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Design procedure for linear unknown input
functional observers

Imane SAKHRAOUI, Baptiste TRAJIN, Frédéric ROTELLA

Abstract—This paper considers an iterative procedure to
design a minimum possible order unknown input functional
observer for linear time-invariant (LTI) systems. Necessary and
sufficient conditions for the existence of the observer are given.
The proposed procedure is simple and is based neither on the
solution of a generalized Sylvester equation nor canonical forms.
This procedure can be easily implemented due to its incremental
form. The main feature of our procedure is then the simplicity
of the design. Moreover, in the case of a single functional to
be observed, a minimum order stable linear unknown input
functional observer is obtained.

Index Terms—Linear systems, time-invariant systems, un-
known input functional observers.

I. INTRODUCTION

For a dynamic system, the observation problem consists in
the estimation of some internal variables, that are not mea-
sured, from measurements given by sensors. From the seminal
works of Luenberger [1], [2], solutions of the observation
problem for a linear linear time-invariant system have been
conducted in two main ways. On the one hand, methods have
been developed for the design of linear functional observers
(LFO) of the state vector of the system. This way of designing
LFO, which has been considered in the first beginning of
the observers theory, leads to reduced order observers. On
the other hand, especially for diagnosis [3] or for robustness
purposes, the observation problem of the whole state with
unknown inputs or disturbances has led to design methods for
unknown input linear observers (UILO). Existence conditions
and algorithms of these observers have been reported in [4],
[5], [6], [7], [8], [9] and in the books [10], [11]. The cited
papers are only milestones and the interested reader can find
more details in the books and in the references therein.

Functional observers are a generalized version of ordinary
full order or reduced order Luenberger observers that aim at
reconstructing single or multiple functions of the states of
the system [4], [11], [12], [13]. These observers offer the
advantage to be of lower order compared to the ordinary
reduced order observers of the whole state. Nevertheless,
unknown or unmeasured inputs or disturbances acting on
the system have been recently considered in the design of
functional observers [14], [15], [16], [17], [18] and latest
developments can be found in [19], [20]. Minimality of the
order of these observers is yet an open problem. Indeed, it
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depends on the wanted objective with respect to the desired
eigenvalues of the observer. It is well known that the minimum
order required for a functional observer cannot be lower than
the number of functions that have to be estimated [11]. In fact,
there might exist some mechanisms to increase the order of
a functional observer or a UIFO, such that an asymptotically
stable observer can be obtained even under nondetectability
of the system [21], [22]. However, to cope with the design of
minimum possible order functional observer a methodology to
obtain a UIFO through an increase of the number of functional
to be observed is presented in [22]. However, between the
fixed-pole observer problem where the poles are specified at
the outset and the stable observer problem where the poles are
permitted to lie anywhere in the left half-plane, finding the
lowest possible order linear unknown input observer (LUIFO)
is one of the main challenges in this field of research that is
still not fully addressed [22].

Rewriting the necessary and sufficient conditions for the
existence of a stable UIFO for a linear system expressed in
[23], a direct and iterative procedure to get a minimal order for
a single stable linear functional observer has been proposed
in [24] and for multi-functional observers in [25]. The herein
presented paper extends these results towards minimality of
LUIFO. The proposed procedure is simple, iterative and is
not based on the solution of so-called Sylvester equation or
on the use of canonical state space forms. The term iterative
indicates that an increasing sequence for the order of the
observer is tested to obtain a possible minimal order. The main
feature of the proposed design procedure is the highlighting of
some degrees of freedom to place some poles of the obtained
observer.

The paper is organized as follows. In Section II, the well
known necessary and sufficient conditions for the existence of
a LUIFO are outlined. It is underlined that these conditions are
focussed on the existence of a linear relationship between the
state of the system and the state of the observer. To overcome
this difficulty, which has been the keypoint in the design of
linear observers over many years, Darouach has proposed
seminal criteria in [26] for LFO and in [23] for LUIFO.
In Section III the main results are claimed. A necessary
and sufficient condition is detailed for the existence of an
asymptotic observer. This necessary and sufficient condition
has been stated for linear functional observer where the inputs
are completely measured in [7], [27]. The sufficient condition
is proved here in the unknown input case. As a specific feature,
these conditions can be tested on the observation problem.
Section IV is devoted to the constructive proof of the main
result and the design procedure of the LUIFO. From the use of
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successive derivatives of state functionals, an usual realization 
method leads to obtain the observer. It can be remarked 
that the presented results extend the results in [28] in the 
case where unknown inputs are present. Finally, an example 
illustrates the procedure in Section V and points out the 
advantage of the proposed design regarding the previous ones. 
Moreover, this example offers the opportunity to illustrate the 
notion of degrees of freedom to, eventually, place some of the 
eigenvalues of the observer.

In all the following the following notations are used. 
M(m × n) is a constant matrix with m rows and n columns. 
In is the identity matrix of size n. 0(m × n) is a null matrix 
with m rows and n columns and, shortly, 0n is the square null 
matrix of size n. M [1] is any of the generalized inverses of the 
matrix M , it fulfills t he m atrix e quation M XM =  M , and, 
M† is the pseudo-inverse, namely it is the unique generalized 
inverse of M that fulfills t he M oore-Penrose s et o f equations 
(XMX = X , MXM = M , (XM)

> 
= XM , and,

(MX)
> 

= MX) [29]. A matrix is a Hurwitz matrix if all 
its eigenvalues have strictly negative real part. Finally, f (i) 

denotes the i-th derivative of the function f , N is the set of 
natural integers including 0 and N∗ is the set of natural integers 
excluding 0 and Jk1 ; k2K is the closed set of natural integers 
from k1 to k2.

II. LINEAR UNKNOWN INPUT FUNCTIONAL OBSERVERS

Let us consider a system described by the linear state space 
equations with unknown inputs:{

ẋ(t) = Ax(t) +Bu(t) +Dd(t),

y(t) = Cx(t),
(1)

where, ∀t ∈ R+, x(t) is the n-dimensional state vector, u(t)
is a p-dimensional control vector supposed to be measured,
y(t) is a m-dimensional measured output vector, and, d(t) is
a r-dimensional unknown input vector. A(n × n), B(n × p),
C(m× n) and D(n× r) are constant matrices. Without loss
of generality C and D are respectively of full row and of full
column ranks.

The objective of the paper is to propose a simple design
of a linear observer to estimate the vector v(t) related to the
state x(t) by:

v(t) = Lx(t), (2)

where L(l × n) is a constant full row rank matrix.
To design a functional observer, the triplet (A,C,L) has to

be functionally observable [28], i.e.:

rank

([
OA,C,n
L

])
= rank (OA,C,n) .

Moreover, in order to avoid a trivial algebraic part in the
observer (where observed functionals can be estimated through
linear combination of measured outputs), it is supposed with-
out loss of generality that:

rank

([
C
L

])
= m+ l.

The observation of v(t) can be carried out by a linear
unknown input functional observer (LUIFO) which is a Lu-
enberger observer described by the following state space
equation [1], [2]:{

ż(t) = Fz(t) +Gu(t) +Hy(t),

v̂(t) = Pz(t) + V y(t),
(3)

where, ∀t ∈ R+, z(t) and v̂(t) are, respectively, the ν-
dimensional state vector and the l-dimensional output vector
of the observer. The constant matrices F (ν × ν), G(ν × ν),
H(ν ×m), P (l × ν), V (l ×m) and the order ν have to be
determined such that lim

t→+∞
(v(t) − v̂(t)) = 0. Moreover, it

must be kept in mind that a possible minimal order observer
is looked for. It is well known that the necessary and sufficient
conditions for the existence of an asymptotic observer (3) are
given by the following result [10], [11]. Furthermore, a LUIFO
cannot be designed if there are unstable transmission zeros
from the unknown input to the output [17].

Theorem 1. The observable system (3) is a LUIFO of (2) for
the system (1) if and only if F is Hurwitz and there exists a
matrix T (ν × n) such that:

FT +HC − TA = 0, (4)
L− PT − V C = 0, (5)
G− TB = 0, (6)
TD = 0. (7)

Proof: The proof of the sufficiency is well known and is
summed up below for completeness. Let us denote the errors
ε(t) = z(t)− Tx(t) and e(t) = v(t)− v̂(t). We get from (1)
and (3):

ε̇(t) = Fε(t)+(G−TB)u(t)+(FT+HC−TA)x(t)−TDd(t).
(8)

Thus, when (4), (6) and (7) are fulfilled and F is a Hurwitz
matrix we have lim

t→+∞
ε(t) = 0. The estimation error e(t) =

v(t)− v̂(t), can be written using (2) and (3):

e(t) = (L− PT − V C)x(t)− Pε(t).

Thus, when L− PT − V C = 0, we obtain lim
t→+∞

e(t) = 0.
We insist afterwards on the proof of the necessity. Note

that the observer must be observable. Conversely, when (3) is
a LUIFO of (2) for the system (1), we have from linearity,
∀i ∈ N∗, lim

t→+∞
e(i)(t) = 0. With M = L − V C, when t →

+∞, the following relationships are deduced:

lim
t→+∞

e(t) = lim
t→+∞

(Mx(t)− Pz(t)) = 0,

lim
t→+∞

ė(t) = lim
t→+∞

((MA− PHC)x(t)

+ (MB − PG)u(t)
+MDd(t)− PFz(t)) = 0.

As the last relation must be fulfilled for every u(t) and d(t), we
get MB−PG = 0 and MD = 0. Consequently, lim

t→+∞
ė(t) =

(MA− PHC)x(t)−PFz(t) = 0. Continuing this procedure
with the successive derivative of e(t) we get, for i ∈ J0 ; ν−
1K:

lim
t→+∞

e(i)(t) = lim
t→+∞

(
Mix(t)− PF iz(t)

)
= 0, (9)



where the matrices Mi are recursively defined a s M 0 =  M 
and:

Mi+1 = MiA − P F iHC.

Moreover we have also MiB = P F iG and MiD = 0. 
Gathering the relationships (9) we get, for i ∈ J0 ; ν − 1K:

lim
t→+∞




M0

M1

...
Mν−1

x(t)−


P
PF

...
PF ν−1

 z(t)
 = 0.

As the observer (3) is supposed to be observable,

 P
...

PF ν−1


is a full column rank matrix. Thus, there exists a unique matrix
T , written:

T =


P
PF

...
PF ν−1


[1] 

M0

M1

...
Mq−1

 ,
such that lim

t→+∞
(Tx(t)− z(t)) = 0. On the one hand, this

property must be fulfilled for every u(t), x(t) and d(t). Thus,
from (8), we get the relationships (4), (6) and (7) and the fact
that F is a Hurwitz matrix. On the other hand, lim

t→+∞
e(t) = 0

for every x(t) leads to (5).

Remark 2. From Darouach work [23], [26], several works
(see for instance [11]) have studied or used a particular case
of Luenberger observers (3) where P = Iν , which in the
following are named Darouach observers (10), are observable.
In the case of unknown inputs:{

ż(t) = Fz(t) +Gu(t) +Hy(t),

v̂(t) = z(t) + V y(t),
(10)

is an asymptotic observer of (2) for the system (1) if and only
if:

1) rank

 C 0
L 0
CA CD

 = rank




C 0
L 0
CA CD
LA LD


 .

2) ∀s, such as<(s) ≥ 0,

rank

 C 0
CA CD

sL− LA −LD


= rank

 C 0
L 0
CA CD

 .

On the one hand, when fulfilled, the first condition ensures
the existence of the Darouach structure (10), i.e. Equations
(4) - (7) have a solution considering P = Iν . On the second
hand, the second condition leads to the asymptotic tracking of
the functional v(t). The second condition, which is a Hautus
type condition [30], can be only used for linear time-invariant

systems. In the case of D = 0, expressed in [24], the second
condition has the following form:

LA = Γ0C + Λ0L+ Γ1CA.

The system (10) is an observer of (2) if and only if Λ0 is a
(l × l) Hurwitz matrix. This standpoint has been extended to
linear time-varying systems in [31], [32]. In the following, this
criterion is extended for the unknown input case.

Remark 3. Darouach’s method [23] has been used in the
majority of the papers dealing with the design of unknown
input functional observers. Indeed, a lot of design procedures
are based on the extension of the functional to observe.
Namely, these methods consist in looking for a R(ρ×n) matrix
with ν = l+ρ and P = Iν such that (3) is a Darouach observer

of v(t) =

[
R
L

]
. Nevertheless, as it is underlined in [11], to

find R is an “intriguing and challenging problem” and some
attempts have been proposed in [19], [20], [22], [33], [34],
[35]. As it will be explained in the next section, our design
principle differs a lot from this standpoint.

Remark 4. Equation (4) is the so-called “constrained Sylvester
equation” of the observer problem. Let us notice that it is a
nonlinear equation to solve due to the fact that F , T and H
are unknown. Nevertheless, until [23], [26], a great number
of design methods have been devoted to the determination of
the matrix T from canonical form or by imposing F . Let us
mention that our procedure doesn’t need to determine T as a
prerequisite of the method. For the completeness of proof, T
will be given afterwards.

III. MAIN RESULT

This section is devoted to our claim. Firstly, let us define
recursively the matrices Kq and Σq , q ∈ N:

• K0 = In and for q ≥ 1, Kq =
[
AKq−1 D

]
;

• Σ0 = C and for q ≥ 1,

Σq =

 Σq−1
LKq−1

0(q(m+ l)× r)

CKq

 .
More explicitly, we get:

Σq =



C 0 · · · 0 0 0
L 0 · · · 0 0 0
CA CD · · · 0 0 0
LA LD · · · 0 0 0

...
...

...
...

...
...

... 0 0 0
CAq−1 CAq−2D · · · CAD CD 0
LAq−1 LAq−2D · · · LAD LD 0
CAq CAq−1D · · · CA2D CAD CD


.

where the ”0” blocks are of adapted dimensions.



In the following we use the notation:

Σq =



Cq, 0
Lq, 0
Cq, 1
Lq, 1

...
Cq, q−1
Lq, q−1
Cq, q


, (11)

where the matrices Cq, i, for i ∈ J0; qK, and Lq, i, for i ∈
J0; q−1K, are respectively of dimensions (m× (n+ rq)) and
(l × (n+ rq)).

Theorem 5. There exists an observable unknown input func-
tional observer (3) for the system (1) to asymptotically observe
the functional (2), if there exist matrices Γi for i ∈ J0; qK, and
Λi for i ∈ J0; q − 1K, such that:

LKq =

q∑
i=0

ΓiCq, i +

q−1∑
i=0

ΛiLq, i, (12)

and the matrix:

0l · · · · · · 0l Λ0

Il
. . .

... Λ1

0l
. . .

. . .
...

...
...

. . .
. . . 0l Λq−2

0l · · · 0l Il Λq−1


, (13)

is a Hurwitz one.

The proof of this result is constructive and leads to the
design of the LUIFO. Thus, it will be detailed in the following
section.

Remark 6. On the one hand (12), that can be written as:

rank
(
Σq
)

= rank
([

Σq
LKq

])
, (14)

leads to the design of the state space equations of the ob-
server (3). Indeed, as indicated in the Remark 10 of Section
IV the knowledge of matrices F , G H , P and V may
lead to determine a matrix T that solves Equations (4) -
(7). On the other hand, the Hurwitz condition ensures that

lim
t→+∞

(v(t) − v̂(t)) = 0. Thus, the previous theorem appears
as an extension of the reformulated Darouach criterion for
LUIFO.

Remark 7. We insist here that the observable condition of (3)
ensures the necessity in the Theorem 5. The proposed design
procedure leads to an observable observer.

In the following section, the sufficient condition for the
existence of a minimum order UIFO is used in order to develop
a method for designing a LUIFO. When the obtained observer
structure does not lead to an asymptotically stable observer,
the procedure will consist in increasing the integer q. This
standpoint is detailed in the example in the Section V.

IV. DESIGN OF AN UNKNOWN INPUT FUNCTIONAL
OBSERVER

This section deals with the design of an observable LUIFO
for the observation problem defined by (1) and (2) when
condition (12) is fulfilled. Moreover, the procedure is given
to get a possible stable observer of least order.

A. First step

This step consists in the determination of the integer q
candidate for the structure (3). Firstly, q is given by the
condition (14) which must be fulfilled. Let us suppose that the
relation (14) is fulfilled for the smallest q. Then, the matrices
Γi for i ∈ J0; qK and Λi for i ∈ J0; q − 1K are obtained from
the solution of the consistent linear system LKq = XΣq:

X = LKqΣ
[1]
q + Z

(
Irq − ΣqΣ

[1]
q

)
,

where rq = m(q + 1) + lq is the number of rows of Σq , Z
is any matrix with the same size than X , and, Σ

[1]
q is any

of the generalized inverses of Σq . Due to numerical properties
and implementations in numerical software, we can chose as a
particular case Σ

[1]
q = Σ†q . In the case where Σq is of full row

rank, the solution is unique and, consequently, the matrices Γi
and Λi also. Partitioning X with respect to the row partition
of Σq in (11) (X = [Γ0 Λ0 Γ1 Λ1 . . . Γq−1 Λq−1 Γq]), we are
led to the matrices Γi for i ∈ J0; qK and Λi for i ∈ J0; q − 1K
in (12) that can then be explicitly written as:

LAq =

q∑
i=0

ΓiCA
i +

q−1∑
i=0

ΛiLA
i,

LAq−1D =

q∑
i=1

ΓiCA
i−1D +

q−1∑
i=1

ΛiLA
i−1D,

...

LAq−kD =

q∑
i=k

ΓiCA
i−kD +

q−1∑
i=k

ΛiLA
i−kD, (15)

...
LAD = ΓqCAD + Γq−1CD + Λq−1LD,

LD = ΓqCD.

Secondly, the design of the observer can be considered only
when the matrix (13) is an Hurwitz matrix, that can be tested
from the previous decomposition for LKq on Σq . So, when the
conditions of the Theorem 5 are satisfied, we can go further
to the determination of the matrices in (3).



B. Second step

The design of the observer uses the successive derivations
of v(t). After q derivations of v(t) = Lx(t), we obtain:

v̇(t) = LAx(t) + LBu(t) + LDd(t),

v(2)(t) = LA2x(t) + LABu(t) + LBu̇(t) + LADd(t)

+LDḋ(t),

...

v(q−1)(t) = LAq−1x(t) +

q−2∑
i=0

LAiBu(q−2−i)(t)

+

q−2∑
i=0

LAiDd(q−2−i)(t), (16)

v(q)(t) = LAqx(t) +

q−1∑
i=0

LAiBu(q−i−1)(t)

+

q−1∑
i=0

LAiDd(q−i−1)(t).

From the last equation of (16), LAkx(t) is expressed, for
q ∈ N∗ as:

LAkx(t) = v(k)(t)−
k−1∑
i=0

LAiBu(k−i−1)(t)

−
k−1∑
i=0

LAiDd(k−i−1)(t).

(17)

Moreover, the last equation of (16) can also be written, using
the first equation of (15), as:

v(q)(t) =

q∑
i=0

ΓiCA
ix(t) +

q−1∑
i=0

ΛiLA
ix(t)

+

q−1∑
i=0

LAiBu(q−i−1)(t) +

q−1∑
i=0

LAiDd(q−i−1)(t).

(18)
In order to eliminate x(t) and d(t) from (18) we use the

derivative of v(t) and y(t). Indeed, from y(t) = Cx(t) we
get, for k ∈ N∗:

CAkx(t) = y(k)(t)−
k−1∑
i=0

CAiBu(k−1−i)(t)

−
k−1∑
i=0

CAiDd(k−1−i)(t).

Moreover, taking into account the expression of the matrices
LAiD from (15) and the terms LAix(t) from (17), for i ∈
J0; q − 1K, it leads to:

v(q)(t) =

q∑
i=0

Γiy
(i)(t) +

q−1∑
i=0

Λiv
(i)(t) +

q−1∑
i=0

Φiu
(i)(t), (19)

where, for i ∈ J0; q − 2K:

Φi =

LAq−1−i − q∑
j=i+1

ΓjCA
j−i−1

−
q−1∑
j=i+1

ΛjLA
j−i−1

B, (20)

and Φq−1 = [L− ΓqC]B.
A realization of the input-output differential Equation (19)

[24], [28], [36] leads to the observer:

ż(t) = Fz(t) +


Φ0

Φ1

...
Φq−1

u(t)

+


Γ0 + Λ0Γq
Γ1 + Λ1Γq

...
Γq−1 + Λq−1Γq

 y(t),

v̂(t) = [ 0l · · · 0l Il ]z(t) + Γqy(t),

(21)

with:

F =



0l · · · · · · 0l Λ0

Il
. . .

... Λ1

0l
. . . . . .

...
...

...
. . . . . . 0l Λq−2

0l · · · 0l Il Λq−1


,

and the observer design is complete.
Remark 8. When the Hurwitz condition is satisfied, it is
demonstrated that (21) is an asymptotic observer of the linear
functional Lx(t). Otherwise, it becomes necessary to increase
the integer q and to do again the design procedure with a
higher order [13], [37]. Note that in case of detectable systems,
by increasing step by step the integer q, we are led, at least,
to the well-known reduced order state observer.
Remark 9. When Σq is of full row rank, the eigenvalues of
the matrix F are fixed. In the opposite, when rank (Σq) =
ρq < rq , rq − ρq degrees of freedom can be defined to place
some of the eigenvalues of F . It leads to the possibility of
increasing the integer q step by step to choose the decay rate
of the designed observer.
Remark 10. From the expressions (20) for the matrices Φi and
the relationship G = TB (6), it can be deduced, as it has been
indicated for LFO in [28], that

T =


T1
T2
...

Tq−1
Tq

 ,
where, for j ∈ J0; q − 1K:

Tj = LAq−j −
q−1∑
i=j

ΛiLA
i−j −

q∑
i=j

ΓiCA
i−j ,



and Tq = L−ΓqC. From (15), it is easy to verify that TD = 0.

V. ILLUSTRATIVE EXAMPLE

According to [19], let us consider the system (1) and the
single functional (3) defined by:

A =


−2.51 0.33 0.68 1.12 −0.25

0.14 −0.23 −0.31 0.91 0.36
0.51 −1.18 0.41 0.63 −0.77
0.22 0.33 0.46 0.65 −0.77
0.23 0.33 3.97 0.06 0.69

 ,

B =


0.43
0.00
0.92
1.20
−1.27

 , D =


1.00 0.00
−3.00 −1.00

0.00 0.50
0.45 0.00
0.00 0.00

 ,
C =

[
1.00 0.00 0.00 0.00 0.60
0.00 0.00 0.00 1.00 0.00

]
,

L =
[

2.00 0.00 0.00 9.00 0.30
]
.

(22)
In [19] it is remarked that the system matrix has two detectable
invariant zeros at −2.16 ± 2.02i. Consequently, they will
appear as poles of the observer. The following cases illustrate
our proposed design of LUIFO. In a first attempt, a minimal
order observer will be obtained. The second attempt illustrates
the introduction of degrees of freedom to change some of the
poles of the observer. From the invariant zeros, it is assumed
that the minimal order of an observer is 2. Let us mention
here that in [19], a third-order observer whose eigenvalues are
{−5, −2.16± 2.02i} has been designed.

A. Design of a minimal-order observer

As rank(Σ1) = 5 and rank

([
Σ1

LA LD

])
= 6, as

expected, a first-order minimum observer cannot be designed.
We have:

Σ2 =



1.00 0.00 0.00 0.00 0.60
0.00 0.00 0.00 1.00 0.00
2.00 0.00 0.00 9.00 0.30
−2.37 0.53 3.06 1.16 0.16

0.22 0.33 0.46 0.65 −0.77
−2.97 3.73 6.69 8.11 −7.22

7.88 −4.08 0.66 0.51 −2.35
−0.31 −0.59 −2.52 1.21 −1.32
0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00
1.00 0.00 0.00 0.00
0.45 0.00 0.00 0.00
6.05 0.00 0.00 0.00
−3.44 1.00 1.00 0.00
−0.48 −0.10 0.45 0.00


,

and:

LK2 =
[

11.51 −9.44 −25.38 9.12 −14.29
−10.51 −0.38 6.05 0.00

]
.

We get rank(Σ2) = 8 and rank
([

Σ2

LA2

])
= 8. Thus,

q = 2 is the smallest integer that has to be considered. Con-
sequently, as l = 1, a minimal second-order observer can be
considered as a candidate observer. From the unique solution
X = LK2Σ†2, we obtain Λ0 = −8.77 and Λ1 = −4.32. That
yields to:

F =

[
0 −8.77
1 −4.32

]
.

As expected the eigenvalues of F are (−2.16± 2.02i).
Moreover, to design the second-order observer we get, from

X = LK2Σ†2:

Γ0 =
[

13.24 75.14
]
,

Γ1 =
[

3.96 44.38
]
,

Γ2 =
[

0.78 11.70
]
.

Using (21), the following matrices of the observer are deduced:

G =

[
−8.25
−2.50

]
, H =

[
6.36 −27.55
0.57 −6.21

]
P =

[
0 1

]
, V =

[
0.78 11.70

]
.

The observer design is complete. A simulation result with
different initial conditions is displayed in figure 1. Initial
conditions of the system (resp. the observer) are set to x(t =
0) = [0 0 0 0 0]

> (resp. z(t = 0) = [500 200]
>). Identical

inputs than those in [19] are applied for t ≥ 0: u(t) =
0.2+e−0.4t cos(2t), d1(t) = 0.1+0.2e−0.1 sin(t) tanh(2t) and
d2(t) = 2. It can be seen that the observer output converges to
v(t) = Lx(t) with the decay rate given by the the eigenvalues
of F . It can be noticed that in [19], it is found that the order of
unknown input functional observer is q=3. With our procedure
we have obtained a minimal second-order LUIFO.

B. Design of a third-order observer

In this section the design of a LUIFO of a third-order
observer with q = 3 is detailed. The appearance of a degree
of freedom in the design procedure is here illustrated.

The size of Σ3 is (11,11) and we obtain rank(Σ3) =

rank
([

Σ3

LK3

])
= 10. Consequently, there exist 10 rows

in Σ3 that are independent. Let us consider Σ∗3, where the
component L3, 2 of Σ3 has been eliminated:

Σ∗3 =


C 0 0 0
L 0 0 0
CA CD 0 0
LA LD 0 0
CA2 CAD CD 0
CA3 CA2D CAD CD

 .

Thus, Σ∗3 has 10 rows and rank(Σ∗3) = 10. On the one hand,
(12) can be written as:

LK3 =
[

Γ0 Λ0 Γ1 Λ1 Γ2 Γ3 Λ2

] [ Σ∗3
L3, 2

]
.

(23)



that is non unique. As the row L3, 2 has been eliminated from 
Σ3, Λ2 appears as a degree of freedom. On the other hand, 
we get:

LK3 =
[

Γ30 Λ30 Γ31 Λ31 Γ32 Γ33

]
Σ∗3, (24)

L3, 2 =
[

Π0 ∆0 Π1 ∆1 Π2 Π3

]
Σ∗3, (25)

where the matrices Γij , Λij , Πi and ∆i are unique. We have,
from (23) and (25):

LK3 =
[

Γ0 Λ0 Γ1 Λ1 Γ2 Γ3

]
Σ∗3

+Λ2

[
Π0 ∆0 Π1 ∆1 Π2 Π3

]
Σ∗3.

(26)
Consequently, identifying (24) and (26), it yields:

Γ0 = Γ30 − Λ2Π0,

Λ0 = Λ30 − Λ2∆0,

Γ1 = Γ31 − Λ2Π1,

Λ1 = Λ31 − Λ2∆1,

Γ2 = Γ32 − Λ2Π2,

Γ3 = Γ33 − Λ2Π3,

(27)

where Λ2 is arbitrary. In this example, we get:

Γ30 =
[
−57.28 −324.98

]
, Λ30 = 37.95,

Γ31 =
[
−3.88 −116.79

]
, Λ31 = 9.92,

Γ32 =
[

0.57 −6.21
]
, Γ33 =

[
0.78 11.70

]
,

Π0 =
[

13.24 75.14
]
, ∆0 = −8.77,

Π1 =
[

3.96 44.38
]
, ∆1 = −4.32,

Π2 =
[

0.78 11.70
]
, Π3 =

[
0.00 0.00

]
.

Then, the matrix F expressed as:

F =

 0 0 Λ30 − Λ2∆0

1 0 Λ31 − Λ2∆1

0 1 Λ2

 .
The eigenvalues of the matrix F are the roots of the char-
acteristic polynomial pF (λ) = λ3 − Λ2λ

2 − Λ1λ − Λ0

which depends on the parameter Λ2. Here we obtain, with
Λ0 = 37.95 + 8.77Λ2 and Λ1 = 9.92 + 4.32Λ2:

pF (λ) = (λ2 + 4.32λ+ 8.77)(λ− 4.32− Λ2).

Due to invariant zeros, Λ2 can place only one eigenvalue for
F . In order to compare with [19] where the roots of pF (λ)
are (−2.16 ± 2.02i,−5), we take Λ2 = −9.32, which leads
to Λ1 = −30.34 and Λ0 = −43.78. For these values we get
the third-order Luenberger observer defined by

F =

 0 0 −43.78
1 0 −30.34
0 1 −9.32

 , G =

 −41.77
−26.04
−2.50


H =

 31.81 −137.79
9.21 −58.64
0.57 −6.22

 ,
P =

[
0 0 1

]
, V =

[
0.78 11.70

]
.

Simulation results are displayed in figure 1 where the second
and third order observer outputs are compared to the functional
to be observed. Inputs and initial conditions of the system are

identical for the two simulations. Initial conditions of the third-
order observer are set to z(t = 0) = [500 − 300 200]

>.
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Figure 1. Simulation results for the second and third-order observers.

As shown in figure 2, the tracking property of the observers
is ensured by the proposed design methods.
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Figure 2. Simulation results of the estimation error for the second and third-
order observers.

As it can be seen in figure 3, the value of the parameter
Λ2 influences the decay rate of the error. A comparison is
performed between third-order observer with Λ2 = −9.32
and Λ2 = −24.32 leading to eigenvalues of the third-order
observer of (−2.16± 2.02i,−20). As predicted, the response
time of the estimation error is reduced by choosing a parameter
Λ2 leading to an eigenvalue with a lower negative real part.

VI. CONCLUSION

This paper presents a new and direct design procedure to
obtain a possible minimal unknown input functional observer
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Figure 3. Simulation results of the estimation error for the third-order
observers.

for LTI systems. Necessary and sufficient conditions for the
existence of a stable LUIFO have been detailed. The proposed
procedure is based on linear algebraic operations in a state
space setting and only needs to solve linear equations. The
order of the obtained observer can be increased with some
degrees of freedom to choose the dynamic response of the
observed functional. Finally, the proposed procedure could be
extended to linear time-varying systems.
We demonstrated in this paper that for the observation of a
multi-functional Lx(t), q is the smallest integer that fulfils
the Theorem 5. From the proposed design procedure, we can
assert that the minimal order ν of the observer is such that
ν ≤ ql. Nevertheless, to obtain a minimal stable observer and
determining ν as small as possible is a challenging problem
largely beyond the scope of the proposed paper. This specific
point will be the topics of our future works.
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