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In this paper, we study the following nonlocal nonautonomous Hamiltonian system on whole R (-∆)

where (-∆)

1 2 is the square root Laplacian operator. We assume that the nonlinearities f, g have critical growth at +∞ in the sense of Trudinger-Moser inequality and the nonnegative weights P (x) and Q(x) vanish at +∞. Using suitable variational method combined with the generalized linking theorem, we obtain the existence of at least one positive solution for the above system.

Introduction and main results

In this paper, we study the following system (-∆)

1 2 u + u = Q(x)g(v)
in R, (-∆)

1 2 v + v = P (x)f (u) in R, (1.1) 
where (-∆)

1 2 is the square root Laplacian operator defined as (-∆)

1 2 u(x) = - 1 2π 1 -1 u(x + y) + u(x -y) -2u(x) |y| 2 dy.
One difficulty in studying Hamiltonian elliptic systems via variational methods is that the energy functional is strongly indefinite, that is, its quadratic part is respectively coercive and anti-coercive in infinite dimensional subspaces of the energy space. To deal with such difficulty we use a Galerkin method, introduced by Rabinowitz in [START_REF] Rabinowitz | Some global results for nonlinear eigenvalue problems[END_REF][START_REF] Rabinowitz | Periodic solutions of Hamiltonian systems[END_REF]. Another important obstacle is to handle the lack of compactness, which roughly speaking, originates from the non-compactness of the Trudinger-Moser embedding. To add on, we face a lack of compactness of Sobolev embedding because the problem is posed in whole R.

In the local case i.e. in the case of the standard Laplacian operator, the existence of solution for Hamiltonian elliptic systems has been extensively studied in the literature mostly in higher dimensions involving Sobolev critical growth in bounded as well as unbounded domain of R N . For the case of a bounded domain, see for instance, [START_REF] Benci | Critical point theorems for indefinite functionals[END_REF][START_REF] Clément | Positive solutions of semilinear elliptic systems[END_REF][START_REF] De Figueiredo | An Orlicz-space approach to superlinear elliptic systems[END_REF][START_REF] De Figueiredo | On superquadratic elliptic systems[END_REF][START_REF] Hulshof | Differential systems with strongly indefinite variational structure[END_REF][START_REF] Kryszewski | An infinite-dimensional Morse theory with applications[END_REF]. On the other hand, Hamiltonian elliptic systems in whole R N have been explored to a lesser extend, see for example, [START_REF] De Figueiredo | Decay, symmetry and existence of solutions of semilinear elliptic systems[END_REF][START_REF] Li | Asymptotically linear elliptic systems[END_REF][START_REF] Sirakov | On the existence of solutions of Hamiltonian elliptic systems in R N[END_REF][START_REF] Sirakov | Soliton solutions to systems of coupled Schrödinger equations of Hamiltonian type[END_REF]. We refer the reader to [START_REF] Bonheure | Hamiltonian elliptic systems: a guide to variational frameworks[END_REF] for a recent survey on this subject.

For N = 2, Hamiltonian systems in a bounded domain in R 2 have been studied by D. G. de Figueiredo, J. M. do Ó and B. Ruf [START_REF] De Figueiredo | Critical and subcritical elliptic systems in dimension two[END_REF] in the critical growth range. We cite N. Lam and G. Lu [START_REF] Lam | Elliptic equations and systems with subcritical and critical exponential growth without the Ambrosetti-Rabinowitz condition[END_REF] for a similar result without Ambrosetti-Rabinowitz condition (see (H3)). In whole R 2 , D.G. de Figueiredo, J. M. do Ó and J. Zhang [START_REF] De Figueiredo | Ground state solutions of hamiltonian elliptic systems in dimension two[END_REF] studied the ground state solution for the system (1.1) with P = Q = 1 using the idea of generalized Nehari manifold under a monotonicity assumption on nonlinearity i.e. f (t)/|t| and g(t)/|t| are strictly increasing in (-∞, 0) and (0, +∞). Another reference in unbounded domain is of M. de Souza and J. M. do Ó [START_REF] Souza | Hamiltonian elliptic systems in R 2 with subcritical and critical exponential growth[END_REF], where authors have considered a system of the type

-∆u + V (x)u = g(v) in R 2 , -∆v + V (x)v = f (u) in R 2 .
Under some suitable conditions on V , the loss of compactness in critical case was recovered. We know from classical fractional Sobolev embedding that H s,2 (R N ) is continuously embedded in L q (R N ) for all q ∈ [2, 2 * s ], where 2 * s = 2N/(N -2s). Note that formally, 2 * s = ∞ if N = 2s. The only choice for this fact to be true is N = 1 and s = 1/2, since s ∈ (0, 1). At this point a natural question arises: What is the optimal space where H 1/2,2 (R) is embedded? This answer was first given by Ozawa [START_REF] Ozawa | On critical cases of Sobolev's inequalities[END_REF] and later improved by Iula, Maalaoui and Martinazzi [START_REF] Martinazzi | Fractional Adams-Moser-Trudinger type inequalities[END_REF] which we have stated in Theorem A below.

In case of u = v, f = g and P = Q, the system (1.1) converts into the following scalar equation (-∆)

1 2 u + u = P (x)f (u) in R. (1.2)
Motivated from fractional Trudinger Moser inequality as in Theorem A, J. M. do Ó, Miyagaki and Squassina [START_REF] Miyagaki | Nonautonomous fractional problems with exponential growth[END_REF] studied the existence of postive solutions to (1.2) with a class of weights P containing the Lebesgue integrable functions and nonlinearities f having subcritical and critical exponential growth (see also [START_REF] Giacomoni | Critical growth problems for 1/2-Laplacian in R[END_REF]). In the case of an open and bounded interval we cite an earlier work of Iannizzotto and Squassina [START_REF] Iannizzotto | 1/2-Laplacian problems with exponential nonlinearity[END_REF], where authors have proved existence and multiplicity of positive solutions with critical exponential growth (see [START_REF] Giacomoni | Fractional elliptic equations with critical exponential nonlinearity[END_REF] also). We cite [START_REF] Abdelhedi | On a Nirenberg-type problem involving the square root of the Laplacian[END_REF][START_REF] Ambrosio | Nonlinear equations involving the square root of the Laplacian[END_REF][START_REF] Cabré | Positive solutions of nonlinear problems involving the square root of the Laplacian[END_REF][START_REF] Tan | The Brezis-Nirenberg type problem involving the square root of the Laplacian[END_REF][START_REF] Yu | The Nehari manifold for elliptic equation involving the square root of the Laplacian[END_REF] for more results in the case of Sobolev critical growth for dimension N ≥ 2 involving the square root of Laplacian.

Inspired from the above literature, we consider in the present paper an Hamiltonian system involving the square root Laplacian operator posed in whole space R and investigate the effect of critical exponential growth of nonlinearities. We use a generalized linking theorem as compared to other results in the literature related to Hamiltonian systems which are heavily dependent on finite dimension Galerkin approximation to prove existence of at least one positive solution. For that, facing of the lack of compactness due to the critical growth of nonlinearities and unboundedness of the domain, we need to investigate accurately the behavior of suitable Palais Smale sequences. As far as we know there is no result regarding such class of fractional Hamiltonian systems. Our results appear to be the first of its kind for fractional Hamiltonian systems and we expect that the insights and the methods used in the present paper apply to a wider class of semilinear elliptic operators.

Critical exponential nonlinearity

It is usual in the literature to say that h has critical growth of Trudinger-Moser type at +∞ if there exists α 0 > 0 such that

lim s→+∞ h(s) e αs 2 -1 = 0 if α > α 0 , +∞ if α < α 0 .
We note that such notion is motivated by a fractional version of Trudinger-Moser inequality in the whole space R as follows.

Theorem A. (A fractional Trudinger-Moser inequality) It holds

sup u∈H 1/2,2 (R), u 1/2 ≤1 R (e α|u| 2 -1) dx < ∞, α ≤ π, = ∞, α > π,
where H 1/2,2 (R) is the fractional order Sobolev space equipped with • 1/2 norm which is defined in Section 2.

Assumptions on the weights P (x) and Q(x)

We assume P, Q ≡ 0 belonging to C 0 (R, R + ) that is, P, Q are continuous, nonnegative and

lim |x|→+∞ P (x) = 0 = lim |x|→+∞ Q(x).
(1.3) Without loss of generality, for the ease of reference, we assume:

P (0)Q(0) = 1 (1.4)
Remark 1.1. We recall that the assumption (1.3) does not imply that P (x) and Q(x) are Lebesgue integrable. For example take P (x) = 1 if |x| ≤ 1 otherwise 1/|x|.

Assumptions on the nonlinearities f and g

We consider the following assumptions on nonlinearities f and g which are α 0 -critical at +∞. (H1) (continuity) f, g : R → [0, ∞) are continuous functions and f (0) = g(0) = 0 . (H2) (behavior near the origin) f (t) = o(t) and g(t) = o(t) near the origin. (H3) (Ambrosetti-Rabinowitz type condition) there exist constants θ > 2 such that , for all t > 0, one has 0 < θF (t) := θ t 0 f (s) ds ≤ tf (t) and 0 < θG(t) := θ t 0 g(s) ds ≤ tg(t).

(H4) (asymptotic behavior) lim t→+∞ tf (t)e -α0t 2 = +∞ and lim t→+∞ tg(t)e -α0t 2 = +∞.

Main result

Before stating the main result of the paper, we define the following class of functions. We say that a function f belongs to the class C P , if for any sequence {u n } ⊂ H 1/2,2 (R) satisfying for some positive constant C u n 0 and We highlight that when f and g are of O(t 2 ) near origin, C P implies the assumption (L6) adopted in [START_REF] Lam | Elliptic equations and systems with subcritical and critical exponential growth without the Ambrosetti-Rabinowitz condition[END_REF]Theorem 4] in the critical case. However if f and g decay slowly at 0, say are of O(t 1+ ) with < 1, u n 0 and

R P (x)f (u n )u n dx < C implies R P (x)F (u n ) dx → 0.
{ R P (x)f (u n )u n dx} is bounded do not imply that R P (x)f (u n )dx → 0.
Precisely, vanishing behavior may occur for the sequence {P (x)f (u n )} in this case (see Remark 5.1). To validate our remark, we have added a proof in the appendix of this paper.

Remark 1.3. The result of Theorem 1.1 holds good even for the class of positive weights satisfying P ∈ L γ (R) and Q ∈ L γ (R) with γ, and γ > 1 or

P, Q ∈ L 1 (R) ∩ C(R, R).
Remark 1.4. We have the following observations regarding the assumptions above.

(i)

The assumption (H3) is a global Ambrosetti-Rabinowtiz condition which is used to prove the boundedness of the Palais-Smale sequence.

(ii) Instead of (H4) one can take even a slightly weaker assumption (H4) : lim t→+∞ tf (t)e -α0t 2 ≥ η and lim t→+∞ tg(t)e -α0t 2 ≥ η where η is a sufficiently large positive real number.

(iii) Examples of functions satisfying (H1)-(H5) are f (t) = t 1 e t β 1 e α0t 2 , g(t) = t 2 e t β 2 e α0t 2 with 1 , 2 > 1 and 0 ≤ β 1 , β 2 < 2.
Remark 1.5. We can consider different critical growth for f and g, say α 0and β 0 -critical growth respectively. Precisely, we can use the scaling v = β0 α0 v in (1.1) to get

(-∆) 1 2 u + u = Q(x)ḡ(v) in R, (-∆) 1 2 v + v = P (x)f (u) in R,
where P (x) = β0 α0 P (x) and ḡ(v) = g α0 β0 v . It is easy to see that ḡ has the α 0 -critical growth as g and P ∈ C 0 (R, R).

The paper is organized as follows. In section 2, we discuss the abstract framework related to the problem (1.1). A generalized version of Linking geometry and related estimates are shown in section 3. In particular, in Proposition 3.3, we give an upper estimate of the energy level that guarantees the compactness of suitable Palais Smale sequences. Here the assumption (H4) plays a crucial role. This estimate is subsequently used in Section 4 where the behavior of Palais Smale sequences is described. Finally, Section 5 contains the proof of the main result of Theorem 1.1.

Abstract framework

In order to apply variational methods, we recall the Bessel potential space H s,p (R N ) as

H s,p (R N ) = u ∈ L p (R N ) : (-∆) s/2 u ∈ L p (R N ) .
On the other hand, the Sobolev-Slobodeckij space W s,p (R N ) is defined as

W s,p (R N ) = u ∈ L p (R N ) : [u] s,p,R N < ∞ , where [u] p s,p,R N = R N R N |u(x) -u(y)| p |x -y| N +sp dxdy.
In general, H s,p (R N ) = W s,p (R N ) for p = 2. In this paper, we are interested in the limiting Sobolev embedding case i.e. when 2 * s = 2N/(N -2s) = ∞ which, as observed before, corresponds to s = 1/2 and p = 2 in dimension N = 1. In this case, the space H 1/2,2 (R) coincides with the Sobolev-Slobodeckij space W 1/2,2 (R) and both seminorms are related as

(-∆) 1/4 u 2 L 2 (R) = 1 2π [u] 2 W 1/2,2 (R) ,
see Proposition 3.6. in [START_REF] Di Nezza | Hitchhiker's guide to the fractional Sobolev spaces[END_REF]. The space H 1/2,2 (R) is the Hilbert space with the norm defined as

u 2 1/2 = u 2 L 2 (R) + R |(-∆) 1 4 u| 2 dx
induced from the inner product given as

u, v 1/2 = R (-∆) 1 4 u(-∆) 1 4 v dx + R uv dx.
We recall that

H 1/2,2 (R) is continuously embedded in L q (R), for any q ∈ [2, ∞).
Consider the following weighted Banach space L r (R; P ) = u : R → R measurable:

R P (x)|u| r dx < ∞
and similarly we define

L r (R; Q) = u : R → R measurable: R Q(x)|u| r dx < ∞ .
We state our first result related to the compactness of the embedding of H 1/2,2 (R) into weighted integrable spaces defined above as follows.

Lemma 2.1. The space H 1/2,2 (R) is compactly embedded in L q (R; P ) and

L q (R; Q) respectively for q ∈ [2, ∞).
Proof. We prove only the compact embedding of H 1/2,2 (R) into L q (R; P ). The other one is similar. Let q ∈ [2, ∞) and > 0. Then from the assumption (1.3), there exists L = L( ) > 0 large enough, such that P (x) < , for all |x| > L.

(2.1)

If {u n } ⊂ H 1/2,2 (R) is such that u n u weakly in H 1/2,2 (R) for some u ∈ H 1/2,2 (R), then using the continuous injection of H 1/2,2 (R) in an arbitrary L r (R) space with r ∈ [2, ∞) there exist M, M r > 0 such that R |(-∆) 1 4 u n | 2 dx + R |u n | 2 dx ≤ M, R |u n | r dx ≤ M r . (2.2)
Now from (2.1) and (2.2), we get

R\[-L,L] P (x)|u n | q dx ≤ R\[-L,L] |u n | q dx ≤ R |u n | q dx ≤ u n q 1/2 ≤ M q/2 .
Using in addition using the compact injection of H 1/2,2 (R) in an arbitrary L r loc (R) space with r ≥ 2 together with the boundedness of P (x) in the compact subset of R as P (x) is continuous, we have compactness of the embedding of H 1/2,2 (R) in L q (R; P ) for all q ∈ [2, ∞).

Next, associated with our system we consider the Hilbert space H = H 1/2,2 (R) × H 1/2,2 (R) with the inner product and norm

(u, v), (ϕ, ψ) := u, ϕ 1/2 + v, ψ 1/2 , (u, v) := u 2 1/2 + v 2 1/2 1/2
.

Consider the natural associated functional with system (1.1), defined in

H by I(u, v) := Φ(u, v) - R P (x)F (u) dx - R Q(x)G(v) dx, (2.3) 
where the associated quadratic part is defined by

Φ(u, v) := R (-∆) 1 4 u(-∆) 1 4 v + uv dx.
Using standard arguments it is possible to verify that I is well defined and is of class C 1 with

I (u, v)(φ, ψ) = R ((-∆) 1 4 u(-∆) 1 4 ψ + (-∆) 1 4 v(-∆) 1 4 φ + uψ + vφ) dx - R (P (x)f (u)φ + Q(x)g(v)ψ) dx ∀(φ, ψ) ∈ H.
Consequently, critical points of the functional I are precisely the weak solutions to (1.1).

Note that the functional I is strongly indefinite, since Φ(u, v) > 0 when 0 ≡ (u, v) ∈ H + and Φ(u, v) < 0 whenever 0 ≡ (u, v) ∈ H -, where

H + := (u, u) : u ∈ H 1/2,2 (R) , H -:= (u, -u) : u ∈ H 1/2,2 (R) are infi- nite dimensional subspaces of H.
In order to deal with the fact that the functional I is strongly indefinite, we shall use a version of the Palais-Smale condition inspired by the Galerkin method which we describe next.

Palais-Smale condition and Generalized Mountain Pass Theorem

Let W be a real separable Banach space, and suppose

{φ i : i ∈ J ⊂ N} is a basis of W. Given a family {J n } n∈N such that J 1 ⊂ J 2 ⊂ • • • J n ⊂ • • • J,
and ∪ n∈N J n = J, we set for every n ∈ N, W n = span{φ i : i ∈ J n } and I n = I| Wn Now we shall consider the (P S) * condition with respect to the family (W n ) of W in the following sense:

Definition 2.1. Given c ∈ R, we say that (u n ) ⊂ W is a (P S) * c sequence for the functional I ∈ C 1 (W, R) if (i). There exists a sequence (n j ) ⊂ N, n j → ∞ as j → ∞ such that u nj ∈ W nj , for every j ∈ N; (ii). I(u nj ) → c as j → ∞; (iii). I nj (u nj ) W * n j → 0, as j → ∞.
Definition 2.2. Given c ∈ R, we say that the functional I ∈ C 1 (W, R) satisfies the (P S) * c condition (with respect to the family (W n )) if every (P S) * c sequence for the functional I possesses a subsequence converging to a critical point of I.

We apply the following version of Generalized Mountain Pass Theorem ( see [START_REF] Rabinowitz | Minimax methods in critical point theory with applications to differential equations[END_REF] and [START_REF] Silva | Linking theorems and applications to semilinear elliptic problems at resonance[END_REF]). Considering W = X 1 ⊕ X 2 , we shall suppose I ∈ C 1 (W, R) satisfies the (P S) * c condition with respect to the family

(W n ) ⊂ W with W n = X n 1 ⊕ X n 2 , X n i ⊂ X i , i = 1, 2, dim(X n 1 )
< ∞ for any n ∈ N. Theorem 2.2. (Generalized Mountain Pass Theorem) Let W = X 1 ⊕ X 2 be a real Banach space. Suppose I ∈ C 1 (W, R) satisfies (I 0 ). For every u ∈ X 1 , it holds I(u) ≤ 0. (I 1 ). There exist ρ > 0 and σ > 0 such that

I(u) ≥ σ, for every u ∈ ∂B ρ (0) ∩ X 2 .
(I 2 ). For each n ∈ N, there exist e n ∈ ∂B 1 (0) ∩ X n 2 and β ∈ R such that

I(u) ≤ β, for every u ∈ X 1 ⊕ R + e n ,
where

X 1 ⊕ R + e n = {u = v + te n ∈ X 1 ⊕ Re n : v ∈ X 1 , t ≥ 0} . If I satisfies (P S) * c for every c ∈ [σ, β], then I possesses a critical point u ∈ W such that I(u) ∈ [σ, β].

The linking geometry and estimates for the critical level

In this section we verify that the functional I, defined in (2.3), satisfies the geometrical properties of Theorem 2.2. We start by verifying the hypothesis (I 0 ) and (I 1 ). Lemma 3.1. There exist ρ, σ > 0 such that I(z) ≥ σ, for all z ∈ S := ∂B ρ ∩ H + . Moreover, I(z) ≤ 0 if z ∈ H -.

Proof. Assumption (H2) implies that, for a given 0 > 0, there exists t 0 > 0 such that f (t) ≤ 2 0 t and F (t) ≤ 0 t 2 , for all t ≤ t 0 . On the other hand, given α > α 0 and q > 2 there exists a positive constant C 1 such that,

F (t) ≤ C 1 t q (exp αt 2 -1), for all t ≥ t 0 . Given u ∈ H 1 (R) and define Ω t0 := {x ∈ R : 0 ≤ u(x) ≤ t 0 }. Thus, R P (x)F (u) dx = Ωt 0 P (x)F (u) dx + R\Ωt 0 P (x)F (u) dx ≤ 0 R P (x)u 2 dx + C 1 R\Ωt 0 P (x)u q (exp αu 2 -1) dx.
Now using the Hölder's inequality with r -1 + s -1 = 1, we obtain

R P (x)F (u) dx ≤ 0 u 2 L 2 (R;P ) + C 1 u q L qr (R;P ) R\Ωt 0 P (x)(exp αu 2 -1) s dx 1 s . (3.1)
We use the following inequality to estimate the second term in (3.1). There exists a constant C 2 = C 2 (t 0 ) such that (exp αt 2 -1) s ≤ C 2 (exp αst 2 -1) for all t ≥ t 0 which implies

R\Ωt 0 P (x)(exp(αu 2 ) -1) s dx ≤ C 2 R\Ωt 0 P (x)(exp(αsu 2 ) -1) dx.
From (1.3), we have

R\Ωt 0 P (x)(exp αsu 2 -1) dx ≤ C R (exp αsu 2 -1) dx
which applied to (3.1) together with Lemma 2.1 gives

R P (x)F (u) dx ≤ 0 C u 2 1/2 + C 3 u q 1/2 R (exp αsu 2 -1) dx 1 s
.

Analogously, possibly for different positive constants C and C 3 , we have

R Q(x)G(u) dx ≤ 0 C u 2 1/2 + C 3 u q 1/2 R (exp αsu 2 -1) dx 1 s
.

The previous inequalities used in (2.3) imply

I(u, u) ≥ u 2 1/2 -C 1 0 u 2 1/2 -C 4 u q 1/2 R (exp αsu 2 -1) dx 1 s
.

The Trudinger-Moser inequality as in Theorem A reads

R (exp αsu 2 -1) dx = R exp αs u 2 1/2 u u 1/2 2 -1 dx ≤ C whenever u 2
1/2 = ρ and αsρ < π (we can choose ρ sufficiently small for this to hold good). Hence

I(u, u) ≥ u 2 1/2 -C 1 0 u 2 1/2 -C 5 u q 1/2
. Therefore, since q > 2, we can find σ > 0 sufficiently small, such that I(u, u) ≥ σ > 0 for u 1/2 = ρ. To complete the proof, one can see that for any z = (u, -u) ∈ H -,

I(u, -u) = -u 2 1/2 - R [P (x)F (u) + Q(x)G(u)] dx ≤ 0,
by using assumption (H1).

Now we obtain an upper bound for the minimax level, and consequently I satisfies (I 2 ). The argument strongly relies on the Trudinger-Moser inequality and the growth condition (H4). This estimate depends on an intricate reasoning involving the Moser sequence to be introduced. The idea is similar to that found in the celebrated work due to H. Brezis and L. Nirenberg. However here we replace the Talenti's functions by the Moser's functions, defined as truncations and dilations of the fundamental solution: given k ∈ N,

m k (x) = ω k (x) ω k 1/2 ,
where

ω k (x) = 1 √ π        (log k) 1/2 , | x |≤ 1/k, log 1 |x| (log k) 1/2 , 1/k ≤| x |≤ 1, 0, | x |≥ 1. (3.2) Lemma 3.2. Defining ρ k := log k π -m 2 k , we have that there exists C o > 0 such that 0 ≤ ρ k ≤ C o for every |x| ≤ 1 k .
Proof. Indeed, we have

ω k 2 1/2 = R |(-∆) 1 4 ω k (x)| 2 dx + B(0,1) |ω k (x)| 2 dx = 1 + r k .
Here r k ≥ 0 and direct calculations yield [START_REF] Takahasi | Critical and subcritical fractional Trudinger-Mosertype inequalities on R[END_REF]). Hence, |r k log k| ≤ C for k > k 0 leading to lim k→∞ r k = 0. Therefore, if |x| ≤ 1/k, from the definition of m k and (3.2), we get

r k = O 1 log k as k → ∞ (see estimates (2.3) -(2.5) in
m 2 k := log k π ω k 2 1/2 = log k π(1 + r k ) = log k π - (log k)r k π(1 + r k ) .
Hence

ρ k = (log k)r k π(1 + r k
) which together with the logarithmic decay estimate on r k , as above, completes the proof. Proposition 3.3. There exists l 0 ∈ N such that for all l ≥ l 0 the corresponding Moser's function m l satisfies sup

R + (m l ,m l )⊕H - I < π α 0 .
Proof. Suppose by contradiction that there exists a sequence (l k ) ⊂ N such that l k +∞ and for every k ∈ N, sup

R + (m l k ,m l k )⊕H - I ≥ π α 0 .
So, for every k ∈ N, j ∈ N, there exists u j,k ∈ H 1/2,2 (R) and τ j,k > 0 such that

I(η j,k ) ≥ π α 0 - 1 j , (3.3) 
where

η j,k = τ j,k (m l k , m l k ) + (u j,k , -u j,k ) ∈ R + (m l k , m l k ) ⊕ H -.
Let h : [0, ∞) → R be defined by h(t) := I(tη j,k ). Since h(0) = 0 and lim t→+∞ h(t) = -∞, there exists a maximum point t o ∈ (0, ∞) such that

h(t o ) = I(t o η j,k ) ≥ π α 0 - 1 j .
Without loss of generality we may assume that t o = 1. Hence

I (η j,k )η j,k = 0. (3.4)
Using (3.3) and (3.4), we can write

τ 2 j,k ≥ π α 0 - 1 j + u j,k 2 1/2 + R P (x)F (τ j,k m l k + u j,k ) dx + R Q(x)G(τ j,k m l k -u j,k ) dx (3.5) and 2τ 2 j,k = 2 u j,k 2 1/2 + R P (x)f (τ j,k m l k + u j,k )(τ j,k m l k + u j,k ) dx + R Q(x)g(τ j,k m l k -u j,k )(τ j,k m l k -u j,k ) dx. ( 3.6) 
From (3.5) it follows

π α 0 + s j,k := τ 2 j,k ≥ π α 0 - 1 j . (3.7)
Therefore lim inf j→∞ s j,k ≥ 0. Consider C o > 0 given by Lemma 3.2 and take β 0 > 0 be such that

β 0 > π 2α 0 exp(πC o ).
By (H4), there exists

R 0 = R 0 (β 0 ) > 0 such that tf (t)e -α0t 2 ≥ β 0 and tg(t)e -α0t 2 ≥ β 0 , for all t ≥ R 0 . (3.8) 
Therefore there exists C > 0 such that tf (t) ≥ β 0 e α0t 2 -C and tg(t) ≥ β 0 e α0t 2 -C for t ≥ 0. We also take s > 0 and k 1 ∈ N such that for all s ≥ s and k ≥ k 1

2 π α 0 + s exp(πC o ) < β 0 l k exp α 0 s log l k π -ρ l k B 1/l k (0) P (x)Q(x) dx. (3.9) 
Next we use the inequality e x + e y ≥ 2e x+y 2

to get the following estimate 

B 1/l k (0) (P (x)f (τ j,k m l k + u j,k ) + Q(x)g(τ j,k m l k -u j,k ))(τ j,k m l k -u j,k ) dx ≥ β 0 B 1/l k (0) P (x) exp(α 0 (τ j,k m l k + u j,k ) 2 ) dx + β 0 B 1/l k (0) Q(x) exp(α 0 (τ j,k m l k -u j,k ) 2 ) dx -O(1/l k ) ≥ 2β 0 B 1/l k (0) P (x)Q(x) exp(α 0 (τ j,k m l k ) 2 ) dx -O(1/l k ). ( 3 
π α 0 + s j,k =τ 2 j,k ≥ β 0 B 1/l k (0) P (x)Q(x) exp α 0 τ 2 j,k log l k π -ρ l k -O(1/l k ) ≥ β 0 l k exp(-πρ l k ) exp α 0 s j,k log l k π -ρ l k B 1/l k (0) P (x)Q(x) dx -O(1/l k )
which is equivalent to

π α 0 + s j,k exp(πρ l k ) ≥ β 0 l k exp α 0 s j,k log l k π -ρ l k B 1/l k (0) P (x)Q(x) dx-O(1/l k ).
(3.11) Without loss of generality, we can assume that for k ≥ k 1 one has log l k > 2C o π. Then we claim that for every k ≥ k 1 , we have s j,k ≤ s. Indeed, otherwise from Lemma 3.2,

2 π α 0 + s j,k exp(πC o ) ≥ β 0 l k exp α 0 s j,k log l k π -ρ l k B 1/l k (0) P (x)Q(x) dx ≥ β 0 l k exp (α 0 s j,k C o ) B 1/l k (0) P (x)Q(x) dx.
However, this contradicts (3.9). The claim is proved.

In view of the above claim and (3.7), we have

- 1 j ≤ s j,k ≤ s for every k ≥ k 1 .
Thus, taking a subsequence if necessary, we may suppose that

lim j→∞ s j,k = s o,k ∈ [0, s] for every k ≥ k 1 .
Consequently, from (3.11), for every k ≥ k 1 ,

π α0 + s o,k exp(πρ l k ) ≥ β 0 l k exp α 0 s o,k log l k π -ρ l k B 1/l k (0) P (x)Q(x) dx-O(1/l k ) .
Hence, since s o,k ≥ 0 and from Lemma 3.2, we get

π α0 + s o,k exp(πC o ) exp(α 0 s o,k C o ) ≥ β 0 l k exp α 0 s o,k log l k π B 1/l k (0) P (x)Q(x) dx-O(1/l k ) . (3.12)
Note that, from (3.12) and s o,k ∈ [0, s] we have that s o,k → 0 as k → ∞.

Consequently, taking k → ∞ in (3.12) and using (1.4), we get

π 2α 0 exp(πC o ) ≥ β 0 .
However, this contradicts our choice of β 0 . Thus Proposition 3.3 is proved.

The (P S) * c condition

In this section we shall verify that the functional I satisfies the (P S) * c condition with respect to an appropriate family of subspaces (H n ) n of H. As a consequence of compact embedding results as in Lemma 2.1, there exists an orthonormal basis {ϕ 1 , ϕ 2 . . .} in H 1/2,2 (R) of normalized eigenfunctions associated to the eigenvalues of the compact operator ((-∆) -1/2 , P ) in the weighted L 2 (R; P ) space. Set,

E + n = span{(ϕ i , ϕ i ) : i = 1, . . . , n} E - n = span{(ϕ i , -ϕ i ) : i = 1, . . .

, n}

Considering e = m k given by Proposition 3.3, we define

H n = H + n ⊕ H - n
and I n = I| Hn , where

H + n = R(e, e) ⊕ E + n , H - n = R(e, -e) ⊕ E - n . Remark 4.1. We observe that it is easy to see that if z := (u, v) ∈ H n then (v, 0) ∈ H n and (0, u) ∈ H n .
Next result establishes that (P S) * sequences are bounded. Proposition 4.1. Given c ∈ R, let {z n } := {(u n , v n )} ⊂ H be a (P S) * c sequence for the functional I with respect to the family (H n ) n defined above. Then {z n } is bounded in H. Furthermore, there exists

C 1 > 0 such that R P (x)f (u n )u n dx ≤ C 1 , R Q(x)g(v n )v n dx ≤ C 1 , R P (x)F (u n ) dx ≤ C 1 , R Q(x)G(v n ) dx ≤ C 1 .
Proof. The sequence {z n } ⊂ H being a (P S) * c sequence for I satisfies the following

(a) I(u n , v n ) → c and (b) I n (u n , v n ) H * n → 0, as n → ∞. Taking (ϕ, ψ) = (u n , v n )/ (u n , v n ) ∈ H n
as testing functions according to (b), we have for some sequence (ε n ) n∈N tending to 0: 2 R ((-∆)

1 4 u n (-∆) 1 4 v n + u n v n ) dx - R (P (x)f (u n )u n + Q(x)g(v n )v n ) dx ≤ ε n (u n , v n )
which together with (b) and (H3) imply for some sequence (δ n ) n∈N tending to 0 and θ > 2

R P (x)f (u n )u n dx + R Q(x)g(v n )v n dx ≤ 2 R P (x)F (u n ) dx + R Q(x)G(v n ) dx + 2c + 2δ n + ε n (u n , v n ) ≤ 2 θ R P (x)f (u n )u n dx + R Q(x)g(v n )v n dx + 2c + 2δ n + ε n (u n , v n ) . Thus R P (x)f (u n )u n dx + R Q(x)g(v n )v n dx ≤ θ θ -2 (1 + 2δ n + ε n (u n , v n ) ).
(4.1) Next taking (ϕ, ψ) = (v n , 0)/ v n 1/2 and (ϕ, ψ) = (0, u n )/ u n 1/2 in (b) we have

v n 2 1/2 -ε n v n 1/2 ≤ R P (x)f (u n )v n dx, u n 2 1/2 -ε n u n 1/2 ≤ R Q(x)g(v n )u n dx. Setting U n = u n / u n 1/2 and V n = v n / v n 1/2 we have v n 1/2 ≤ R P (x)f (u n )V n dx + ε n , (4.2) 
u n 1/2 ≤ R Q(x)g(v n )U n dx + ε n .
We now rely on the following Young type inequality ( see [START_REF] De Figueiredo | Critical and subcritical elliptic systems in dimension two[END_REF], Lemma 2.4):

s t ≤ (e t 2 -1) + s(log + s) 1/2 , for all t ≥ 0 and s ≥ e 1/4 , (e t 2 -1) + 1 2 s 2 , for all t ≥ 0 and 0 ≤ s ≤ e 1/4 . (4.3)

Using the critical growth of f and g, for any > 0, there exists a constant

C 1 = C 1 ( ) > 0 such that f (s) ≤ C 1 e α0(1+ )s 2 and g(s) ≤ C 1 e (α0(1+ )s 2 for all s ∈ R. (4.4) Let A n = x ∈ R : 1 C1 f (u n )(x) ≥ e 1/4 , B n = x ∈ R : 1 C1 f (u n )(x) ≤ e 1/4 . Then R P (x)f (u n )V n dx ≤ C 1 R P (x)(e V 2 n -1) dx+ An P (x)f (u n ) log 1 C 1 f (u n ) 1/2 dx + 1 2C 1 Bn P (x) (f (u n )) 2 dx. (4.5) 
By (4.4), the second integral on the right hand side yields

An P (x)f (u n ) log 1 C 1 f (u n ) 1/2 dx ≤ An P (x)f (u n ) log e α0(1+ )u 2 n 1/2 dx ≤ α 0 (1 + ) R P (x)f (u n )u n dx.
Note that by using condition (H2), for some fixed s o > 0 there exists a positive constant C = C(s o ) we have f (s) ≤ Cs for 0 < s < s o . Therefore,

f (s) 2 ≤ Cf (s)s for all 0 ≤ s ≤ s o and f (s) 2 ≤ C 1 e 1/4 s o f (s)s for all s ≥ s o when f (s) ≤ C 1 e 1/4
which implies

Bn P (x) [f (u n )] 2 dx = {x∈Bn:un(x)∈[0,so]} P (x)(f (u n )) 2 dx + {x∈Bn:un(x)≥so} P (x)(f (u n )) 2 dx ≤ C R P (x)f (u n )u n dx.
Now, in the light of Theorem A, the first integral in the right hand side of (4.5) is bounded i.e.

C 1 R P (x)(e V 2 n -1) dx ≤ C.
Substituting the above estimates in (4.5), we obtain for some positive constant

C R P (x)f (u n )V n dx ≤ C 1 + R P (x)f (u n )u n dx .
This estimate together with (4.1)-(4.2) imply

v n 1/2 ≤ C(1 + 2δ n + ε n . (u n , v n ) ). (4.6)
Repeating the argument above it follows

u n 1/2 ≤ C(1 + +2δ n + ε n . (u n , v n ) ). (4.7)
Now considering the estimates (4.6) and (4.7) we finally obtain

(u n , v n ) ≤ C
From (5.5) and (5.1), we may find δ > 0 such that, for n sufficiently large, R (-∆)

1 4 u n (-∆) 1 4 v n + u n v n dx < π α 0 -2δ.
This inequality, combined with (5.2) and (5.3), implies, for n sufficiently large,

R P (x)f (u n )u n dx + R Q(x)g(v n )v n dx ≤ π α 0 -δ. (5.6) 
We claim that, given β > α 0 , for n sufficiently large,

u n 1/2 + v n 1/2 ≤ β α 0 π α 0 -δ 1/2 . ( 5.7) 
In order to prove this claim we note that u n 1/2 → 0. Indeed, assuming otherwise, from (5.3) we get that

lim n→∞ R (-∆) 1 4 u n (-∆) 1 4 v n + u n v n dx = 0
which together with (5.1) and (5.5), leads to a contradiction. Thus, we assume that u n 1/2 ≥ b > 0 and v n 1/2 ≥ b > 0 for all n. Now, set ũn = ( π α0δ) 1/2 un un 1/2 , s = g(vn) √ α 0 and t = √ α 0 ũn . Then, using (5.2) and (4. (5.8)

Let us evaluate each integral on the right hand side of (5.8). Taking p > 1 and using the elementary inequalities for real numbers (5.9)

e α0t 2 -1 -α 0 t 2 ≤ α 0 t 2 e α0t 2 -1 e α0t 2 -1 p ≤ C e
The second integral in (5.8) may be estimated as follows: Considering β 1 > α 0 , we may find C = C(β 1 ) > 0, such that for any t ≥ 0 g(t) ≤ Ce β1t 

Q(x) g(v n ) √ α 0 log g(v n ) √ α 0 1/2 dx ≤ 1 √ α 0 log C √ α 0 Bn Q(x)g(v n ) dx + √ β 1 √ α 0 R Q(x)g(v n )v n dx.
(5.12)

We shall prove that lim n→∞ Bn Q(x)g(v n ) dx = 0.

(5.13) Indeed, given M > 1, we consider A n M := {x ∈ R : v n (x) ≥ M }. By (H1) and (H2), there exists C > 0, independent of n ∈ N, such that g(v n (x))v n (x) ≤ Cv 2 n (x), for every x ∈ B n \ A n M . Consequently, by (5.4),

Bn Q(x)g(v n ) dx = Bn\A n M Q(x)g(v n ) dx + Bn∩A n M Q(x)g(v n ) dx ≤ {Bn\A n M }∩B c r (0) Q(x)g(v n ) dx + {Bn\A n M }∩Br(0) Q(x)g(v n ) dx + 1 M R Q(x)g(v n )v n dx.
Let > 0. For L large enough and using (5.11), (H2), the Hölder inequality together with Q(x) < for |x| > L, we have for some constant C > 0

{Bn\A n M }∩B c L (0) Q(x)g(v n ) dx ≤ C {Bn\A n M }∩B c L (0) |v n | 2 dx ≤ C .
which together with (5.5) gives a contradiction with (5.1). The proof of the theorem is complete.

Theorem 1 . 1 .Remark 1 . 2 .

 1112 Assume f and g belong to the class C P and C Q respectively and have α 0 -critical growth at +∞. Let f and g satisfy (H1) -(H4) and P , Q satisfy (1.3) then the system (1.1) possesses a positive solution. The assumption (H5) given below together with (H2) implies that f ∈ C P and g ∈ C Q .

. 10 )From ( 3 . 6 )

 1036 , (3.7), (3.8), (3.10) and Lemma 3.2,

1

 1 3) with s and t as above results into)g(v n )ũ n dx + o n (1) ≤ R Q(x)(e α0 ũ2 n -1) dx + {x∈R:g(vn)(x)≥ √ α0e g(vn)(x)≤ √ α0e 1/4 } Q(x) (g(v n )) 2 α 0 dx + o n (1).
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  2 .Using condition (H2), there exists a positive constant C independent of n such that v n (x) ≥ C for all x ∈ B n (5.11) where B

	Hence					
	log	g(t) √ α 0	≤ log	C √ α 0	+ β 1 t 2 .	(5.10)
	Bn					

n := x ∈ R : g(v n )(x) ≥ √ α 0 e 1/4 .

Thus using (5.10)-(5.11) we get
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which completes the proof. Proposition 4.2. Let c ∈ (0, π/α 0 ) and {z n } ⊂ H be a (P S) * c sequence for the functional I, with respect to the family (H n ) n of H, then {z n } possesses a subsequence which converges weakly in H to a critical point of I.

Proof. By Proposition 4.1, {z n } is bounded sequence in H. Hence, invoking Lemma 2.1 and the fact that H is a Hilbert space, {z n } has a subsequence (still denote by {z n }) such that

u n → u o and v n → v o in L q (R; P ) and L q (R; Q), ∀ q ∈ [2, ∞),

We also note that, in view of Proposition 4.1, there exists C > 0 such that, for every n ∈ N,

We claim that for any φ ∈ C ∞ 0 (R) with supp φ = K ⊂⊂ R, we have

Indeed, let M > 0 and ψ M a smooth cut-off function such that

Then we have

In the above inequality, using the Lebesgue dominated convergence theorem in the second integral and (4.9) in the first integral, we get for large n

Now we estimate the second integral, keeping in mind the fact that ψ M (u n ) → 1 a.e. in R for M large enough as

(4.12)

Now for large M > 0, we combine (4.12) with (4.11) to get our required result. Similarly one can show that

Finally using (4.8), (4.10) and (4.13) we conclude that 

Proof of Theorem 1.1

Arguing by contradiction, we suppose that the origin is the only critical point of the functional I. Note that the positivity of nontrivial weak solutions follows from the classical regularity theory and strong maximum principle for fractional Laplacian problems.

We shall verify that, under this assumption, I satisfies (P S) * c for every c ∈ (0, π/α 0 ).

Let

By Lemma 2.1, Propositions 3.3, 4.1 and the fact that the origin is the only possible critical point of I, we may assume that there exists C > 0 such that

Since f and g belong to the class C P and C Q respectively, we get

From compact embeddings, we have also for a fixed L > 0

Using above estimates and noting that M > 1 may be chosen properly large, the above inequality implies that (5.13) must hold.

From (5.12) and (5.13) we obtain

(5.14) Next, we use (H1) -(H2) and Lemma 2.1 to obtain

(5.15) Again using Lemma 2.1, (5.9), (5.14), (5.15), we may write

Repeating the same argument for v n , we also obtain

(5.17)

Choosing β 1 ∈ (α 0 , β), the estimate (5.7) is a direct consequence of (5.6), (5.16), (5.17). The claim is proved. Using (5.7) we can choose β close enough to α 0 and ε > 0 such that (α 0 + ε) max{ u n 2 1/2 , v n 2 1/2 } < π. Now using (H1) -(H2) together with the exponential critical growth of f and Theorem A we obtain

where 1/s + 1/s = 1. Now on choosing s > 2 with s sufficiently close to 1 such that (α

1/2 }s < π, we can do the similar calculations as before to control the integral in the second term of the above inequality. Hence using compactness from Lemma 2.1, we obtain

Finally, using (5.18), (5.19) and (5.2) we obtain R (-∆)

In this appendix, we show the claim that under the assumptions (H2) and (H5), f (respectively g) belongs to the class C P (respectively

Proof. Let {u n } ⊂ H 1/2,2 (R) be a sequence such that u n 0, and

For any given > 0, using (H2) and (H5), there exists c o = c o ( ) > 0 sufficiently small and M > 0 sufficiently large such that

Hence from (5.20), we have

(5.21) Further for L = L( ) > 0 large enough such that P (x) < for x ∈ B c L (0), we have

where C is independent of n. Indeed,

Now by Lebesgue theorem, for a such fixed L > 0, we have also It finishes the proof of the first part of the claim. Next, we show the second statement of the claim. From f (t) = O(t 2 ) and for c o , M > 0 respectively small and large enough, we have

Using Lemma 2.1 and estimating the second integral in the above inequality in a similar way as in (5.22) and (5.23), we get the required result.

Remark 5.1. Let the function P be defined as P (x) = 1 (|x|+1) , for > 0 sufficiently small. Consider the sequence {u n } ⊂ H 1/2,2 (R) such that

, for x ∈ [2n, 2n + 1], 0 elsewhere with α ∈ [1/2, 1). Then, by straighforward calculations, we can prove {u n } is bounded in H 1/2,2 (R). Furthermore, as n → ∞ R P (x)u q n dx → 0 if and only if q satisfies αq + > 1. Therefore if f is of O(t 1+ ) near 0 with 0 < ≤ 1-α- α , we easily get that u n 0 weakly in H 1/2,2 (R) and

as n → ∞. However, R P (x)f (u n ) dx → 0 is not verified.