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Abstract
We propose a method for representing spatially correlated observation errors in

variational data assimilation. The method is based on the numerical solution of a

diffusion equation, a technique commonly used for representing spatially correlated

background errors. The discretization of the pseudo-time derivative of the diffu-

sion equation is done implicitly using a backward Euler scheme. The solution of the

resulting elliptic equation can be interpreted as a correlation operator whose kernel

is a correlation function from the Matérn family.

In order to account for the possibly heterogeneous distribution of observations, a

spatial discretization technique based on the finite element method (FEM) is cho-

sen where the observation locations are used to define the nodes of an unstructured
mesh on which the diffusion equation is solved. By construction, the method leads

to a convenient operator for the inverse of the observation-error correlation matrix,

which is an important requirement when applying it with standard minimization

algorithms in variational data assimilation. Previous studies have shown that spa-

tially correlated observation errors can also be accounted for by assimilating the

observations together with their directional derivatives up to arbitrary order. In the

continuous framework, we show that the two approaches are formally equivalent

for certain parameter specifications. The FEM provides an appropriate framework

for evaluating the derivatives numerically, especially when the observations are

heterogeneously distributed.

Numerical experiments are performed using a realistic data distribution from the

Spinning Enhanced Visible and InfraRed Imager (SEVIRI). Correlations obtained

with the FEM-discretized diffusion operator are compared with those obtained

using the analytical Matérn correlation model. The method is shown to produce an

accurate representation of the target Matérn function in regions where the data are

densely distributed. The presence of large gaps in the data distribution degrades the

quality of the mesh and leads to numerical errors in the representation of the Matérn

function. Strategies to improve the accuracy of the method in the presence of such

gaps are discussed.
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1 INTRODUCTION

Specifying background- and observation-error covariance

matrices (B and R, respectively) that are accurate approxima-

tions of the true error covariance matrices is a challenging

problem in operational data assimilation for the atmosphere

and ocean. Over the past two decades, there has been consid-

erable research devoted to the estimation of background-error

covariances, notably through the use of ensemble methods,

and to the development of covariance models for representing

them efficiently in B (e.g. the review articles by Bannis-

ter (2008a; 2008b; 2017)). Fewer studies have addressed the

estimation and modelling of observation-error covariances,

especially correlations. One key aspect of the problem for

variational data assimilation is that standard minimization

algorithms require an operator for the precision matrix R−1,

either for the computation of the gradient of the cost func-

tion or for preconditioning (Michel, 2018). Thus, even if we

have an accurate R operator at our disposal, we still need

to specify an efficient R−1 operator for computational pur-

poses. Designing such an operator for large problems can be

difficult.

In practice, certain assumptions are invoked that greatly

simplify the structure of R that is specified in operational data

assimilation systems. In particular, observation errors from

one observing system are assumed to be uncorrelated with

those from another observing system. In a multi-instrument

observing system, this assumption is usually extended to the

individual instruments themselves. As a result, R is defined

as a block-diagonal matrix where the specification of the

observation-error covariances associated with each block can

be treated independently for each observing system or instru-

ment. Despite this simplification, each block typically corre-

sponds to a large number of observations (e.g. several millions

for certain satellite observations).

Satellite radiance observations are well known to have cor-

related errors. For example, significant horizontal error cor-

relations in radiances have been diagnosed by Bormann et al.
(2010) for the Infrared Atmospheric Sounding Interferometer

(IASI) and by Waller et al. (2016a) for the Spinning Enhanced

Visible and InfraRed Imager (SEVIRI). Furthermore, highly

correlated observation errors are expected from future satel-

lite instruments, such as infrared sounders of the Meteosat

Third Generation, which will provide high-resolution infor-

mation about water vapour and temperature structures of the

atmosphere (Stuhlmann et al., 2005).

For radiances, it is customary to separate the vertical (or

inter-channel) correlations from the horizontal spatial corre-

lations. In recent years, substantial progress has been made in

representing inter-channel error correlations (Bormann et al.,
2010; Bormann and Bauer, 2010; Stewart et al., 2014; Weston

et al., 2014; Waller et al., 2016a; Campbell et al., 2017).

The size of the matrices required to represent these correla-

tions is rather small (less than 103 rows or columns), which

makes them straightforward to handle computationally using,

for example, Cholesky decomposition. A similar technique

has been used by Järvinen et al. (1999) to model temporal

correlations in surface pressure observations.

Matrices associated with horizontal correlations are much

larger than those associated with inter-channel or temporal

correlations. Furthermore, due to the irregular nature of the

spatial distribution of observations, they tend to have more

complicated structure than those associated with correlated

background error. These two features make horizontally cor-

related observation error difficult to handle computationally.

For this reason, horizontal correlations are often neglected

altogether, although this has to be done with caution, espe-

cially when considering high-density observations.

Rather than explicitly accounting for horizontal correla-

tions in R, mitigating strategies such as variance inflation,

thinning and “superobbing” are typically employed (Rabier,

2006). Inflating the observation-error variances has the effect

of downweighting the influence of the observations, as is the

case when correlations are explicitly accounted for. Thinning

is used to reduce the spatial and spectral resolution of the

observations (and hence their error correlations) by selecting

a reduced set of locations and channels. Superobbing com-

bines locations or channels at different positions and can help

reduce the observation-error variances as well as their corre-

lations. However, these procedures are ultimately suboptimal

as they involve discarding potentially valuable observational

information (Liu and Rabier, 2002; Dando et al., 2007; Stew-

art et al., 2008).

Brankart et al. (2009) proposed a method to account for

spatially correlated observation errors by focusing on mod-

elling R−1 rather than R. In particular, assuming that R is

constructed from an exponential function, then R−1 is very

sparse and can be accounted for indirectly by assimilating

the observations together with their spatial derivatives, where

the weights given to the spatial derivatives are related to

the length-scale of the (exponential) correlation function.

Chabot et al. (2015) discuss a related technique to account

for spatially correlated errors in image observations. The



method is appealing especially when the observations are suf-

ficiently structured to simplify the computation of the spatial

derivatives. For example, Ruggiero et al. (2016) used the

Brankart et al. (2009) method to account for spatially corre-

lated observation errors in simulated altimeter products from

the future Surface Water and Ocean Topography (SWOT)

satellite mission.

Following earlier work by M. Fisher at the European Cen-

tre for Medium-Range Weather Forecasts, Michel (2018) has

shown that it is possible to carry out the main correlation

operator computations on an auxiliary grid with simplified

structure. The correlation operator in the space of the (pos-

sibly unstructured) observations is then obtained using an

interpolation operator and its adjoint. While the method pro-

vides an efficient model for R, it does not lead to a convenient

and inexpensive expression for R−1, as required for vari-

ational data assimilation. Michel (2018) used a sequential

Lanczos algorithm to build a low-rank approximation of R−1

in terms of its dominant eigenpairs. However, the method can

be costly, as many eigenpairs may be required to obtain an

adequate approximation of R−1.

In this article, we present an alternative method for mod-

elling spatially correlated observation errors in variational

data assimilation. Our starting point for modelling correla-

tions in R is the framework for modelling correlations in

B for which an extensive body of research exists. How-

ever, many of the standard methods used for modelling

background-error correlations, such as those based on spec-

tral or (first-generation) wavelet transforms, require struc-

tured grids and thus are not appropriate for modelling R.

Diffusion operators can be used to model a class of correla-

tion functions from the Matérn family (Guttorp and Gneiting,

2006) and are popular for modelling B in ocean applications

of variational data assimilation (Weaver and Courtier, 2001;

Carrier and Ngodock, 2010). For numerical applications, the

diffusion method provides useful flexibility regarding the

choice of spatial and temporal discretization schemes. In par-

ticular, spatial discretization schemes based on the Finite

Element Method (FEM) or Finite Volume Method (FVM)

can be used to adapt the diffusion operator to an unstruc-

tured mesh, as desired for modelling R. Furthermore, tempo-

ral discretization schemes based on backward Euler implicit

methods provide immediate access to an inverse correlation

operator, which greatly simplifies the specification of R−1.

A similar method for modelling spatial correlations on an

unstructured mesh was developed by Lindgren et al. (2011)

for spatial interpolation (kriging) applications in geostatis-

tics and by Bui-Thanh et al. (2013) for modelling prior

(background-) error covariances in a seismic inverse problem.

Lindgren et al. (2011) (also Simpson et al. 2012; Bolin and

Lindgren 2013) use the fact that Gaussian fields with a spe-

cific covariance function are solutions to a linear stochastic

partial differential equation (SPDE). Solving the SPDE is a

convenient way of imposing this specific covariance struc-

ture on a random field. In fact, the SPDE can be inter-

preted as a stochastic diffusion equation and is related to

the “square-root” of a diffusion-based covariance operator. In

Lindgren et al. (2011), the SPDE is discretized on a triangu-

lar two-dimensional (2D) mesh, where the nodes of the mesh

include the locations of the observations as well as other loca-

tions where interpolated values are desired. In our approach,

the diffusion equation is also discretized on a triangular

2D mesh, which is built exclusively from the observation

locations (i.e. there are no additional nodes as in Lindgren

et al. 2011). This approach allows spatial correlations to be

modelled directly between observation locations, as required

for R.

The structure of the article is as follows. Section 2 intro-

duces the theoretical framework for correlation modelling

with the diffusion equation. In particular, this section dis-

cusses the relationship between the diffusion equation and

correlation functions from the Matérn family. Generaliza-

tions of the method are then introduced and discussed within

the context of modelling R for certain observation types.

Section 3 addresses the issue of discretizing the diffusion

equation on unstructured grids using the FEM. Here, we

derive explicit expressions for the operators R and R−1 in

terms of the components of the FEM-discretized diffusion

operator. In Section 4, we establish a formal link between

the diffusion-based approach and the method of Brankart

et al. (2009) that involves assimilating successive derivatives

of the observed field, up to a certain order. In Section 5,

the diffusion method is applied to a realistic distribution of

observations from SEVIRI and the accuracy of the method is

assessed by comparing results with the analytical Matérn cor-

relation model. Section 6 provides a summary and discusses

future research directions for improving the accuracy of the

method.

2 CORRELATION MODELLING
WITH A DIFFUSION OPERATOR

In this section, we introduce key aspects of the theory of

diffusion-based correlation operators, as required for our

study. We focus on correlation operators defined on the

Euclidean space R2 and subdomains of R2 since the appli-

cation considered in Section 5 concerns the modelling of 2D

spatial observation error correlations on a plane. The reader

can find a more general presentation in Weaver and Mirouze

(2013), and references therein, where diffusion-based correla-

tion operators are formulated on Euclidean spaces other than

R2 and on the sphere S2.

In what follows, we will adopt the notation where contin-

uous functions and operators are in italics, while vectors and

matrices are in boldface.



2.1 Correlation and covariance operators
We consider correlation operators on the spatial domain Ω
contained in R2. Let 𝑓 ∶ z → 𝑓 (z) be a square-integrable

function (𝑓 ∈ 𝐿2(Ω)) of the spatial coordinates

z = (𝑧
1
, 𝑧

2
)T ∈ Ω. A correlation operator  ∶ 𝑓 → [𝑓 ] is

an integral operator of the form

[𝑓 ](z) = ∫Ω
𝑐(z, z′)𝑓 (z′) dz′, (1)

where dz = d𝑧
1
d𝑧

2
is the Lebesgue measure on R2,

and 𝑐 ∶ (z, z′) → 𝑐(z, z′) is a correlation function where

(z, z′) ∈ Ω × Ω. The correlation operator is symmetric and

positive definite in the sense of the 𝐿2(Ω)-inner product:

∫Ω
[𝑓1](z)𝑓2(z) dz = ∫Ω

𝑓1(z)[𝑓2](z) dz,

∀𝑓1, 𝑓2 ∈ 𝐿2(Ω),

∫Ω
[𝑓1](z)𝑓1(z) dz > 0, ∀𝑓1 ∈ 𝐿2(Ω)∖0. (2)

Notably, the first of these properties implies that the cor-

relation function is symmetric: 𝑐(z, z′) = 𝑐(z′, z) for any pair

(z, z′) ∈ Ω × Ω. A correlation function also has unit ampli-

tude (𝑐(z, z) = 1).

For data assimilation, we need to define covariance oper-
ators. In particular, if 𝑓 ∈ 𝐿2(Ω) then  ∶ 𝑓 → [𝑓 ] is the

observation-error covariance operator defined as

[𝑓 ](z) = ∫Ω
𝑐(z, z′)𝑓 (z′) dz′, (3)

where 𝑐 ∶ (z, z′) → 𝑐(z, z′) = 𝜎(z)𝜎(z′)𝑐(z, z′) is the covari-

ance function, and 𝜎(z) =
√

𝑐(z, z) is the standard deviation

at the location z, which we assume is non-zero so that  is

strictly positive definite. Combining Equations 1 and 3 yields

the standard relationship

𝑓 (z′) = 𝜎(z′)𝑓 (z′),
[𝑓 ](z) = 𝜎(z)[𝑓 ](z),

}
(4)

which allows us to separate the specification of 𝜎(z) and . In

this study, we focus on computational aspects of specifying .

2.2 Inverse correlation and inverse
covariance operators
The inverse of the correlation operator  is defined as the

operator −1 ∶ 𝑔 → −1[𝑔] = 𝑓 where 𝑔 = [𝑓 ]. The inverse

correlation operator is also symmetric and positive definite in

the sense of the 𝐿2(Ω)-inner product:

∫Ω
−1[𝑔1](z) 𝑔2(z) dz =∫Ω

𝑔1(z)−1[𝑔2](z) dz,

∀𝑔1, 𝑔2 ∈ 𝐿2(Ω),

∫Ω
−1[𝑔1](z) 𝑔1(z) dz > 0, ∀𝑔1 ∈ 𝐿2(Ω)∖0.

In general, −1 is a differential operator, which cannot be

expressed as an integral operator with an ordinary function as

its kernel (as in Equation 1). However, it is possible to express

−1 as an integral operator if the kernel is considered to be a

sum of generalized functions (Jones, 1982).

If 𝑔̄ = [𝑓 ], then the inverse of the covariance operator 
is the operator −1 ∶ 𝑔̄ → −1[𝑔̄], where

𝑔(z′) = 1

𝜎(z′)
𝑔̄(z′),

−1[𝑔̄](z) = 1

𝜎(z)
−1[𝑔](z).

⎫⎪⎬⎪⎭ (5)

2.3 Matérn correlation functions
A well-known class of isotropic and homogeneous correlation

functions is the Matérn class (Stein, 1999; Guttorp and Gneit-

ing, 2006). Here, we are interested in a subclass of Matérn

functions that have the specific form

𝑐𝑚,𝓁(𝑟) =
22−𝑚

(𝑚 − 2)!

(
𝑟

𝓁

)𝑚−1

𝐾𝑚−1

(
𝑟

𝓁

)
, (6)

where 𝑚 > 1 is an integer, 𝐾𝑚(⋅) is the modified Bessel func-

tion of the second kind of order 𝑚, 𝑟 = ‖z − z′‖
2

is the

Euclidean distance between z and z′, and 𝓁 is a scale parame-

ter. The parameter 𝑚 controls the scale-dependent smoothness

properties of 𝑐𝑚,𝓁 , with larger values of 𝑚 providing more

selective damping at small scales. The parameter 𝓁 controls

the spatial extent of the smoothing.

Matérn functions with 𝑚 > 2 are differentiable at the ori-

gin (𝑟 = 0). For these functions, it is customary to define the

length-scale 𝐷 of 𝑐𝑚,𝓁 in terms of the local curvature of the

correlation function near the origin (the Daley length-scale).

It is a quantity of practical interest since it can be estimated

locally from derivatives of an ensemble of simulated errors

(Belo Pereira and Berre, 2006). In terms of 𝓁 and 𝑚, the

Daley length-scale of Equation 6 is given by (Weaver and

Mirouze 2013)

𝐷 =
√

2𝑚 − 4 𝓁. (7)

The Daley length-scale is the natural scale parameter

of the Gaussian function defined by 𝑐𝑔(𝑟) = exp(−𝑟2∕2𝐷2).
The Gaussian function can be derived as a limiting case of

Equation 6 as 𝑚 → +∞, with 𝓁 simultaneously decreased to

keep 𝐷 fixed (Weaver and Mirouze, 2013). The correlation

functions with small values of 𝑚 have fatter tails than those

with larger values of 𝑚 (for the same value of 𝐷), as illustrated

in Figure 1.
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When 𝑚 = 2, properties (2) still hold, but the correlation

functions are no longer differentiable at the origin. For these

functions, we can define the correlation length-scale as the

scale parameter 𝓁 itself or some other characteristic measure.

Correlation functions with 𝑚 = 2 are displayed in Figure 2

for different values of 𝓁. These functions have fat tails, and

sharper correlations near the origin than those of the differ-

entiable Matérn functions. We will come back to this point

in Section 5 when considering the application to SEVIRI

observations.

2.4 The inverse correlation operator
Let  ∶ 𝑓 → [𝑓 ] be the correlation operator that has

𝑐(z, z′) = 𝑐𝑚,𝓁(𝑟) given by Equation 6 as its kernel. Further-

more, suppose that Ω extends to include the whole of R2 and

that 𝑔 = [𝑓 ] and its derivatives vanish as 𝑟 → ∞. Since 𝑐𝑚,𝓁

is homogeneous,  is a convolution operator,

𝑔(z) = ∫
R2

𝑐𝑚,𝓁(z − z′)𝑓 (z′) dz′, (8)

and we can use the Fourier Transform (FT) to derive an

expression for −1 (e.g. Jones (1982)).

Let 𝑓 ∶ ẑ → 𝑓 (̂z), 𝑔 ∶ ẑ → 𝑔(̂z) and 𝑐𝑚,𝓁 ∶ ẑ → 𝑐𝑚,𝓁 (̂z)
denote the FT of 𝑓 , 𝑔 and 𝑐𝑚,𝓁 , respectively, where ẑ is the

vector of spectral wavenumbers. Taking the FT of Equation 8

yields

𝑔(̂z) = 𝑐𝑚,𝓁 (̂z) 𝑓 (̂z), (9)

where (Whittle, 1963)

𝑐𝑚,𝓁 (̂z) =
𝛾2(

1 + 𝓁2 ẑ2
)𝑚 (10)

and

𝛾2 = 4𝜋(𝑚 − 1)𝓁2. (11)

A necessary and sufficient condition for a homogeneous

and isotropic function to yield a positive definite operator, in

the sense of the second property in Equation 2, is that its FT

is non-negative (theorem 2.10 in Gaspari and Cohn (1999)).

This is clearly satisfied by Equation 10.

Let −1 ∶ 𝑔 → −1[𝑔] be the inverse correlation operator

and let 𝑓 = −1[𝑔]. From Equation 9, we have

𝑓 (̂z) = 1

𝑐𝑚,𝓁 (̂z)
𝑔(̂z). (12)

Taking the inverse FT of Equation 12 leads to the elliptic

equation (Whittle, 1963)

1

𝛾2
(𝐼 − 𝓁2𝛻2)𝑚𝑔(z) = 𝑓 (z), (13)

where 𝐼 is the identity operator and 𝛻2 ≡ 𝜕2∕𝜕𝑧2
1
+ 𝜕2∕𝜕𝑧2

2
is

the 2D Laplacian operator. We can then identify −1 as the

elliptic operator in Equation 13:

−1 = 1

𝛾2

(
𝐼 − 𝓁2𝛻2

)𝑚
. (14)

The constant 𝛾2 ensures that the correlation functions are

properly normalized to have unit amplitude. Notice that 𝛾2

has physical units of length squared and can be interpreted

as the natural “variance” of the Matérn covariance function

associated with the (unnormalized) elliptic equation.

On a finite domain Ω, Equation 13 must be supplied

with appropriate boundary conditions. In this study, we use

Neumann conditions on the boundaries of Ω. Because of

the boundary conditions, the correlation functions near the

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


boundaries are not of precise Matérn form (Mirouze and

Weaver, 2010). This has implications on the normalization

factor, which is no longer adequately described by a con-

stant (Equation 11) near the boundaries. This point will be

discussed further in Section 5.

2.5 Computational aspects
Consider a triangular mesh represented by a set of nodes

(z𝑖)𝑖∈[1,𝑝]. In this study, (z𝑖)𝑖∈[1,𝑝] are taken to be the observa-

tion locations at which spatial correlations need to be defined.

Applying the inverse correlation operator −1 numerically on

the mesh requires 𝑚 successive applications of a discretized

representation of the operator 𝐼 − 𝓁2𝛻2 (Equation 13). With

appropriately chosen basis functions, this is a straightfor-

ward and computationally inexpensive operation since it

involves multiplication by sparse matrices after discretiza-

tion. In contrast, to apply the correlation operator  in the

integral form (1) using the expression (6), one has to com-

pute 𝑐𝑚,𝓁(‖z𝑖 − z𝑗‖2
) for every pair (z𝑖, z𝑗), which becomes

unaffordable when the number of nodes (𝑝) is large. For this

reason, it is preferable to apply  by seeking a numerical

solution of the elliptic Equation 13 rather than attempting to

integrate Equation 1 numerically. Solving the elliptic equation

requires solving 𝑚 symmetric positive definite (SPD) lin-

ear systems in sequence, for which efficient methods are

available (e.g. Saad 2003 gives a general review). The numer-

ical aspects of the solution algorithm will be discussed in

Section 3.

2.6 Interpretation as an implicit diffusion
operator
Equation 13 can be interpreted as a semi-discretized represen-

tation of a standard diffusion equation using a backward Euler

temporal scheme. In particular, consider the 2D diffusion

equation
𝜕𝑔

𝜕𝑠
− 𝜅𝛻2𝑔 = 0, (15)

subject to the initial condition 𝑔(z)||𝑠=0
= 𝛾2𝑓 (z), and to

homogeneous Neumann boundary conditions 𝛻𝑔||𝜕Ω ⋅ n̂ = 0,

where n̂ is the unit outward normal vector to the bound-

ary 𝜕Ω, 𝛻 is the 2D gradient operator, and ⋅ denotes the dot

product. Here, 𝑠 represents a non-dimensional pseudo-time

coordinate, and 𝜅 is a constant pseudo-diffusion coefficient.

Discretizing Equation 15 using a backward Euler scheme

with a pseudo-time step of unit size (Δ𝑠 = 1) leads to the

semi-discrete elliptic equation(
𝐼 − 𝜅𝛻2

)
𝑔𝑛+1(z) = 𝑔𝑛(z), (16)

where 𝑛 is the pseudo-time discretization index, and

𝑔0(z) = 𝛾2𝑓 (z) is the “initial” condition. Considering the

diffusion problem on the pseudo-time interval 𝑛 = [0, 𝑚 − 1]
allows us to write Equation 16 in the form of Equation 13

with 𝜅 = 𝓁2 and 𝑔𝑚(z) = 𝑔(z). We can thus interpret the

self-adjoint operator

−1 =
(
𝐼 − 𝜅𝛻2

)𝑚
(17)

as an inverse diffusion operator acting backwards in

pseudo-time over 𝑚 steps.

2.7 More general functional shapes
Numerically “time”-stepping an implicitly formulated diffu-

sion equation is an efficient way to apply a correlation opera-

tor with Matérn kernel of the specific form (6). More general

correlation functions than those from the Matérn family can

be modelled by constructing −1 as a linear combination of

powers of the Laplacian operator (Weaver and Courtier, 2001;

Yaremchuk and Smith, 2011; Weaver and Mirouze, 2013):

−1= 1

𝛾̃2

(
𝐼−𝑎1𝓁2 𝛻2+𝑎2𝓁4 𝛻4+…+(−1)𝑝𝑎𝑞 𝓁2𝑞 𝛻2𝑞

)
, (18)

where 𝑞 is a positive integer, (𝑎𝑘)𝑘∈[1,𝑞] are constant coeffi-

cients, and 𝛾̃ is a normalization constant. The operator (14) is a

special case of Equation 18 with 𝛾̃ = 𝛾 , 𝑞 = 𝑚, and (𝑎𝑘)𝑘∈[1,𝑚]
defined by the binomial coefficient:

𝑎𝑘 ≡ 𝑏𝑘 = 𝑚!
𝑘!(𝑚 − 𝑘)!

. (19)

Following the procedure outlined in Section 2.4, we can

easily derive, from Equation 18, the FT of the kernel associ-

ated with :

𝑐 (̂z) = 𝛾̃2

1 + 𝑎1𝓁2 ẑ2 + 𝑎2𝓁4 ẑ4 +…+ 𝑎𝑞𝓁2𝑞 ẑ2𝑞
. (20)

Positiveness of 𝑐(̂z) ensures that the kernel (the inverse FT

of 𝑐) is a valid correlation function. This is clearly guaran-

teed when the coefficients (𝑎𝑘)𝑘∈[1,𝑞] are all positive. Negative

coefficients can be used to generate functions with damped

oscillatory behaviour about the zero-correlation axis, but spe-

cial care is required to ensure that the resulting formulation

leads to positive 𝑐 (̂z) (Weaver and Mirouze, 2013; Barth

et al., 2014). Negative correlations have been observed, for

example, in the simulation of roll errors with wide-swath

satellite altimeter measurements (Ruggiero et al., 2016).

2.8 Anisotropy and inhomogeneity
A further generalization is to replace 𝓁2𝑘𝛻2𝑘 in Equation 18

with
(
𝛻 ⋅ 𝜿𝛻

)𝑘
, where 𝛻⋅ is the 2D divergence operator, and

𝜿 is a constant (anisotropic) diffusion tensor; i.e. an SPD



2 × 2 matrix that allows the principal axes of the correlation

functions to be stretched and rotated relative to the axes of

the computational coordinates. This flexibility is desirable

for representing spatial observation-error correlations from

polar-orbiting satellites, whose principal axes may be prefer-

entially aligned with the along- and across-track directions of

the satellite path (Ruggiero et al., 2016).

For the Matérn family, the correlation functions associated

with a constant diffusion tensor are still given by Equation 6,

but with the normalized distance measure 𝑟∕𝓁 replaced with√
(z − z′)T𝜿−1(z − z′). Furthermore, the parameter 𝓁2 in the

normalization constant (11) for −1 must be replaced with√
det(𝜿), where det is the determinant.

Spatially constant correlation functions can be overly

restrictive. This is particularly true when representing correla-

tions of background error, which generally exhibit significant

spatial variations due to the heterogeneous nature of atmo-

spheric/ocean dynamics and of the observational network.

Spatial variations can also be present in observation-error

correlations. For example, Waller et al. (2016c) showed that

Doppler radar radial winds have error correlations that depend

on both the height of the observation and on the distance of

the observation away from the radar.

It is straightforward within the diffusion framework to

account for inhomogeneous error correlations by making the

diffusion tensor 𝜿(z) spatially dependent. With this exten-

sion, the exact analytical form of the underlying correlation

function is generally not known. However, when the spatial

variation of 𝜿(z) is sufficiently slow, the kernel of the integral

solution of Equation 13, with 𝛻 ⋅ 𝜿(z)𝛻 used instead of 𝓁2𝛻2,

can be expected to be approximately given by Equation 6

in the vicinity of a given point (Mirouze and Weaver, 2010;

Weaver and Mirouze, 2013; Yaremchuk and Nechaev, 2013).

The exact normalization factors are no longer constant

when the diffusion tensor is spatially dependent. For slowly

varying 𝜿(z), they can be approximated by (cf. Equation 11)

𝛾(z) ≈
√

4𝜋(𝑚 − 1)
√

det(𝜿(z)), (21)

or a suitably smoothed version of Equation 21 (Purser et al.,
2003; Yaremchuk and Carrier, 2012). Furthermore, to main-

tain symmetry of the correlation functions, they must be

introduced symmetrically in the elliptic equation:

1

𝛾(z)
(𝐼 − 𝛻 ⋅ 𝜿(z)𝛻)𝑚 1

𝛾(z)
𝑔(z) = 𝑓 (z). (22)

2.9 Estimating parameters of the
correlation model
The Matérn correlation model requires specifying the

smoothness parameter 𝑚 and scale parameter 𝓁. In the gener-

alized correlation models described in Sections 2.7 and 2.8,

the parameters to set are the coefficients (𝑎𝑘)𝑘∈[1,𝑞] of the

Laplacian operators up to order 𝑞 (instead of the single param-

eter 𝑚), and the spatially dependent diffusion tensors 𝜿(z)
(instead of the single parameter 𝓁).

The correlation model parameters need to be estimated

from knowledge of the actual observation-error statistics. For

this purpose, the a posteriori diagnostic from Desroziers et al.
(2005) is frequently used. This diagnostic provides an esti-

mate of the total observation-error covariances (i.e. the com-

bined components of measurement and representativeness

error) from the cross-covariances between the analysis and the

background residuals in observation space. The effectiveness

of the technique for estimating observation-error correlations

is discussed by Waller et al. (2016b). The statistics are usually

averaged in space and in time in order to increase the sample

size and thus improve the robustness of the estimated covari-

ances (Bormann et al., 2010; Bormann and Bauer, 2010;

Waller et al., 2016a; Michel, 2018). Together with the fact that

the method itself is based on some questionable assumptions,

this suggests that this diagnostic should be used to provide

only coarse estimates of the covariances. In this respect, the

basic two-parameter Matérn correlation function (Equation 6)

may be adequate for representing the statistics.

Some observation types may come equipped with an

instrument error simulator. In particular, this is the case

for the SWOT altimeter mission (Ubelmann et al., 2016).

Assuming that the sources of measurement error are accu-

rately modelled by the simulator, it can be used to provide

more detailed sample estimates of the measurement com-

ponent of the observation-error covariances. Ruggiero et al.
(2016) used the SWOT simulator to estimate parameters of

the Brankart et al. (2009) covariance model. Complementary

techniques for estimating the representativeness component

of the observation-error covariances are discussed in the

recent review article by Janjić et al. (2018).

When reliable, comprehensive estimates of the

observation-error covariances are available, the

multi-parameter formulations of the diffusion-based corre-

lation model are appropriate. The approach considered in

Sections 3 and 5 will focus on the two-parameter model, but

can be adapted to the more general cases if necessary.

3 FINITE ELEMENT
DISCRETIZATION

3.1 Motivation
We now investigate strategies to discretize the diffusion

Equation 13 in space. Given a set of observations at locations

(z𝑖)𝑖∈[1,𝑝], we wish to compute the solution of the diffusion

equation at these same locations. Hence our choice for dis-

cretizing Equation 13 is to build a computational mesh with

nodes at observation locations, so that the solution can be

computed directly at the nodes of this mesh. The FEM is one



popular class of discretization strategies well known for han-

dling such unstructured data distributions, and is the focus of

this article.

Efficient solution techniques for partial differential

equations (PDEs) convert a continuous operator problem

to a discrete problem by a suitable projection onto a

finite-dimensional subspace. Let Equation 13 be written as

𝑔0(z) = 𝛾(z)𝑓 (z),(
𝐼 − 𝓁2𝛻2

)
𝑔𝑛+1(z) = 𝑔𝑛(z) ; 𝑛 = [0, 𝑚 − 1],

𝑔(z) = 𝛾(z) 𝑔𝑚(z),

}
(23)

where the normalization factors have been introduced sym-

metrically as in Equation 22. This is necessary for numerical

applications, even with constant 𝓁, since the exact normal-

ization factors depend on the local accuracy of the numerical

solution (which depends on the local quality of the mesh) and

the boundary conditions. Here, we use Neumann boundary

conditions on the spatial domain of interest Ω.

The FEM is a standard technique for solving PDEs numer-

ically (Ciarlet, 2002; Brenner and Scott, 2013). The basic

procedure involves defining a variational formulation of the

infinite-dimensional continuous problem. This variational

formulation is then solved by approximating the solution

in a carefully chosen finite-dimensional subspace. Applying

this procedure to Equation 23 leads to a matrix formula-

tion of the diffusion equation in the space of the observa-

tions. We will outline the procedure below and show how

the resulting expressions can be used in formulations of the

observation-error covariance matrix and its inverse.

3.2 Galerkin approximation
Let (𝜑𝑗)𝑗∈ be an independent set of test functions used to dis-

cretize the diffusion equation. The (𝜑𝑗)𝑗∈ are called “degrees

of freedom” and  is a set of indices of finite cardinality. Mul-

tiplying both sides of the elliptic equation in Equation 23 by

𝜑𝑖 and integrating over Ω leads to the weak formulation of the

PDE:

∫Ω

(
𝐼 − 𝓁2𝛻2

)
𝑔𝑛+1(z)𝜑𝑗(z) dz =∫Ω

𝑔𝑛(z)𝜑𝑗(z) dz (24)

for 𝑗 ∈  and 𝑛 = [0, 𝑚 − 1].
Now we introduce the Galerkin approximation in which

𝑔𝑛(z) and 𝑔𝑛+1(z) are represented by finite expansions in terms

of (𝜑𝑖)𝑖∈ :

𝑔𝑛(z) =
∑
𝑖∈

𝛼
(𝑖)
𝑛 𝜑𝑖(z),

and 𝑔𝑛+1(z) =
∑
𝑖∈

𝛼
(𝑖)
𝑛+1

𝜑𝑖(z).

⎫⎪⎬⎪⎭ (25)

Substituting these expressions into Equation 24 and using

Green’s first identity together with Neumann boundary

conditions yields the matrix equation

(M + K)𝜶𝑛+1 = M𝜶𝑛, (26)

where 𝜶𝑛 is a vector containing the coordinates (𝛼(𝑖)
𝑛 )𝑖∈ , M is

the mass matrix, and K is the stiffness matrix, with elements

given by

M𝑖𝑗 = ∫Ω
𝜑𝑖(z)𝜑𝑗(z) dz, (27)

and K𝑖𝑗 = 𝓁2∫Ω
𝛻𝜑𝑖(z) ⋅ 𝛻𝜑𝑗(z) dz. (28)

The stiffness matrix K is symmetric and positive

semi-definite. The mass matrix M is symmetric and positive

definite since (𝜑𝑖)𝑖∈ form an independent set of functions.

It defines the weighting matrix for the 𝐿2(Ω)-inner prod-

uct measured with respect to vectors 𝜶𝑘 and 𝜶𝑙 of basis

coefficients; i.e.

∫Ω
𝑔𝑘(z) 𝑔𝑙(z)dz = 𝜶

T
𝑘M𝜶𝑙,

which using standard inner-product notation reads

⟨ 𝑔𝑘, 𝑔𝑙 ⟩𝐿2 (Ω)
= ⟨𝜶𝑘,𝜶𝑙 ⟩M . (29)

Applying Equation 26 on 𝑛 = [0, 𝑚 − 1] leads to a

sequence of linear systems(
M + K

)
𝜶1 = M𝜶0,(

M + K
)
𝜶2 = M𝜶1,

⋮(
M + K

)
𝜶𝑚 = M𝜶𝑚−1.

⎫⎪⎬⎪⎭ (30)

After multiplying both sides of Equations 30 by M−1, we

can combine the resulting equations into a single equation[
M−1

(
M + K

)]𝑚
𝜶𝑚 = 𝜶0,

which can be identified as the discretized formulation of −1

in Equation 17, defined for the vector 𝜶 of basis coefficients.

We denote this matrix operator by

L−1
M =

[
M−1

(
M + K

)]𝑚
, (31)

where the notation L−1
M indicates that this matrix

is self-adjoint with respect to the M-inner product

(Equation 29); i.e.

L−1
M = M−1

(
L−1

M

)TM. (32)

The self-adjointness of L−1
M with respect to the M-inner

product corresponds to the self-adjointness of −1 with



F I G U R E 3 Representation of one P1-FEM basis function and

its compact support. The function has a value equal to 1 at node z𝑖 and

a value of 0 at other nodes

respect to the 𝐿2(Ω)-inner product. The matrix ML−1
M is

symmetric in the usual sense.

3.3 Discrete diffusion operator
In this section, we drop the pseudo-time index 𝑛 for clarity of

notation. Let g be a vector of dimension card(), which con-

tains the values of g at observation locations (z𝑖), 𝑖 = [1, 𝑝].
Equation 25 describes the relation between the values g(z𝑖) at

observation locations and the coordinates (𝛼(𝑖))𝑖∈ of the basis

functions (𝜑𝑖)𝑖∈ . It can be written in matrix form as

g = G𝜶, (33)

where the elements of G are defined through the relation

G𝑖𝑗 = 𝜑𝑗(z𝑖), (34)

with 𝑗 ∈  and 𝑖 = [1, 𝑝]. In the following, we will only con-

sider the standard P1-FEM approximation for which G is

the identity matrix (card() = 𝑝). Therefore, we will later

omit G. Nevertheless, we note that other approximations lead

to more complex expressions for G (e.g. when the (𝜑𝑖)𝑖∈
are harmonic functions and G is the corresponding spectral

transform).

From now on, let us assume that a triangular mesh support-

ing the (observation) nodes is available, and that each node

𝑖 in this triangulation corresponds to the point z𝑖. Here, we

choose the basis functions (𝜑𝑖)𝑖∈ to be continuous and linear

inside each triangle, with the property (Ern and Guermond,

2004, chapter 8)

𝜑𝑖(z𝑗) = 𝛿𝑖𝑗 , (35)

where 𝛿𝑖𝑗 is the Kronecker delta. An immediate consequence

of Equation 35 is that G is the 𝑝 × 𝑝 identity matrix (I). As

already mentioned, this simple choice of basis functions cor-

responds to the P1-FEM and guarantees that every function

has a local compact support (Figure 3). In Equations 27 and

28, the integrals can be computed exactly over the triangular

nodes using standard integration techniques, since the inte-

grands are polynomials of at most second order (Canuto
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F I G U R E 4 Profile of the mass matrix M for the unstructured

satellite (SEVIRI) observations considered in Section 5. The profile of

the stiffness matrix K is similar. The labelling on the horizontal and

vertical axes corresponds to the column and row indices. The total

number of non-zero (nz) entries of the matrix is indicated below the

horizontal axis. The non-zero entries that appear far from the diagonal

correspond to boundary elements in the mesh (Section 3.6 gives a

discussion)

et al., 1987). (Higher-order finite elements may require using

a quadrature formula to evaluate the integrals.) Hence, the

non-diagonal entries M𝑖𝑗 and K𝑖𝑗 equal zero as soon as z𝑖 and

z𝑗 do not belong to the same triangle. Therefore, the choice of

the P1 element is responsible for the sparsity of the matrices

M and K. The profile of M for the unstructured distribution

of satellite observations considered in Section 5 is depicted in

Figure 4.

We can write the discrete form of the 𝐿2(Ω)-inner product

on the left-hand side of property (29) as

⟨ g, g ⟩W = gTWg, (36)

where W is a symmetric and positive definite matrix of

grid-dependent weighting factors. Since G = I from our

choice of basis functions, Equations 29, 33 and 36 imply the

simple relation

W = M . (37)

3.4 Formulation of R and R−1 in
variational assimilation
Consider the discrete form of the cost function in varia-

tional data assimilation, focusing on the observation term

𝐽o. Let d be a 𝑝-dimensional vector where 𝑝 is the num-

ber of assimilated observations. The 𝑖th component of d



corresponds to the difference between the 𝑖th observation and

its model counterpart. The observation term is formulated as

the R−1-norm of the difference vector:

𝐽o = 1

2
dT R−1 d,

where R is the (symmetric positive definite) observation-error

covariance matrix.

We can express R−1 in the standard factored form

R−1 = 𝚺−1 C−1 𝚺−1, (38)

where C−1 is the inverse of the observation-error corre-

lation matrix, and 𝚺 is a diagonal matrix containing the

observation-error standard deviations. Assuming that the

errors are correlated and modelled by a discretized diffusion

operator, then we can express C−1 as

C−1 = 𝚪−1W L−1
W 𝚪−1, (39)

where 𝚪2 is a diagonal matrix of normalization factors, and

L−1
W is the inverse diffusion operator, which is self-adjoint

with respect to the W-inner product (Lorenc, 1997; Weaver

and Courtier, 2001). The appearance of W in Equation 39

comes from the discrete representation of spatial integra-

tion implied by the 𝐿2(Ω)-inner product. Here, we have

implicitly assumed that d is the discrete representation of a

square-integrable function.

When the diffusion operator is discretized using the FEM

then, from Equation 37, Equation 39 becomes

C−1 = 𝚪−1M L−1
M 𝚪−1. (40)

Expressions for the covariance and correlation matrices

follow directly from Equations 31, 38 and 40:

R = 𝚺C𝚺 , (41)

where

C = 𝚪LM M−1 𝚪 (42)

and

LM =
[(

M + K
)−1M

]𝑚
. (43)

3.4.1 Square-root formulation
It is convenient to construct R and R−1 as factored products

R = V VT,

and R−1 =
(
V−1

)T V−1.

}
This factorization ensures that R and R−1 remain sym-

metric and positive definite in numerical applications.

Furthermore, it gives us access to a “square-root” operator

V, which is a valuable tool for randomization applications;

i.e. for generating a spatially correlated random vector with

covariance matrix equal to R, given white noise as an input

vector.

By restricting the number of diffusion steps 𝑚 to be even,

it follows from Equations 41, 42 and 43, and Equations 31, 38

and 39 that

V = 𝚺𝚪L1∕2
M

(
M−1∕2

)T
,

and V−1 =
(
M1∕2

)T L−1∕2
M 𝚪−1 𝚺−1,

}

where

L1∕2
M =

[(
M + K

)−1M
]𝑚∕2

,

and L−1∕2
M =

[
M−1

(
M + K

)]𝑚∕2
.

}

In deriving these expressions, we have used the relation

LM M−1 = L1∕2
M

(
M−1∕2

)TM−1∕2
(
L1∕2

M

)T
,

which follows from the identity (32) and the standard factor-

ization M = M1∕2
(
M1∕2

)T
for an SPD matrix.

3.5 Mass lumping
The expressions for C (Equations 42 and 31) and C−1

(Equations 40 and 43) involve the inverse of the mass matrix,

M−1. The choice of our basis functions renders M sparse and

hence amenable to the use of a sparse direct SPD solver based

on Cholesky decomposition. Nevertheless, it can be conve-

nient to simplify computations further by using a technique

known as mass lumping, which involves approximating the

consistent mass matrix M in Equation 31 with a diagonal

matrix M̃ called the lumped mass matrix. For the case of

the P1-FEM considered here, it is simply obtained by sum-

ming the coefficients of M on each row or column. This

process is equivalent to computing the integral Equation 27

using a low-order quadrature formula or replacing the basis

functions (𝜑𝑖)𝑖∈ with piecewise constant functions (𝜑̃𝑖)𝑖∈ on

each element (Canuto et al., 1987). Hence the formula for the

coefficients of M̃ becomes

M̃𝑖𝑖 =
∑

𝑗

M𝑖𝑗 =
∑

𝑗
∫Ω

𝜑𝑖(z)𝜑𝑗(z) dz.

In Section 5, we evaluate this approximation in terms of

its effect on the representation of Matérn correlations.

3.6 Boundary nodes and the inverse
correlation operator
The nodes added at the artificial boundaries of the domain are

required to make the elliptic problem well posed. However,



they do not correspond to actual observation locations, so

must be discarded once the correlation operator has been

applied. This specific feature of the correlation operator has

not been made explicit in the formulation of R presented in

Section 3.4, but has implications for the specification of the

inverse correlation operator, as discussed in this section.

Let Cb denote the correlation operator that includes the

extra boundary nodes. It is formulated as an FEM-discretized

diffusion operator according to Equation 42. A correlation

operator C associated with the actual observations can be

obtained from Cb using the formulation

C = S Cb ST, (44)

where S is a selection matrix (a rectangular matrix of 0s and

1s) that, together with ST, picks out the submatrix of Cb whose

elements correspond to the correlations at the actual observa-

tion locations. If 𝑝b denotes the number of boundary nodes,

then Cb is a full-rank (𝑝 + 𝑝b) × (𝑝 + 𝑝b) matrix, while C is a

full-rank 𝑝 × 𝑝 matrix.

The inverse correlation matrix associated with

Equation 44 is

C−1 =
(
S Cb ST

)−1
, (45)

which is not an explicit operator. To apply it requires solv-

ing a linear system. Rather than using Equation 45, we can

approximate the inverse as

C−1 ≈ C̃−1 = S C−1
b

ST, (46)

which is straightforward to apply using the expressions

presented in Section 3.4. However, the extent to which

Equation 46 is a good approximation of Equation 45 is not

obvious. As a trivial example, consider Cb to be a 2 × 2

correlation matrix (i.e. 2 nodes) with correlation coefficient

(off-diagonal element) equal to 𝜌. If S and ST act to select one

of the nodes, then C and C−1 have a single element equal to 1.

For comparison, C̃−1 has a single element equal to 1∕(1− 𝜌),
which shows that it is a good approximation of C−1 if the two

points are weakly correlated (𝜌 ≈ 0).

For the mesh used in our experiments, C̃−1 and

C−1 are practically equivalent: for a random vector v,‖C̃−1Cv − v‖∞ < 10−14. This is perhaps not surprising in

view of the simple analysis above, since the distance between

the artificial boundary nodes and the interior nodes is typi-

cally much larger than the correlation length-scale that is used

in our experiments (Section 5).

3.7 Computational aspects
The discrete inverse covariance matrix R−1 (taking into

account the approximation (46)) is built from a combina-

tion of diagonal matrices 𝚺−1, 𝚪−1 and M̃ (assuming a

lumped mass matrix), and a product of 𝑚 matrices involving

the left-scaled, shifted stiffness matrix, M̃−1
(
M̃ + K

)
. The

resulting operator is well suited for a parallelization strat-

egy based on domain decomposition in a distributed memory

environment, where the observations are split between pro-

cessors according to their spatial location, and Message Pass-

ing Interface communications are performed at the domain

boundaries before each application of the stiffness matrix. As

an operator, R−1 can be applied cheaply and is therefore ideal

in variational data assimilation for minimization algorithms

that require R−1, but not R.

Applying R is computationally more demanding than

applying R−1. The discrete covariance matrix R is built from

a combination of diagonal matrices 𝚺, 𝚪 and M̃−1, and a prod-

uct of 𝑚 matrices involving the right-scaled, inverse of the

shifted stiffness matrix,
(
M̃ + K

)−1M̃. An efficient way to

apply the latter is to solve, in sequence, each of the linear sys-

tems in Equation 30 involving the sparse symmetric positive

definite matrix M̃ + K.

The sparsity of M̃ + K depends on the orthogonality of

the basis functions (𝜑𝑖)𝑖∈ with respect to the 𝐿2(Ω)-inner

product. We have chosen here to use compactly supported

piecewise polynomial functions, which results in a large num-

ber of zero entries in K (and M). Choosing different types of

function would result in alternative covariance operators that

would generally be more costly to apply.

For most applications related to 2D computational

domains, the linear systems in Equation 30 can be solved up to

machine precision using a direct method based on Cholesky

decomposition (Duff et al., 1989; Davis, 2006). Iterative

methods can be used to solve the linear system approxi-

mately when the size of the matrix is very large. Weaver et al.
(2016) highlight the importance of using a linear iterative

solver, together with the adjoint of the solver, in a square-root

formulation of the correlation matrix in order to preserve

numerical symmetry of the correlation matrix when using a

modest convergence criterion. Linear iterative solvers based

on multi-grid (Gratton et al., 2011) or the Chebyshev Itera-

tion (Weaver et al., 2016; Weaver et al., 2018) are particularly

well suited for this problem.

For the experiments described in Section 5, a direct

method has been used to solve the linear systems in

Equation 30 to an accuracy largely below the discretization

error of the FEM.

4 LINK BETWEEN A
DIFFUSION-BASED COVARIANCE
MODEL AND ASSIMILATING
DERIVATIVES OF OBSERVATIONS

The method of Brankart et al. (2009) for accounting for cor-

related observation errors has gained popularity in recent

years, particularly in oceanography for the assimilation of



high-resolution altimeter data from SWOT (Ruggiero et al.,
2016). The Brankart method involves assimilating the obser-

vations together with successive derivatives of the observa-

tions. This method can be viewed, under certain assumptions,

as a diffusion-based approach for modelling correlated error.

The purpose of this section is to establish a formal mathemati-

cal link between the two methods in order to help improve our

understanding of the advantages and disadvantages of each

method.

4.1 Continuous formulation
The approach presented in Brankart et al. (2009) involves lin-

early transforming the observations into an augmented set of

observations. In this subsection, we consider the approach in

a continuous framework before treating the discrete problem

in the next subsection. Let the observations be denoted by

a continuous function 𝑦 ∶ z → 𝑦(z) where 𝑦 ∈ 𝐿2(Ω). We

introduce the linear transform operator  [𝑦] such that the

resulting function contains both 𝑦 and successive derivatives

of 𝑦. Brankart et al. (2009) focus mainly on assimilating the

first-order derivatives of 𝑦, while Ruggiero et al. (2016) con-

sider both first- and second-order derivatives of 𝑦. While it is

possible to assimilate higher-order derivatives, for reasons of

clarity, we choose to consider only the first- and second-order

derivative information, as in Ruggiero et al. (2016). This will

be sufficient to illustrate the link with the diffusion approach.

We adopt similar notation to that of Brankart et al. (2009)

and, as in the previous section, we focus on the domain Ω
contained in R2.

The Brankart method involves formulating the inverse

observation-error correlation operator as

−1
B

=  T
(+)−1 , (47)

where(+)−1 = diag
(
𝑎0𝐼, 𝑎1𝐼, 𝑎2𝐼, 𝑎3𝐼, 𝑎4𝐼, 𝑎5𝐼

)
,

and the operator  and its transpose are defined as

 =

⎛⎜⎜⎜⎜⎜⎝

𝐼
𝜕∕𝜕𝑧

1

𝜕∕𝜕𝑧
2

𝜕2∕𝜕𝑧2
1

𝜕2∕𝜕𝑧2
2

𝜕2∕𝜕𝑧
1
𝜕𝑧

2

⎞⎟⎟⎟⎟⎟⎠
(48)

and

 T =
(

𝐼 − 𝜕

𝜕𝑧
1

− 𝜕

𝜕𝑧
2

𝜕2

𝜕𝑧2
1

𝜕2

𝜕𝑧2
2

𝜕2

𝜕𝑧
1
𝜕𝑧

2

)
.

The elements (𝑎𝑖)𝑖=[0,5] can be functions of z but here

we consider them to be constant. The last component of

 involving cross-derivatives is not considered by Brankart

et al. (2009) or Ruggiero et al. (2016), but is required here

to compare with the 2D diffusion-based formulation since

the latter involves powers of the Laplacian operator in a gen-

eral coordinate system z = (𝑧
1
, 𝑧

2
)T, where 𝑧

1
and 𝑧

2
are not

necessarily aligned with the principal axes of the 2D cor-

relation functions. The operator
(+)−1

is to be interpreted

as the inverse error covariance operator of the augmented

set of observations 𝑦, 𝜕𝑦∕𝜕𝑧
1
, 𝜕𝑦∕𝜕𝑧

2
, 𝜕2𝑦∕𝜕𝑧2

1
, 𝜕2𝑦∕𝜕𝑧2

2
,

𝜕2𝑦∕𝜕𝑧
1
𝜕𝑧

2
∈ 𝐿2(Ω). The operator −1

B
is symmetric with

respect to the 𝐿2(Ω)-inner product. Note that the compo-

nents of the second derivatives are symmetric, while those

of the first derivatives are anti-symmetric (Tarantola, 2005,

pp. 130–131).

Expanding Equation 47 allows us to write

−1
B

= 𝑎0 − 𝑎1
𝜕2

𝜕𝑧2
1

− 𝑎2
𝜕2

𝜕𝑧2
2

+ 𝑎3
𝜕4

𝜕𝑧4
1

+ 𝑎4
𝜕4

𝜕𝑧4
2

+ 𝑎5
𝜕4

𝜕𝑧2
1
𝜕𝑧2

2

. (49)

Now consider the inverse of an implicit diffusion-based

covariance operator assuming that the variance 𝜎2 is constant:

−1 = 1

𝜎2𝛾2

(
𝐼 − 𝓁2𝛻2

)𝑚
. (50)

(Equation 14 gives the corresponding inverse correlation

operator). By comparing Equations 49 and 50, it is easy to see

that they are equivalent when 𝑚 = 2 and when the elements

of
(+)−1

are chosen to be

𝑎0 = 1

𝜎2𝛾2
,

𝑎1 = 𝑎2 = 2𝓁2

𝜎2𝛾2
,

𝑎3 = 𝑎4 = 𝓁4

𝜎2𝛾2
,

and 𝑎5 = 2𝓁4

𝜎2𝛾2
.

The equivalence of the two methods is easily general-

ized to account for an arbitrary value of 𝑚 by augmenting

Equation 48 to include derivatives and cross-derivatives of 𝑦

up to order 𝑚, and by extending
(+)−1

to include additional

coefficients defined appropriately in terms of the binomial

coefficients (Equation 19).

Unlike the diffusion-based approach, the Brankart method

does not distinguish the inverse of the correlation operator

from the inverse of the covariance operator. The parameters

𝜎2, 𝛾2 and 𝓁 are defined jointly via the coefficients 𝑎𝑘. Pro-

cedures for estimating these coefficients as spatially depen-

dent quantities are described by Ruggiero et al. (2016) and

Yaremchuk et al. (2018). In the diffusion-based approach, the



parameters 𝜎2 and 𝓁 (or, in general, the diffusion tensor 𝜿),

and spatially dependent generalizations of these parameters,

can be estimated separately based on knowledge of the under-

lying (Matérn) covariance function to which sample estimates

of the covariances can be fitted. The relationship between the

two methods becomes more difficult to quantify as soon as

the parameters are made spatially dependent.

4.2 Discrete formulation
Consider the expression for the inverse of the covariance

matrix associated with an FEM diffusion-based formulation

for 𝑚 = 2. From Equations 31, 38 and 40,

R−1 = 𝚺−1 𝚪−1
(
M + K

)
M−1

(
M + K

)
𝚪−1 𝚺−1

= 𝚺−1 𝚪−1
(
M + 2K + KM−1K

)
𝚪−1 𝚺−1,

which can be written as

R−1 = 𝚺−1 𝚪−1 T̂T
(
R̂+)−1 T̂𝚪−1 𝚺−1, (51)

where

T̂ =
⎛⎜⎜⎝
(
M1∕2

)T(
K1∕2

)T

M−1∕2 K

⎞⎟⎟⎠ ,
(
R̂+)−1 =

( I
2I

I

)
,

K = K1∕2
(
K1∕2

)T
and M = M1∕2

(
M1∕2

)T
.

The length-scales (diffusion tensor elements) are hidden

in the definition of K. If we assume a constant length-scale 𝓁,

then we can make it explicit in the expressions above by writ-

ing K = 𝓁2K̂. If we assume further that Σ = 𝜎I and Γ = 𝛾I,

then Equation 51 can be written in the Brankart form

R−1 = TT
(
R+)−1 T,

where

T =
⎛⎜⎜⎜⎝
(
M1∕2

)T(
K̂ 1∕2

)T

M−1∕2 K̂

⎞⎟⎟⎟⎠ and
(
R+)−1= 1

𝜎2𝛾2

(I
2𝓁2I

𝓁4I

)
.

Note that M does not contain any information about

derivatives, while K contains products of gradients

(Equations 27 and 28). Therefore, multiplying by M1∕2,(
K̂1∕2

)T
and M−1∕2K̂ corresponds to differentiation to the

zeroth, first and second order, respectively (cf. Equation 48).

The FEM diffusion-based approach has distinct advan-

tages over the Brankart method for unstructured meshes

resulting from sparse or heterogeneously distributed observa-

tions. The discretization of operator  in Equation 48 relies

directly on the ability to estimate first- and second-order

derivatives on the mesh supporting the observations. While

this is straightforward when considering structured data on

regular grids, it becomes difficult when gaps appear in the

spatial distribution of the observations. The FEM discretiza-

tion described in this study offers a natural framework for

handling such difficulties. As the computations rely on the

triangulation supporting the observations, the derivatives

are estimated at each point using all the information in its

neighbourhood. This approximation involves all neighbour-

ing points, even those that are close but do not share exactly

the same latitude or longitude.

5 APPLICATION TO
UNSTRUCTURED SATELLITE
OBSERVATIONS

In this section, we consider a realistic distribution of

satellite observations from SEVIRI to illustrate how the

FEM-discretized diffusion operator can be used to represent

spatially correlated errors. In doing so, we discuss the accu-

racy of the method by comparing results with those obtained

using the theoretical reference (Matérn) correlation function

that the diffusion model is intended to represent.

5.1 SEVIRI observations
SEVIRI is a radiometer on board the Meteosat Second Gen-

eration satellite, which measures radiances at the top of the

atmosphere from 12 different spectral channels (Schmetz

et al., 2002). SEVIRI radiances provide useful information

about temperature and humidity in the troposphere and lower

stratosphere. In global numerical weather prediction, SEVIRI

radiances are usually assimilated through the clear-sky radi-

ance product, which undergoes cloud-clearing as well as

superobbing to 16 pixel × 16 pixel squares (Szyndel et al.,
2005). In the operational limited-area model AROME1 at

Météo-France, the raw SEVIRI radiances are assimilated

as described by Montmerle et al. (2007) with some recent

adjustments such as the use of a variational bias correction

(Auligné et al., 2007). The infrared channels are assimilated

in clear-sky conditions and above low clouds (table 1 of

Michel 2018). In this study, we focus on radiances from Chan-

nel 5 (wavelength 6.2,𝜇m), which provides information about

humidity in the upper troposphere.

The SEVIRI measurements are known for having spatially

correlated observation errors (Waller et al., 2016a; Michel,

2018). Therefore, they are thinned at a spatial resolution of

70 km before assimilation in AROME. This thinning, as well

as the screening step to remove cloud-contaminated data,

results in a large proportion of observations being discarded.

1Applications de la Recherche à l’Opérationnel à Méso-Echelle (Seity et al.
2011).



It also causes gaps in the spatial distribution of the observa-

tions that depend on the meteorological situation. Those gaps

can be responsible for the presence of ill-shaped triangular

elements in the mesh supporting the observations.

5.2 Mesh generation
The spatial domain is that of AROME. It covers France

over an extended region 12◦W–16◦E, 37–55◦N. We define a

rectangular domain containing the observations, with outer

boundaries chosen far from the observation locations, rela-

tive to the correlation length-scale (see later), to minimize

boundary effects on the solution of the diffusion equation

in the interior of the domain. We impose Neumann bound-

ary conditions as they have been naturally accounted for in

Equation 26 through the elimination of the boundary terms

after integrating Equation 24 by parts. The mesh is then built

using a constrained Delaunay triangulation algorithm (Edels-

brunner et al., 1992), in such a way that the triangular nodes

are (exactly) located at the observation locations. Figure 5a,b

shows examples of the mesh generated from SEVIRI obser-

vation locations resulting from two different levels of obser-

vation thinning. Figure 5a corresponds to the mesh resulting

from the thinning algorithm used in the operational AROME

model. Figure 5b corresponds to the mesh used for the exper-

iments in this study. For this mesh, the total number of nodes

is 4980, of which 124 are additional nodes at the artificial

domain boundaries.

5.3 Impulse response of the spatial
correlation operator
In this section, we evaluate the quality of the spatial correla-

tions produced using the FEM-discretized diffusion operator

by comparing them to the those produced using the analytical

Matérn correlation function. We choose constant values for

𝑚 and 𝓁 to ensure consistency between the diffusion model

and analytical Matérn model. With constant parameters, these

models are expected, from theory, to give identical results.

The procedure for estimating the values of the parameters 𝑚

and 𝓁 is discussed below.

Actual estimates of observation-error correlations for

Channel 5 SEVIRI radiances have been computed by Waller

et al. (2016a) and Michel (2018) using Desroziers diagnos-

tics (Desroziers et al., 2005). A distinguishing feature of these

estimates is the sharpness of the correlations near the ori-

gin and the rather slow decay of the correlations at large

distances from the origin. As discussed in Section 2.3, this

suggests that a Matérn function with a value of 𝑚 = 2 is more

appropriate than a Matérn function with a larger value of 𝑚.

Therefore, we choose to use this value of 𝑚 for the diffusion

model. Furthermore, we use the Channel 5 correlation esti-

mates from figure 5a of Waller et al. (2016a) as a guideline

12°W 2°E 16°E

37.4°N

45.7°N

55.4°N

(a)

(b)

12°W 2°E 16°E

37.4°N

45.7°N

55.4°N

F I G U R E 5 Triangular mesh constructed from the locations of

SEVIRI measurements that have undergone (a) substantial and (b) mild

thinning. The average distance between observations after thinning is

approximately (a) 70 km and (b) 12 km. The thinning used to generate

the mesh in (a) is based on that used in the operational AROME

configuration at Météo-France. The experiments in this article employ

the mesh in (b). Thin or flat triangles are called “ill-shaped” because

their presence is likely to induce numerical errors

for choosing a value of 𝓁. In particular, we use their result

that the distance at which the Channel 5 correlations drop to

0.2 is about 80 km. Correlations beyond 0.2 can be considered

insignificant (Liu and Rabier, 2003). Assuming that the cor-

relation function is of Matérn type with 𝑚 = 2, then we can

invert Equation 6 to determine 𝓁 such that 𝑐𝑚,𝓁(80 km) = 0.2.

This gives 𝓁 = 32.5 km, which is the value of 𝓁 used in the

following experiments.

The spatial correlation function at a given point z𝑖 corre-

sponds to the 𝑖th column of the correlation matrix C. It can be

visualized by plotting the result of applying C to a vector that

has a value of one at z𝑖 and a value of zero at all other points.

Figure 6a displays the result of applying the diffusion-based

correlation operator (Equation (42) without mass lumping) at

six different points in the rectangular domain. The points have

been selected to be sufficiently far apart so that the correlation

functions do not intersect in any significant way. The points

have also been chosen to sample different characteristics of

the observation distribution. They include regions where the

distribution is dense, sparse, near large gaps, and next to

the artificial boundary nodes. A first, qualitative remark to

make is that, for all points, the diffusion operator produces

sensible, localized structures with spatial extent roughly con-

sistent with the prescribed length-scale and with maximum

amplitude close to one.
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F I G U R E 6 (a) Impulse response of the FEM diffusion-based

correlation operator at six points in the domain. (b) Difference between

the numerical response in (a) and the values of the corresponding

Matérn function centred on the same points [Colour figure can be

viewed at wileyonlinelibrary.com]

We can quantify the accuracy of the diffusion-modelled

correlation functions by computing their difference with the

corresponding Matérn function 𝑐𝑚,𝓁 . Denoting the difference

field by 𝜀𝑖(z𝑗), 𝑗 ∈ [1, 𝑝], then for each of the six points z𝑖,

𝑖 = [1, 6], we have

𝜀𝑖(z𝑗) = 𝐶𝑖𝑗 −
(
𝐶𝑚,𝓁

)
𝑖𝑗

,

where 𝐶𝑖𝑗 = 𝑐(z𝑗 , z𝑖) and
(
𝐶𝑚,𝓁

)
𝑖𝑗
= 𝑐𝑚,𝓁(𝑟𝑖𝑗), with

𝑟𝑖𝑗 = ‖z𝑗 − z𝑖‖2
, are the elements of the diffusion-modelled

and Matérn correlation matrices, respectively. The differ-

ence field is displayed in Figure 6b. The errors are small

in magnitude (less than 5%) for the points in the densely

observed regions, but are up to 20% for the points in sparsely

observed regions and near large data gaps. The errors

manifest themselves as inaccuracies in the diagonal and

off-diagonal elements of the correlation matrix. They are

mainly associated with ill-shaped elements in the mesh and

the boundary conditions. In the following subsections, we

present diagnostics to investigate these errors in more detail.

5.4 Accuracy of the diagonal elements of 𝑪
The diagonal elements of the diffusion-based correlation

matrix correspond to the amplitude (variance) of the corre-

lation function at each node and should be equal to one. To

quantify the amplitude errors of the actual estimates 𝐶𝑖𝑖, we

compute at each node 𝑖 the difference

𝜀
amp
𝑖

= 𝐶𝑖𝑖 − 1. (52)

The amplitude errors are shown in Figure 7. They appear

to be minimal far from the boundaries and away from large

data gaps. The errors associated with the latter are related to

the quality of the mesh in these regions. This will be discussed

further in Section 5.6.

The amplitude errors can be eliminated entirely by

re-normalizing the diffusion operator at each point using the

actual numerical values of the amplitude at each point.

The square root of the normalization factors are stored in

the diagonal matrix 𝚪 of Equation 40. To diagnose the exact

normalization factors requires as many applications of the

square root of the diffusion operator as the number of nodes

on the mesh. These computations are expensive, so approxi-

mate methods are usually used instead (Weaver and Courtier,

2001; Yaremchuk and Carrier, 2012). Randomization is one

such method, but requires a large number of random vectors

to reduce the amplitude error to a satisfactory level (e.g. 1,000

vectors are required to reduce the errors to about 4%). Ran-

domization is typically of interest for much larger problems

than the one considered in this study.

Near the artificial boundary nodes, Neumann boundary

conditions prevent flux exchanges across the boundary, caus-

ing the amplitude to double directly at points along straight

boundaries (Mirouze and Weaver, 2010, appendix B) and to

increase even more in the corners of the domain. The opposite

occurs with Dirichlet boundary conditions (i.e. the amplitude

is diminished near the boundaries). Procedures to correct the

amplitude near boundaries have been proposed in the litera-

ture. For example, Mirouze and Weaver (2010) show that the

correct amplitude can be obtained by redefining the correla-

tion operator as an average of two diffusion operators, one

that employs Neumann boundary conditions and the other

that employs Dirichlet boundary conditions. Their analysis

was based on solutions of the continuous, one-dimensional

(1D) diffusion equation in the presence of an isolated, straight

boundary. However, the method has limitations when applied

in higher dimensions and in the presence of complex geome-

try. Furthermore, since the method involves a sum of diffusion

operators, it results in a complicated expression for the inverse

of the correlation operator. For this latter reason in particular,

it is not considered appropriate for the problem at hand.

Building on the continuous, 1D theoretical analysis of

Mirouze and Weaver (2010), Mirouze and Storto (2016) pro-

posed a simple analytical correction to the normalization

factor near the boundary as an alternative to the less practical

“double-diffusion” approach of Mirouze and Weaver (2010).

With Neumann boundary conditions, their analysis suggests

that the normalization coefficient should be corrected by a

factor 𝜉 = 1∕{1 + 𝑐𝑚,𝓁(𝑟b)} where 𝑟b is the Euclidean dis-

tance to the closest boundary point. For example, directly at

the boundary, 𝜉 equals 1∕2 to compensate for the doubling

of the amplitude there with Neumann boundary conditions.

The expression for the correction factor also suggests that

http://wileyonlinelibrary.com
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F I G U R E 7 Amplitude error (Equation 52) at each node in the

domain [Colour figure can be viewed at wileyonlinelibrary.com]

nodes located at distances beyond the correlation length-scale

(i.e. such that 𝑐𝑚,𝓁(𝑟b) is small) will be largely unaffected

by the artificial boundaries. This point has been analyzed in

mathematical detail in a recent article by Khristenko et al.
(2018).

From Figure 7, it is interesting to notice that, apart

from a few isolated points in the interior of the domain,

the amplitude errors are negative; that is, the amplitude is

mostly underestimated. This suggests that, for the points

near the boundary nodes, the amplitude errors are domi-

nated by the effects of large or ill-shaped triangular elements

in the mesh, not the (Neumann) boundary conditions. Mov-

ing the boundary nodes closer to the interior nodes may

reduce the mesh-related errors but at the expense of increasing

the boundary condition-related errors. In such a case, correc-

tions like those proposed by Mirouze and Storto (2016) would

be needed.

5.5 Accuracy of the re-normalized
off-diagonal elements of 𝑪
The second kind of error concerns the overall shape of the

correlation function, which is associated with the accuracy

of the off-diagonal elements 𝐶𝑖𝑗 for 𝑖 ≠ 𝑗. Even if the ampli-

tude at a particular node is correctly specified (e.g. through

re-normalization), the correlation of that node with other

nodes might be underestimated or overestimated. We refer to

these inaccuracies as shape errors to distinguish them from

the amplitude errors discussed in the previous section.

To quantify the shape errors, we can compute the

normalized root mean square error (RMSE) between

the diffusion-modelled and analytical estimates of the

off-diagonal elements:

𝜀
shape
𝑖

=

(∑
𝑗

||𝐶𝑖𝑗 −
(
𝐶𝑚,𝑙

)
𝑖𝑗
||2)1∕2

(∑
𝑗

||(𝐶𝑚,𝑙

)
𝑖𝑗
||2)1∕2

, (53)
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F I G U R E 8 Normalized RMSE of the shape of the correlation

function centred on each node in the domain (Equation 53) [Colour

figure can be viewed at wileyonlinelibrary.com]

where

𝐶𝑖𝑗 =
𝐶𝑖𝑗√

𝐶𝑖𝑖

√
𝐶𝑗𝑗

is the exactly normalized 𝑖𝑗th element of matrix C.

The shape errors are shown in Figure 8. They exhibit the

same basic structure as the amplitude errors in Figure 7, with

smallest errors at points where there is a high density of obser-

vations and largest errors at points near data gaps and the

boundary regions. For the latter, the magnitude of the errors is

generally between 10 and 30%, but reaches up to 50% at a few

points. Errors within this range (< 30%) can still provide a

better approximation to R than assuming strictly uncorrelated

errors (Stewart et al., 2013).

5.6 Link between the accuracy of 𝑪 and
the quality of the mesh
The accuracy of the diagonal and off-diagonal elements of

the correlation matrix generated by the FEM-discretized dif-

fusion operator is closely linked to the quality of the mesh.

In this section, we provide an additional diagnostic to explore

this link further.

The aspect ratio (𝑎(𝜏)) of a triangular element 𝜏 is used

to compute error bounds in standard applications of the FEM

(Ern and Guermond, 2004, section 1.5.1):

𝑎(𝜏) = ℎ(𝜏)
𝜌(𝜏)

, (54)

where ℎ(𝜏) is the size of the largest side of 𝜏 and 𝜌(𝜏) is

the radius of its inscribed circle (Figure 9). A large value

of the aspect ratio indicates the presence of “flat” elements in

the mesh (depicted schematically by the triangular element in

the middle in Figure 9), which are typically responsible for

causing interpolation errors. The aspect ratio has the property

of being scale-invariant; i.e. it only depends on the measure

of the angles, but is not affected by the actual size of the

edges. Therefore, in using the aspect ratio as a criterion for

mesh quality, there is an implicit assumption that the mesh

size is locally homogeneous; i.e. any two elements found in

the same region of the mesh are assumed to be approximately

http://wileyonlinelibrary.com
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F I G U R E 9 Inscribed circle with radius rho (𝜌 in Equation 54)

and circumcircle with radius 𝑟 for three different types of triangular

elements whose largest side is denoted by ℎ. The large and “flat”

triangular elements correspond to elements of poor quality; they have a

large circumradius. The small triangular element corresponds to an

element of good quality; it has a small circumradius

the same size, so that their “quality” only differs in their aspect

ratio. This is generally ensured by mesh generators in standard

applications of the FEM in numerical modelling.

However, in our application, the mesh is constrained

by the observation locations, which can result in contigu-

ous elements of very different sizes. As a consequence, the

mesh generated from the observations does not satisfy the

local homogeneous assumption required for the aspect ratio

(Equation 54) to be a reliable indicator of mesh quality.

Therefore, we seek an alternative indicator that detects the

presence of overly-large elements as well as ill-shaped ele-

ments (depicted schematically by the triangular elements on

the left and in the middle in Figure 9). Here, we propose the

value of the circumradius 𝑟(𝜏) as one such indicator. It has the

advantage of being high both when the triangles contain large

angles (large aspect ratio) and when their size is significantly

larger than others in the mesh.

There is no guarantee that, given a mesh constructed from

an arbitrary distribution of observations, the FEM will lead

to small errors in both shape and amplitude. On the contrary,

heterogeneously distributed observation locations may cause

the elements in the mesh to become ill-shaped, thus leading

to increased errors in the FEM discretization. Figure 10 mea-

sures the mesh quality for the SEVIRI observation locations

in terms of the circumradius of each triangle. Comparing this

figure with the error maps (Figures 7 and 8) shows that the

locations of the largest errors in both shape and amplitude are

highly correlated with the presence of triangles with a large

circumcircle radius.

One possible way to improve the quality of the mesh is to

eliminate those observations that lead to ill-shaped elements

in the FEM. Since the number of observations assimilated in

current operational weather prediction systems is very small

compared to the number of observations that is actually avail-

able (in some cases the number is smaller than 1% of the

original set), performing an additional selection of obser-

vations based on a mesh-generation criterion is unlikely to

degrade this ratio significantly. In such a case, removing a few

observations would seem to be a reasonable compromise for
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each node in the domain. For each node in the triangulation, the largest
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the values of these maximum circumradii at all nodes, including those

on the artificial boundary [Colour figure can be viewed at
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building a suitable mesh. However, finding an objective cri-

terion to do this correctly is non-trivial. Furthermore, in an

operational environment, it would need to be automated and

designed to reject as few observations as possible. While an

interesting possibility, it is left as a future research direction

to develop this idea further.

Another possibility to improve the accuracy of the method

is to introduce artificial nodes in order to provide a mesh of

better quality. This procedure could be automated using stan-

dard mesh-refinement techniques (Ern and Guermond, 2004,

chapter 10), and thus seems particularly appealing. However,

it leads to complicating issues similar to those encountered by

Michel (2018) (and discussed in Section 3.6 for the particular

case of the boundary nodes) concerning the representation of

C−1.

Even in areas where the mesh-related errors are largest,

the FEM-based diffusion operator produces a reasonable rep-

resentation of the spatial correlations, which may be ade-

quate for practical applications, especially in view of our

typically inaccurate knowledge of the true observation-error

covariances. As pointed out by Stewart et al. (2008;

2013), it is generally better to have a slightly approxi-

mate model for the correlations in R than to neglect them

altogether. Using simple analytical models, Fisher (2007)

(also section 4.9 in Daley 1991) examined the effects of

mis-specifying background-error covariance parameters on

analysis error. His simple scalar example, which illustrates

the effects of mis-specifying the background-error variance,

is equally applicable to the problem of mis-specifying the

observation-error variance. Specifically, his figure 3 shows

that the analysis error standard deviation is degraded by

less than 5% when the background- or observation-error

variance is mis-specified by a factor between 0.5 and 2.

This is within the amplitude mis-specification bounds in our

experiment, which are roughly between 0.5 and 1.2 when

using an analytical estimate of the normalization factors

(Figure 7).
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F I G U R E 11 (a) Amplitude error at each node in the domain

(Equation 52), and (b) normalized RMSE of the shape of the

correlation function centred on each node in the domain (Equation 53),

when the mass lumping approximation is used (cf. Figures 7 and 8)

[Colour figure can be viewed at wileyonlinelibrary.com]

5.7 Effect of mass lumping
We recall from Section 3.5 that mass lumping results in a

diagonal approximation of the mass matrix. In this section,

we examine the effect of mass lumping on the representa-

tion of the Matérn correlation functions. The amplitude and

shape errors that result from using a mass-lumped matrix are

shown in Figure 11a,b, respectively. These figures should be

compared with Figures 7 and 8, which are the corresponding

errors resulting from using the consistent (unapproximated)

mass matrix.

The amplitude and shape errors associated with the

mass-lumped correlation matrix have similar structures to

those associated with the consistent mass matrix. This implies

that any mesh-dependent criterion used to predict the errors

in the consistent mass formulation will also be relevant for

the mass-lumped formulation. However, the magnitude of the

errors is significantly larger at some points near data gaps and

about 10% larger in areas where there is a high density of

observations. Furthermore, mass lumping has a tendency to

overestimate the amplitude, as evident by the large patches of

positive error in Figure 11a.

6 SUMMARY AND DISCUSSION

In this article, we addressed modelling and computa-

tional issues that arise when accounting for spatially

correlated observation errors in variational data assimila-

tion. Key requirements include the need to handle large

covariance matrices, built from heterogeneously distributed

observations, and the need to provide an efficient operator for

the inverse of the observation-error covariance matrix (R−1)

as well as the observation-error covariance matrix (R) itself.

We showed how to construct a spatial correlation oper-

ator for observation error using a diffusion operator that is

discretized with a finite element method (FEM) on a trian-

gular 2D mesh whose nodes are defined by the observation

locations. The basic technique has many similarities to the

stochastic PDE approach developed by Lindgren et al. (2011)

for spatial interpolation in geostatistical applications.

The theoretical basis of the diffusion operator approach

to correlation modelling is well documented. Here, we con-

sidered a diffusion operator that results from integrating a

diffusion equation over a finite number of steps with a back-

ward Euler (implicit) scheme. The re-scaled solution of the

resulting elliptic equation can be interpreted as a correla-

tion operator whose kernel is a correlation function from the

Matérn family. Crucially, the elliptic operator itself provides

the corresponding inverse correlation operator, which can be

used for defining R−1.

In the continuous framework of spatial correlation mod-

elling, we established a formal link between the diffusion

operator approach and the method of assimilating directional

derivatives of the observations, up to arbitrary order, as pro-

posed by Brankart et al. (2009). While the two methods are

closely related, the diffusion framework offers better con-

trollable flexibility and a clearer connection with theoretical

correlation models. In the discrete framework, we showed

how the Brankart method can be adapted to an unstruc-

tured mesh, by formulating the numerical representation of

the derivative operators in terms of the mass and stiffness

matrices of the FEM-discretized diffusion operator.

The correlation model based on a FEM-discretized diffu-

sion operator was evaluated on an operational dataset from

SEVIRI. To assess the accuracy of the method, results were

compared to those produced using the analytical Matérn func-

tion, which should be identical for the constant correlation

parameter settings considered. A qualitative assessment of

the spatially correlated fields centred at various points in the

domain showed that the diffusion operator produced sensi-

ble structures, with amplitude close to one and spatial scale

roughly consistent with the length-scale (square-root of the

diffusion coefficient) that was specified. This was the case

even in areas where the distribution of observations was

extremely irregular.

To quantify the numerical errors, we evaluated sep-

arately the diagonal and off-diagonal elements of the

diffusion-modelled correlation matrix. The diagonal elements

are associated with the amplitude of the modelled correlation

functions centred at each point. They were compared with

their expected value of one. The errors were shown to be small

(< 5%) for points in densely observed regions, but reached

20% for points in sparsely observed regions and near large
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data gaps. In practice, amplitude errors can be corrected using

a re-normalization procedure, although to do so accurately

can be costly for very large datasets.

The off-diagonal elements from the perfectly

re-normalized diffusion-modelled matrix were compared

with those from the correlation matrix built from the Matérn

function. Discrepancies between the two are associated with

inaccuracies in the overall shape of the modelled correlation

function centred at each point. The shape errors were shown

to have a similar spatial structure to the amplitude errors,

with errors generally between 10 and 30%. Using the mass

lumping approximation for the mass matrix led to a further

increase in the magnitude of the errors of about 10%, but did

not change the spatial structure of the errors.

Further analysis showed that the largest errors occurred

predominantly in areas where the triangular elements in the

mesh were ill-shaped; that is, either too “flat” or too “large.”

A diagnostic based on the radius of the circumcircle of an ele-

ment was shown to be a reliable indicator of the quality of the

mesh, with large (small) radii being well correlated with large

(small) shape and amplitude errors. Although not explored in

this study, one interesting possibility to improve the accuracy

of the method is to reduce the number of ill-shaped ele-

ments in the mesh by using the circumcircle diagnostic in an

objective data-thinning criterion prior to the data assimilation

step.

Rather than thinning the data to improve the accuracy of

the method, another possibility is to refine the mesh by adding

extra nodes in areas where observations are missing, as in the

Lindgren et al. (2011) approach. This procedure results in an

auxiliary (higher resolution) mesh, different from the one sup-

porting only the observations, on which the main computa-

tions are carried out. An interpolation operator and its adjoint

are required to transfer fields between the original mesh and

the auxiliary mesh, which results in an R operator with rect-

angular matrix components, as in the method described by

Michel (2018). Therefore, although this approach provides a

convenient and more accurate model for R, it leads to diffi-

culties in defining R−1, which can no longer be represented

as an explicit operator.

The method described in this article is generic and could

be adapted to other observation types, such as Doppler radar

observations, and satellite-derived sea-surface temperature

and altimeter observations, which are known to have spatially

correlated errors.
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