world and considering them simple changes to be adapted to. Therefore we are interested in allowing interaction and coordination among decentralised agents, as shown in Figure 4. We discuss in this existing solutions, their features and limitations for this coordination among agents.

Agent

Multi-agent system

Multi-agent systems (MAS) are compositions of multiple interacting intelligent agents. A smart home can be modeled as one. As proposed in [START_REF] Boissier | Dimensions in programming multi-agent systems[END_REF], such systems are characterized by the presence of four dimensions: Agents, Environment, Interaction and Organisation.

The Agents dimension is composed of the intelligent agents themselves, i.e. entities capable of reasoning, perceiving and acting on their environment.

The Environment dimension is composed by artifacts the agents can interact with, i.e. real objects, digital services, etc. that can be used by agents in order to change the world or to have access to needed information.

The Interaction dimension constitutes the direct link among agents, allowing them to share messages.

The Organisation dimension establishes system norms and agents roles. The agents may or may not obey to system norms, but in a cooperative setting they would normally follow norms. Also, agents may have specific roles in the system, which gives them some responsibilities and consequently affects agents behaviors.

The exploration of these dimensions may help design a cooperative smart home comprising decentralised agents.

Coordination approaches

The architecture presented in [START_REF] Ciortea | Repurposing manufacturing lines on the fly with multiagent systems for the web of things[END_REF] shows a possible approach using the organisation dimension as a mean of coordinating agents: the organisation has social schemes (sets of collective goals), which are used to allocate available agents that are capable of executing such goals. The allocation is done by giving roles to agents. In their system, the environment is a first-class abstraction [START_REF] Weyns | Environment as a first class abstraction in multiagent systems[END_REF], i.e. a component designed and programmed with clear responsibilities, such as providing agents with mechanisms for interaction and coordination and with access to available real objects.

Another approach, the Decentralised Online Multi-Agent Planning (DOMAP) presented in [START_REF] Cardoso | A modular framework for decentralised multi-agent planning (extended abstract)[END_REF][START_REF] Cardoso | A decentralised online multi-agent planning framework for multi-agent systems[END_REF], uses the environment dimension to coordinate agents. They have three special artifacts: "task board", "contract net board" and "social laws". The goals are declared in the "task board" artifact, and for each goal a "contract net board" is created, in which agents bid their "cost" for executing the goal. In the end, the agent with the best cost is chosen. The "social laws" are special artifacts that impose rules in order to resolve conflicts at run-time, and that all agents obey to.

Both presented approaches use a multi-agent programming framework called JaCaMo [START_REF] Boissier | Multi-agent oriented programming with JaCaMo[END_REF]. This framework allows the deployment of multi-agent systems by combining three platforms: Jason for the agents dimension, CArtAgO for the environment dimension, and Moise for the organisation dimension. The presented state-of-the-art insights help delimiting the current level of sophistication of each smart home identified requirements.

We saw that there are theoretical and concrete solutions that allow agents to perform online adaptation, i.e. online planning and acting, to a greater or lesser extent. For instance, the cited Refinement Engine for Acting and Planning (REAP), an augmented version of the Refinement Acting Engine (RAE), is a lead that is worth exploring to build a context-aware, adaptive and autonomous agent that plans and acts at run-time.

The BDI model has been shown to be highly expandable, e.g. incorporating planning capabilities. In future work we aim to develop the presented architecture in Figure 3, expanding even further the BDI model with goal-driven and responsible behavior, allowing agents to interpret and take into account user goals and values.

However, as previously said, smart homes are composed of heterogeneous objects. Therefore, the next step following the design of an agent capable of responsible goaldriven online adaptation is to tackle the coordination challenge of decentralised agents, in a variety of IoT environments, including the smart home.

Such a multi-agent system may inspire future smart homes to be better designed to human users, by being not only intelligent, adaptive and coordinated systems, but also autonomous and trustworthy. The home of the future truly smart is hopefully just a few years away, and with help from the advancements in research, specially the emergence of AI and IoT solutions, the next human generation may start seeing their home as an integral part of their very own family.
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