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Abstract

Sampled-data control systems have steadily been gaining interest for their applications in
automatic engineering where they are implemented as digital controllers and recently results
have been obtained in optimal control theory for nonlinear sampled-data control systems and
certain generalizations. In this paper we derive a Pontryagin maximum principle for general
nonlinear finite-dimensional optimal sampled-data control problems with running inequality
state constraints. In particular, we obtain a nonpositive averaged Hamiltonian gradient condi-
tion with the adjoint vector being a function of bounded variations. Our proof is based on the
Ekeland variational principle. In general, optimal control problems with running inequality
state constraints are difficult to solve using numerical methods due to the discontinuities (the
jumps and the singular part) of the adjoint vector. However in our case we find that under
certain general hypotheses the adjoint vector only experiences jumps at most at the sampling
times and moreover the trajectory only contacts the running inequality state constraints at
most at the sampling times. We call this behavior a bouncing trajectory phenomenon and it
constitutes the second major focus of this paper. Finally taking advantage of the bouncing
trajectory phenomenon we numerically solve three examples with different kinds of constraints
and in several dimensions.

Keywords: Sampled-data control, digital control, Pontryagin maximum principle, optimal con-
trol, state constraints, Ekeland variational principle, indirect method, shooting method, function
of bounded variations, Riemann-Stieltjes integral.
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1 Introduction

In mathematics a dynamical system describes the evolution of a point (usually called the state
of the system) in an appropriate set (or the state space) following an evolution rule (also called
the dynamics of the system). Dynamical systems are of many different natures (continuous versus
discrete systems, deterministic versus stochastic systems, etc.). A continuous system is a dynamical
system in which the state evolves in a continuous way in time (for instance, ordinary differential
equations, evolution partial differential equations, etc.), while a discrete system is a dynamical
system in which the state evolves in a discrete way in time (for instance, difference equations,
quantum differential equations, etc.). A control system is a dynamical system in which a control
parameter intervenes in the dynamics and thus influences the evolution of the state. Finally an
optimal control problem consists of determining a control which allows to steer the state of a control
system from an initial condition to some desired target while minimizing a given cost and satisfying
some constraints.

Context. Established in [50] by Pontryagin, Boltyanskii, Gamkrelidze and Mischenko at the
end of the 1950’s, the Pontryagin Maximum Principle (in short, PMP) is a fundamental result
in optimal control theory with numerous theoretical and numerical applications. We refer to [35,
36, 42, 55, 56, 59] and references therein for some examples. The classical PMP gives first-order
necessary optimality conditions for (continuous) optimal control problems in which the dynamical
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system is described by a general ordinary differential equation. Roughly speaking, the PMP
ensures the existence of an adjoint vector satisfying some terminal conditions (called transversality
conditions) such that the optimal control maximizes the Hamiltonian associated to the optimal
control problem. As an application, if the Hamiltonian maximization condition given by the PMP
may be used to express the optimal control as a function of the state and of the adjoint vector, then
the PMP induces an indirect method. In particular, an indirect method determines the optimal
control by numerically solving the boundary value problem on the augmented couple of the state
and the adjoint vector via a shooting method. Soon afterwards and even nowadays, the PMP has
been adapted to many situations, for control systems of different natures, with various constraints,
etc. It is not the aim of the present paper to give a state of the art. Nevertheless we precise
that several versions of the PMP were derived for (discrete) optimal control problems in which
the dynamical system is described by a general difference equation (see, e.g., [6, 33, 37]). In these
discrete versions of the PMP, the Hamiltonian maximization condition does not hold in general (see
a counterexample in [6, Examples 10.1-10.4 p.59-62]) and has to be replaced by a weaker condition
known as the nonpositive Hamiltonian gradient condition (see e.g., [6, Theorem 42.1 p.330]).

An important generalization of the PMP for continuous control systems is the presence of running
inequality state constraints where the state is restricted to a certain region of the state space.
In scientific and engineering applications it is often undesirable and even inadmissible that the
state crosses certain limits imposed in the state space for safety or practical reasons and many
examples can be found in mechanics and aerospace engineering (e.g., an engine may overheat
or overload). We refer to [9, 22, 39, 57, 58] and references therein for other examples. State
constrained optimal control problems are also important in management and economics (e.g., an
inventory level may be limited in a production model). We refer to [19, 46, 51, 55] and references
therein for other examples. A version of the PMP for (continuous) optimal control problems with
running inequality state constraints for piecewise smooth controls was given by Gamkrelidze et
al. (see, e.g, [30] and [50, Theorem 25 p.311]). Furthermore, versions of a PMP for (continuous)
optimal control problems with running inequality state constraints with permanent controls can be
found in articles by Maurer (see [45, Section 3 p.347]) and a text by Girsanov (see [31, Theorem 14.1
p.106]). Moreover a comprehensive survey of this field of research has been given by Hartl, Sethi and
Vickson in [34]. However implementing an indirect method to numerically solve an optimal control
problem in the case of running inequality state constraints is more difficult than the unconstrained
state case since the adjoint vector is not absolutely continuous in general (as in the unconstrained
state case), but (only) of bounded variations (see Section 5 for more details). Therefore theoretical
and numerical difficulties arise from the jumps and the singular part of the adjoint vector which
lie on parts of the trajectory in contact with the boundary of the restricted state space. As a
consequence, an important portion of the literature is devoted to the analysis of the behavior of
the adjoint vector and some constraint qualification conditions have been established in order to
ensure that the adjoint vector has no singular part (see e.g., [9, 24, 34, 38, 45]).

In the present paper we are interested in sampled-data control systems in which the state evolves
continuously with respect to time while the control evolves discretely with respect to time. More
precisely the value of the control is authorized to be modified at only a finite number of instances
which are called the sampling times. Note that sampled-data control systems have the peculiar-
ity of presenting a mixed continuous/discrete structure. They have been considered as models in
Engineering implemented by digital controllers which have a finite precision (see, e.g., [54, 60]).
Sampled-data control systems are used in Automation, notably in model predictive control algo-
rithms in which the control value at each sampling time is chosen as the first value of a finite
sequence of control values optimizing the given cost on a fixed finite horizon (see, e.g., [32]). Nu-
merous texts and articles have developed control theory for sampled-data control systems (see,
e.g., [1, 2, 28, 40] and references therein). In particular, recently Bourdin and Trélat have obtained
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in [14] a version of the PMP for general nonlinear optimal sampled-data control problems (which
is valid in the even more general framework of time scale calculus). In the sampled-data control
framework, as in the case of discrete control systems previously mentioned, the usual Hamiltonian
maximization condition does not hold in general and has to be replaced by a weaker condition
known as a nonpositive averaged Hamiltonian gradient condition (see [14, Theorem 2.6 p.62]).
Note that the nonpositive averaged Hamiltonian gradient condition can be used to solve for the
optimal control by an indirect method (see, e.g., [14, Section 3.1]) as in the case of (continuous)
optimal control problems previously mentioned. Given the numerous applications of sampled-
data control systems there is an active interest in obtaining necessary optimality conditions (for
example, in the form of a PMP) for different cases and generalizations, such as problems with
linear-quadratic costs (see, e.g., [15]), the problem of determining the optimal sampling times (see,
e.g. [11]), etc.

Contributions of the present paper. The main theoretical result in the present paper is a
PMP for general nonlinear optimal sampled-data control problems with running inequality state
constraints (Theorem 3.1 in Section 3). Our proof is based on the Ekeland variational principle. To
the best of our knowledge, running inequality state constraints have never been investigated with
sampled-data controls but we briefly mention that the related theme of discrete controls with run-
ning state constraints has already been investigated in the literature and under certain conditions
on the Hamiltonian function a discrete adjoint equation is obtained (see [23, Proposition 2 p.13]).
Similarly to the PMP derived in [14, Theorem 2.6 p.62] for unconstrained optimal sampled-data
control problems we obtain a first-order necessary condition described by a nonpositive averaged
Hamiltonian gradient condition. Moreover as in the case of (continuous) optimal control problems
with running inequality state constraints we find that the adjoint vector is, in general, (only) of
bounded variations. Then we would expect to encounter the same difficulties in implementing an
indirect method due to the jumps and the singular part of the adjoint vector as in the contin-
uous case. However, in our case we find that the optimal trajectories have a common behavior
that allows us to overcome these difficulties. Precisely, when we first undertook studying optimal
sampled-data control problems with running inequality state constraints we solved some simple
problems by direct numerical optimization on the control values. Surprisingly we observed that in
each problem the optimal trajectory “bounces” against the boundary of the restricted state space,
precisely touching the state constraint at most at the sampling times. This behavior constitutes the
second major focus of this present paper and is called the bouncing trajectory phenomenon. More-
over we find that under certain general hypotheses any admissible trajectory necessarily bounces
on the running inequality state constraints and, moreover, the rebounds occur at most at the sam-
pling times (and thus are in a finite number and at precise instants). Inherent to this behavior is
the fact that an admissible trajectory cannot remain on the boundary of the restricted state space
with a constant control value and hence the trajectory may only touch the boundary at moments
when the control value can be modified, precisely being the sampling times. As an application,
the bouncing trajectory phenomenon implies that the singular part of the adjoint vector vanishes
and the discontinuities are reduced to only consisting of jumps (see Section 5 for more details).
Furthermore these jumps are isolated and restricted to the rebounds of the optimal trajectory.
Since these rebounds are localized at most at the sampling times we are able to implement an
indirect method to determine the jumps of the adjoint vector via a shooting method. Precisely
this shooting method incorporates the nonpositive averaged Hamiltonian gradient condition given
by our main result and we use it to solve three different examples of optimal sampled-data control
problems with different types of constraints and in several dimensions, thus demonstrating the
interest and utility of our result.
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Organization of the paper. The present paper is organized as follows. In Section 2 we give
some recalls on Cauchy-Stieltjes problems and introduce the functional framework needed to state
our main result. Section 3 is dedicated to our main result (see Theorem 3.1). Precisely in Sec-
tion 3.1 we present the optimal sampled-data control problem with running inequality state con-
straints considered in this paper (see Problem (OSCP)). The corresponding Pontryagin maximum
principle is stated thereafter in Section 3.2 and a list of general comments is in order. In Section 4
we give heuristic descriptions and a sufficient condition for observing the bouncing trajectory phe-
nomenon and in Section 5 we propose an indirect method for solving optimal sampled-data control
problems with running inequality state constraints with the aid of our main result. Furthermore
in Sections 5.2, 5.3 and 5.4 we numerically solve three simple examples with this indirect method
and obtain figures which illustrate and highlight the bouncing trajectory phenomenon. The Ap-
pendix A is devoted to the technical tools needed for the proof of Theorem 3.1. Finally the Ekeland
variational principle is applied in Appendix B.1.1 and we conclude the proof by introducing the
nontrivial couple of Lagrange multipliers and the adjoint vector.

2 Basics and recap about linear Cauchy-Stieltjes problems

This section is dedicated to basic notions and background that are required in order to enunciate
our main result (Theorem 3.1 in Section 3.2). In the whole section we consider four fixed positive
integers m, n, q, N ∈ N∗ and T > 0 as being a fixed positive real number. Section 2.1 below
is devoted to the notations and the functional framework we will encounter all along the paper.
Section 2.2 is dedicated to some recalls on functions of bounded variations and on linear Cauchy-
Stieltjes problems.

2.1 Notations and functional framework

In this paper we denote by:

- L1
n := L1([0, T ],Rn) the standard Lebesgue space of integrable functions defined on [0, T ]

with values in Rn, endowed with its usual norm ‖ · ‖L1
n
;

- L∞n := L∞([0, T ],Rn) the standard Lebesgue space of essentially bounded functions defined
on [0, T ] with values in Rn, endowed with its usual norm ‖ · ‖L∞n ;

- Cn := C([0, T ],Rn) the standard space of continuous functions defined on [0, T ] with values
in Rn, endowed with the usual uniform norm ‖ · ‖∞;

- ACn := AC([0, T ],Rn) the subspace of Cn of absolutely continuous functions.

In the sequel we consider an N -partition of the interval [0, T ], that is, let T := {ti}i=0,...,N be
a (N + 1)-tuple such that

0 = t0 < t1 < . . . < tN−1 < tN = T.

We denote the set of all piecewise constant functions defined on [0, T ] with values in Rm respecting
the N -partition T by

PCT
m := {u ∈ L∞m | ∀i = 0, . . . , N − 1, ∃ui ∈ Rm, u(t) = ui for a.e. t ∈ [ti, ti+1]}.

In this paper, as usual in the Lebesgue space L∞m , two functions in PCT
m which are equal almost

everywhere on [0, T ] are identified. Precisely, if u ∈ PCT
m, then u is identified to the function

u(t) =

{
ui if t ∈ [ti, ti+1), i = 0, . . . , N − 2,
uN−1 if t ∈ [tN−1, tN ],

for all t ∈ [0, T ].
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2.2 Recalls on functions of bounded variations and on linear Cauchy-
Stieltjes problems

In this section we refer to standard references and books such as [3, 16, 17, 29, 61] and to Ap-
pendices A.3 and A.4 for some more recalls. A function η : [0, T ] → Rq is said to be of bounded
variations on [0, T ] if

sup
{si}i

{∑
i

‖η(si+1)− η(si)‖Rq

}
< +∞,

where the supremum is taken over all finite partitions {si}i of the interval [0, T ]. In the sequel we
denote by BVq := BV([0, T ],Rq) the space of all functions of bounded variations on [0, T ] with
values in Rq. Finally recall that the Riemann-Stieltjes integral defined by∫ T

0

ψ(τ) dη(τ) := lim
∑
i

(η(si+1)− η(si))ψ(si),

exists in Rn for all ψ ∈ Cn and all η ∈ BV1, where the limit is taken over all finite partitions {si}i
of the interval [0, T ] whose length tends to zero.

We are now in a position to give a short recap on linear Cauchy-Stieltjes problems. Let A ∈
L∞([0, T ],Rn×n), B ∈ L∞n and let Cj ∈ Cn and ηj ∈ BV1 for every j = 1, . . . , q. We say
that x ∈ L∞n is a solution to the forward linear Cauchy-Stieltjes problem (FCSP) given bydx = (A× x+B) dt+

∑q
j=1 Cj dηj over [0, T ],

x(0) = x0,
(FCSP)

where x0 ∈ Rn is fixed, if x satisfies the integral representation

x(t) = x0 +

∫ t

0

(
A(τ)× x(τ) +B(τ)

)
dτ +

q∑
j=1

∫ t

0

Cj(τ) dηj(τ),

for a.e. t ∈ [0, T ]. Similarly we say that p ∈ L∞n is a solution to the backward linear Cauchy-Stieltjes
problem (BCSP) given by−dp = (A× p+B) dt+

∑q
j=1 Cj dηj over [0, T ],

p(T ) = pT ,
(BCSP)

where pT ∈ Rn is fixed, if p satisfies the integral representation

p(t) = pT +

∫ T

t

(
A(τ)× p(τ) +B(τ)

)
dτ +

q∑
j=1

∫ T

t

Cj(τ) dηj(τ),

for a.e. t ∈ [0, T ]. From usual contraction mapping techniques, one can easily prove that Prob-
lems (FCSP) and (BCSP) both admit a unique solution. Moreover, from standard identifications
in L∞n , these solutions both belong to BVn and the above integral representations are both satisfied
for all t ∈ [0, T ]. We refer to [10, Appendices C and D] and references therein for details.

We conclude this section with a last definition. A function η ∈ BVq is said to be normalized
if η(0) = 0Rq and η is right-continuous on (0, T ). We denote the subspace of BVq of all normalized
functions of bounded variations by NBVq := NBV([0, T ],Rq).
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3 The main result

This section is dedicated to the statement of our main result (Theorem 3.1 in Section 3.2). In
Section 3.1 below we introduce the general optimal sampled-data control problem with running
inequality state constraints considered in this work, and we fix the terminology and assumptions
used all along the paper. In Section 3.2 we state the corresponding Pontryagin maximum principle
and a list of comments is in order.

3.1 A general optimal sampled-data control problem with running in-
equality state constraints

Let n, m, q, N ∈ N∗ be four fixed positive integers. Let us fix a positive real number T > 0, as
well as an N -partition T = {ti}i=0,...,N of the interval [0, T ]. In the present work we focus on the
general optimal sampled-data control problem with running inequality state constraints given by

minimize g(x(T )) +

∫ T

0

L(x(τ), u(τ), τ) dτ,

subject to x ∈ ACn, u ∈ PCT
m,

ẋ(t) = f(x(t), u(t), t) for a.e. t ∈ [0, T ],

x(0) = x0,

hj(x(t), t) ≤ 0 for all t ∈ [0, T ] and all j = 1, . . . , q,

u(t) ∈ U for all t ∈ [0, T ].



(OSCP)

In Problem (OSCP), x is called the state function (also called the trajectory) and u is called the
control function. A couple (x, u) is said to be admissible for Problem (OSCP) if it satisfies all the
above constraints. A solution to Problem (OSCP) is an admissible couple (x, u) which minimizes

the Bolza cost given by g(x(T )) +
∫ T

0
L(x(τ), u(τ), τ) dτ among all admissible couples.

Throughout the paper we will make use of the following regularity and topology assumptions:

- the function g : Rn → R, that describes the Mayer cost g(x(T )), is of class C1;

- the function L : Rn×Rm× [0, T ]→ R, that describes the Lagrange cost
∫ T

0
L(x(t), u(t), t) dt,

is continuous and of class C1 with respect to its first two variables;

- the dynamic f : Rn×Rm× [0, T ]→ Rn, that drives the state equation ẋ(t) = f(x(t), u(t), t),
is continuous and of class C1 with respect to its first two variables;

- the function h = (hj)j=1,...,q : Rn × [0, T ] → Rq, that describes the running inequality state
constraints hj(x(t), t) ≤ 0, is continuous and of class C1 in its first variable;

- the set U ⊂ Rm, that describes the control constraint u(t) ∈ U, is a nonempty closed convex
subset of Rm;

- the initial condition x0 ∈ Rn is fixed.

In the classical literature about the Pontryagin maximum principle (see, e.g., [18, 36, 50, 55, 56, 59]
and references therein), the control u usually can be any function in L∞m (with values in U). In
that situation we say that the control is permanent in the sense that its value can be modified
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at any real time t ∈ [0, T ]. In the present paper the control u is constrained to be a piecewise
constant function respecting the fixed N -partition T = {ti}i=0,...,N . In other words, the value of
the control u is authorized to be modified at most N − 1 times and at precise fixed instants. In
that situation we say that the control is nonpermanent. The standard terminology adopted in
the literature is to say that the elements ti of T are the sampling times and that the control u in
Problem (OSCP) is a sampled-data control.

Control theory for sampled-data control systems has already been considered in several texts, often
in the context of digital control (see, e.g., [1, 2, 28, 40]). Optimal sampled-data control problems
have also been investigated in the literature (see, e.g., [5, 11, 12, 14, 15]) with general terminal
constraints on x(0) and x(T ), free final time, free sampling times, etc. To the best of our knowl-
edge, running inequality state constraints have never been investigated with sampled-data controls.
Our aim in this paper is to fill this gap in the literature, and thus we will essentially focus in the
present work on the running inequality state constraints hj(x(t), t) ≤ 0 in Problem (OSCP). As
a consequence, for the sake of simplicity, we took the decision not to consider general terminal
constraints in Problem (OSCP). Indeed we only consider the basic case in which the initial con-
dition x(0) = x0 is fixed and the final condition x(T ) is free. Similarly we also chose to consider
that the final time T > 0 and the partition T = {ti}i=0,...,N are fixed. If the reader is interested
in techniques allowing to handle general terminal constraints, free final time, free sampling times,
etc., we refer to the last above references.

Remark 3.1. Let (x, u) be an admissible couple of Problem (OSCP). From the state equation and
since u is a piecewise constant function, it is clear that x is not only absolutely continuous but also
piecewise smooth of class C1 over the interval [0, T ], in the sense that x is of class C1 over each
sampling interval [ti, ti+1].

Remark 3.2. Existence theorems for optimal permanent control problems with running inequality
state constraints can be found in a text by Clarke (see [20, Theorem 5.4.4 p.222]). Furthermore,
existence theorems for related problems such as optimal permanent control problems with state
constraints where the constraint is given as an inclusion to a set in the state space (i.e, x(t) ∈ K
for a.e. t) can be found in works of Cesari (see [18, Theorem 9.2.i p.311]) and Rockafellar (see,
e.g., [53]).

A Filippov-type theorem for the existence of a solution to Problem (OSCP) without running in-
equality state constraints was derived in [14, Theorem 2.1 p.61]. The present work only focuses on
necessary optimality conditions and thus it is not our aim to discuss the extension of the previously
mentioned result to the case with running inequality state constraints. Nevertheless we note that
in the standard Filippov’s theorem, as usually established for optimal permanent control problems,
the controls belong to the infinite dimensional space L∞m while the sampled-data control framework
considered here can be seen as a finite dimensional problem. This fundamental difference could
potentially lead to existence results in the case of sampled-data controls with relaxed assumptions
with respect to the case of permanent controls and constitutes an interesting perspective for future
works.

Remark 3.3. We take this occasion to provide a (nonexhaustive) list of perspectives for future
works:

(i) In the context of linear-quadratic problems, the authors of [15] prove that optimal sampled-
data controls converge pointwisely to the optimal permanent control when the lengths of sam-
pling intervals tend uniformly to zero. The convergence of the corresponding costs and the
uniform convergence of the corresponding states and costates are also derived. This conver-
gence is suggested in the numerical examples presented in Section 5. An interesting research
perspective would be to get similar convergence results in the context of the present work.
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(ii) The present paper focuses on finite partitions. Chattering phenomenon has been investigated
for optimal control problems with running inequality state constraints where, in particular,
the optimal trajectory touches the constraint at an infinite sequence of isolated points in rapid
succession (see, for instance [52]). In view of handling chattering phenomenon, it would be
relevant to extend the present framework to the case of infinite partitions. For example, one
may consider the case of countably infinite partitions with exactly one accumulation point.

(iii) In the paper [11] the authors consider optimal sampled-data control problems with free sam-
pling times and obtain a necessary optimality condition which happens to coincide with the
continuity of the Hamiltonian function. It would be relevant to extend the scope of Prob-
lem (OSCP) to study optimal sampled-data control problems with free sampling times in the
presence of running inequality state constraints and obtain a necessary optimality condition
for the optimal sampling times in this case.

(iv) Several papers in the literature consider optimal permanent control problems with state con-
straints of different natures, i.e. with mixed constraints of the form h(x(t), u(t), t) ≤ 0 (see,
e.g., [34]) or with state constraints where the constraint is given as an inclusion to a set
in the state space (see, e.g., [18, 53]). An interesting research perspective would be to con-
sider (OSCP) with the above mentioned state constraints in place of the running inequality
inequality state constraints and obtain necessary optimality conditions.

(v) Last (but not least) a relevant research perspective would concern the extension of the present
paper to the more general framework in which the values of the sampling times ti intervene
explicitly in the cost to minimize and/or in the dynamics. Let us take this occasion to
mention the paper [4] in which the authors derive Pontryagin-type conditions for a specific
problem from medicine that can be written as an optimal sampled-data control problem in
which the sampling times ti are free and intervene explicitly in the expression of the dynamics.
We precise that, even in this very particular context, giving an expression of the necessary
optimality conditions in an Hamiltonian form still remains an open mathematical question.

3.2 Pontryagin maximum principle

The main objective of the present paper is to derive a Pontryagin maximum principle for Prob-
lem (OSCP). Let us mention here that establishing a consensual version of the Pontryagin max-
imum principle for optimal permanent control problems with running inequality state constraints
still constitutes a wonderful mathematical challenge. Necessary optimality conditions have been
obtained by Jacobson, Lele and Speyer [38] including the maximization condition of the Hamilto-
nian. Similar conditions can be found for example in the articles of Lastman [41]), Maurer [45, 47],
Norris [49], etc. This field of research has been the subject of a comprehensive survey by Hartl,
Sethi and Vickson [34] in 1995. More recent versions of necessary optimality conditions for various
generalizations have been claimed in the literature (see, e.g., [7, 8, 59]).

The novelty of the present work is to deal with running inequality state constraints with nonper-
manent controls, precisely, with sampled-data controls. As usual in the literature we introduce the
Hamiltonian H : Rn × Rm × Rn × R× [0, T ]→ R associated to Problem (OSCP) defined by

H(x, u, p, p0, t) := 〈p, f(x, u, t)〉Rn + p0L(x, u, t),

for all (x, u, p, p0, t) ∈ Rn × Rm × Rn × R × [0, T ]. The main result of this article is given by the
following theorem.
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Theorem 3.1 (Pontryagin maximum principle). Let (x, u) be a solution to Problem (OSCP).
Then there exists a nontrivial couple (p0, η), where p0 ≤ 0 and η = (ηj)j=1,...,q ∈ NBVq, such that
the nonpositive averaged Hamiltonian gradient condition〈∫ ti+1

ti

∂2H(x(τ), ui, p(τ), p0, τ) dτ, v − ui
〉

Rm

≤ 0, (1)

holds for all v ∈ U and all i = 0, . . . , N − 1, where the adjoint vector p ∈ BVn (also called costate)
is the unique solution to the backward linear Cauchy-Stieltjes problem given by−dp =

(
∂1f(x, u, ·)> × p+ p0∂1L(x, u, ·)

)
dt−

∑q
j=1 ∂1hj(x, ·) dηj over [0, T ],

p(T ) = p0∇g(x(T )).
(2)

Moreover the complementary slackness condition:

ηj is monotonically increasing on [0, T ] and

∫ T

0

hj(x(τ), τ) dηj(τ) = 0, (3)

is satisfied for each j = 1, . . . , q.

Appendices A and B are dedicated to the detailed proof of Theorem 3.1. A list of comments is in
order.

Remark 3.4. The nontrivial couple (p0, η) in Theorem 3.1, which corresponds to a Lagrange
multiplier, is defined up to a positive multiplicative scalar. In the normal case p0 6= 0 it is usual to
normalize the Lagrange multiplier so that p0 = −1. The case p0 = 0 is usually called the abnormal
case.

Remark 3.5. Our strategy in Appendices A and B in order to prove Theorem 3.1 is based on
the Ekeland variational principle [26] applied to an appropriate penalized functional which requires
the closedness of U in order to be defined on a complete metric set (see details in Section B.1.1).
The closedness of U is therefore a crucial assumption in the current paper. On the other hand,
the convexity of U is useful in order to consider convex L∞-perturbations of the control for the
sensitivity analysis of the state equation (see Proposition A.4 in Section A.2). Nevertheless, the
convexity of U can be removed by considering the concept of U-dense directions (see, e.g., [14]).

Remark 3.6. If there is no running inequality state constraint in Problem (OSCP), that is, con-
sidering hj = 0 for all j = 1, . . . , q, then Theorem 3.1 recovers the standard Pontryagin maximum
principle for optimal sampled-data control problems derived for instance in [13, 14]. Let us recall
that the classical Hamiltonian maximization condition (which holds in the case of optimal per-
manent controls) is not true in general in the case of optimal sampled-data controls, and has to
be replaced by the nonpositive averaged Hamiltonian gradient condition. We refer to the above
references for a detailed discussion about this property for optimal sampled-data controls.

Remark 3.7. The nonpositive averaged Hamiltonian gradient condition in Theorem 3.1 can be
rewritten as ∫ ti+1

ti

∂2H(x(τ), ui, p(τ), p0, τ) dτ ∈ NU[ui]

for all i = 0, . . . , N−1, where NU[ui] stands for the classical normal cone to U at the point ui ∈ U.
We deduce that

ui = projU

(
ui +

∫ ti+1

ti

∂2H(x(τ), ui, p(τ), p0, τ) dτ

)
,
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for all i = 0, . . . , N − 1, where projU stands for the classical projection operator onto U. In
particular, if U = Rm (that is, if there is no control constraint in Problem (OSCP)), then the
nonpositive averaged Hamiltonian gradient condition is given by∫ ti+1

ti

∂2H(x(τ), ui, p(τ), p0, τ) dτ = 0Rm ,

for all i = 0, . . . , N − 1.

Remark 3.8. Following the proof in Appendices A and B, one can easily see that Theorem 3.1 is
still valid for a couple (x, u) which is a solution to Problem (OSCP) in (only) a local sense to be
precised. For the ease of statement, we took the decision to establish Theorem 3.1 for a couple (x, u)
which is solution to Problem (OSCP) in a global sense.

Remark 3.9. In the context of Theorem 3.1 and using the definition of the Hamiltonian, note
that the state equation can be written as

ẋ(t) = ∂3H(x(t), u(t), p(t), p0, t),

for a.e. t ∈ [0, T ], and that the adjoint equation can be written as

−dp = ∂1H(x, u, p, p0, ·) dt−
q∑
j=1

∂1hj(x, ·) dηj ,

over [0, T ].

Remark 3.10. It is frequent in the literature (see, e.g., [59, Theorem 9.3.1]) to find the adjoint
vector p ∈ BVn written as the sum p = p1 + p2 where p1 ∈ ACn is the unique solution to the
backward linear Cauchy problemṗ1(t) = −∂1H(x(t), u(t), p(t), p0, t) for a.e. t ∈ [0, T ],

p1(T ) = p0∇g(x(T )),

and where p2 ∈ BVn is defined by

p2(t) := −
q∑
j=1

∫ T

t

∂1hj(x(τ), τ) dηj(τ),

for all t ∈ [0, T ]. This decomposition easily follows from the integral representation of the solutions
to backward linear Cauchy-Stieltjes problem recalled in Section 2.2.

Remark 3.11. In the context of Theorem 3.1, note that the complementary slackness condition
implies, for all j = 1, . . . , q, that ηj remains constant on any open subinterval (τ1, τ2) ⊂ {t ∈ [0, T ] |
hj(x(t), t) < 0} with τ1 < τ2. Denoting by dηj the finite nonnegative Borel measure associated to ηj
(see Section A.3 for more details), we deduce that

supp(dηj) ⊂ {t ∈ [0, T ] | hj(x(t), t) = 0},

for all j = 1, . . . , q, where supp(dηj) stands for the classical notion of support of the measure dηj.

Remark 3.12. Note that the necessary optimality conditions of Theorem 3.1 are of interest only
when the running inequality state constraints are nondegenerate, in the sense that ∂1hj(x(t), t) 6= 0
whenever hj(x(t), t) = 0 for all j = 1, . . . , q. We refer to [59, Remark (b) p.330] for a similar
remark in the classical case of permanent controls.
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Remark 3.13. In the classical case of optimal permanent control problems without running in-
equality state constraint, the Pontryagin maximum principle induces an indirect numerical method
based on the resolution by a shooting method of the boundary value problem satisfied by the aug-
mented state-costate vector (see, e.g., [56, p.170-171] for details). Recall that:

(i) In the presence of running inequality state constraints, the adaptation of an indirect numerical
method can be considered using an appropriate version of the Pontryagin maximum principle,
such as those mentioned at the beginning of this section. Nevertheless, some theoretical
and/or numerical difficulties may appear due to the behavior of the adjoint vector p ∈ BVn

which can be pathological and can admit an infinite number of discontinuities (see Section 5
for more details).

(ii) An indirect numerical method has also been adapted to the case of optimal sampled-data
controls (without running inequality state constraint) in [15], and also in the case of free
sampling times in [11].

To the best of our knowledge, the indirect numerical method has never been adapted to optimal
sampled-data control problems in the presence of running inequality state constraints. Our aim
in Section 5 below is to fill this gap in the literature by using the Pontryagin maximum principle
derived in Theorem 3.1. Of course, in the context of Theorem 3.1, it might be possible that the
adjoint vector p ∈ BVn is pathological or admits an infinite number of discontinuities, but it will be
shown in Sections 4 and 5 that, under certain (quite unrestrictive) hypotheses, the implementation
of an indirect numerical method is simplified due to the particular behavior of the optimal trajectory.

Remark 3.14. In this paper the proof of Theorem 3.1 is based on the Ekeland variational prin-
ciple. An alternative proof of Theorem 3.1 can be obtained by adapting a remarkable technique
exposed in the paper [25] by Dmitruk and Kaganovich that consists of mapping each sampling
interval [ti, ti+1] to the interval [0, 1] and by taking the values ui of the sampled-data control to
be additional parameters. Then through the application of the PMP for optimal permanent con-
trol problems with running state constraints (see, e.g., [10, Theorem 1] and [59, Theorem 9.5.1 p.
339-340]) one obtains the adjoint equation (2) and complementary slackness condition (3) given
in Theorem 3.1. Moreover the application of a “PMP with parameters”(see, e.g, [12, Remark 5
p.3790]) leads to a necessary optimality condition written in integral form which coincides with the
nonpositive averaged Hamiltonian gradient condition (1).

4 Bouncing trajectory phenomenon

When we undertook to study optimal sampled-data control problems in the presence of running
inequality state constraints, one of our first actions was to solve some simple problems using a
direct method (see Section 5 for some details on direct methods in optimal control theory). At
this occasion we observed that the optimal trajectories returned by the algorithm had a common
behavior with respect to the running inequality state contraint. Precisely the optimal trajecto-
ries were “bouncing” on it. We refer to Figure 3 and Section 5 for some examples illustrating
this observation which we refer to as the bouncing trajectory phenomenon. Actually, when deal-
ing with sampled-data controls and running inequality state constraints, the bouncing trajectory
phenomenon concerns, not only the optimal trajectories, but all admissible trajectories.

In this section our aim is to give a detailed description of this new observation (which does not
appear in general in the classical theory, that is, with permanent controls). Precisely we will show
that, under certain hypotheses, an admissible trajectory of Problem (OSCP) necessarily bounces
on the running inequality state constraints and, moreover, the contact times occur at most at
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the sampling times ti (and thus in a finite number and at precise instants). As detailed later in
Section 5, this feature presents some benefits from a numerical point of view.

In Section 4.1 below we initiate an heuristic discussion allowing to understand why, usually, the
admissible trajectories of Problem (OSCP) bounce on the running inequality state constraints
and, moreover, at most at the sampling times ti. Then we provide in Section 4.2 a mathematical
framework and rigorous justifications which allow us to specify a sufficient condition ensuring this
behavior (see Proposition 4.1).

Throughout this section, for simplicity, we will assume that q = 1, that is, there is only one running
inequality state constraint in Problem (OSCP) denoted by h(x(t), t) ≤ 0. Nevertheless the results
and comments of this section can be extended to multiple running inequality state constraints,
that is, for q ≥ 2. Furthermore we will assume that the dynamic f and the running inequality
state constraint function h are of class C∞ in all variables. In particular note that any admissible
trajectory of Problem (OSCP) is thus piecewise smooth of class C∞, in the sense that it is of
class C∞ over each sampling interval [ti, ti+1].

4.1 Expected behavior of an admissible trajectory

We start this section by recalling some standard terminology from [34, p.183] or [55, p.105]. Let x
be an admissible trajectory of Problem (OSCP). An interval [τ1, τ2] ⊂ [0, T ] with τ1 < τ2 is called
a boundary interval if h(x(t), t) = 0 for all t ∈ [τ1, τ2]. An element t ∈ [0, T ] is called an activating
time if it satisfies h(x(t), t) = 0. Note that any point of a boundary interval is an activating
time, while the reverse is not true in general. In particular an activating time t ∈ [0, T ] which is
isolated from all other activating times is called a contact time. Finally, in the sequel, we say that
the trajectory x displays the bouncing trajectory phenomenon if the set of activating times is not
empty and contains no boundary interval.

Our aim in this section is to give some heuristic descriptions (and illustrating figures) of the main
reason why a bouncing trajectory phenomenon is usually displayed when dealing with sampled-data
controls in the presence of running inequality state constraints (see (i) below) and why, moreover,
the contact times occur at most at the sampling times ti (see (ii) below). The mathematical
framework and rigorous justifications will be provided in Section 4.2.

(i) In the classical theory (that is, with permanent controls), a boundary interval may correspond
to a feedback control, that is, to an expression of the control as a function of the state. Such an
expression usually leads to a nonconstant control. More generally, a running inequality state
constraint usually cannot be activated by a trajectory on an interval [τ1, τ2] with τ1 < τ2 on
which the associated (permanent) control is constant. We refer to Figure 1 for an illustration.
Therefore, since we deal with piecewise constant controls in Problem (OSCP), one should
expect that an admissible trajectory of Problem (OSCP) does not possess any boundary
interval and thus displays a bouncing trajectory phenomenon. In order to guarantee the
validity of this remark, it is sufficient to make an assumption on f and h which prevents the
existence of an admissible trajectory x of Problem (OSCP) and an interval [τ1, τ2] ⊂ [0, T ]
with τ1 < τ2 for which ϕ(`)(t) = 0 for all ` ∈ N and all t ∈ [τ1, τ2], where ϕ is defined
by ϕ(t) := h(x(t), t) for all t ∈ [τ1, τ2]. This will be done in Section 4.2 (see Hypothesis (H1)).

(ii) Let t ∈ [0, T ] be a contact time of an admissible trajectory x of Problem (OSCP). We
denote by u the corresponding control. Let us assume that t is not a sampling time, that
is, t ∈ (ti, ti+1) for some i ∈ {0, . . . , N − 1}. Usually the trajectory x “hits” the running
inequality state constraint transversely at t. Since the control value u(t) = ui is fixed all
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running inequality
state constraint

x

Usually the control is not

constant along a boundary

interval

Figure 1: In the classical theory (that is, with permanent controls), a boundary interval is usually
associated to a nonconstant control

along the sampling interval [ti, ti+1], the trajectory x then “crosses” the running inequality
state constraint immediately after t, which contradicts the admissibility of x. We refer to
Figure 2 for an illustration. Hence, in order to preserve the admissibility of x, we understand
that the control value must change at t, that is, since u is a sampled-data control, that t
must be one of the sampling times ti. From this simple heuristic discussion, one should
expect that an admissible trajectory of Problem (OSCP) has contact times occuring at most
at the sampling times ti (and thus in a finite number). In order to guarantee the validity of
this remark, it is sufficient to make an assumption on f and h which prevents the existence
of an admissible trajectory of Problem (OSCP) which “hits” the running inequality state
constraint tangentially. This will be done in Section 4.2 (see Hypothesis (H2)).

Finally, since the set of activating times coincides with the closure of the set of contact times
which is a finite set in the above context, one should expect that an admissible trajectory of
Problem (OSCP) has activating times occuring at most at the sampling times ti (and thus
in a finite number and at precise instants).

We conclude from (i) and (ii) that one should expect from admissible trajectories of Problem (OSCP)
to display the bouncing trajectory phenomenon and, moreover, such that the contact times occur
at most at the sampling times ti (and thus in a finite number and at precise instants). We refer
to Figure 3 for an illustration of this feature. Note that, even if activating times are all sampling
times, the reverse is not true in general.

We conclude this section by mentioning that the above descriptions are only heuristic and, of
course, one can easily find counterexamples in which the behavior of Figure 3 is not observed.
Nonetheless we emphasize that the bouncing trajectory phenomenon is quite ordinary when deal-
ing with sampled-data controls and running inequality state constraints, as guaranteed by the
mathematical justifications provided in Section 4.2 below and as illustrated by the numerically
solved examples in Section 5.

4.2 A sufficient condition for the bouncing trajectory phenomenon

Our aim in this section is to provide a rigorous mathematical framework describing the heuristic
discussion provided in the previous subsection. In particular we will formulate a sufficient condition
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Usually the trajectory

“hits” the running

inequality state con-

straint transversely

Keeping the same con-

trol value u(t) = ui,

the trajectory “crosses”

the running inequality

state constraint

tti ti+1

Figure 2: Illustration of an admissible trajectory x hitting transversely the running inequality state
constraint at some contact time t which belongs to the interior (ti, ti+1) of a sampling interval.

running inequality
state constraint

x

ti−2 ti−1 ti ti+1ti−3 ti+3ti+2

Figure 3: Illustration of the expected behavior of an admissible trajectory x of Problem (OSCP).

(see Proposition 4.1 below) ensuring the bouncing trajectory phenomenon and that the rebounds
occur at most at the sampling times ti.

To this aim, and similarly to [34, p.183], we introduce the functions h[`] : Rn × Rm × [0, T ] → R
defined by the induction{

h[0](y, v, t) := h(y, t),

∀` ∈ N, h[`+1](y, v, t) := 〈∂1h
[`](y, v, t), f(y, v, t)〉Rn + ∂3h

[`](y, v, t),

for all (y, v, t) ∈ Rn × Rm × [0, T ]. We introduce the subset

M := {(y, t) ∈ Rn × ([0, T ] \ T) | h(y, t) = 0},

and we denote by

`′(y, v, t) := min{` ∈ N∗ | h[`](y, v, t) 6= 0} ∈ N∗ ∪ {+∞},

for all (y, t) ∈M and all v ∈ U. Finally we introduce the set

N (y, t) := {v ∈ U | `′(y, v, t) is finite and even},
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for all (y, t) ∈M. We are now in a position to establish the main result of this section.

Proposition 4.1. Assume that q = 1 and that f and h are of class C∞ in all their variables. If
the hypotheses

∀(y, t) ∈M, ∀v ∈ U, `′(y, v, t) < +∞, (H1)

and

∀(y, t) ∈M, ∀v ∈ N (y, t), h[`′(y,v,t)](y, v, t) > 0, (H2)

are both satisfied, then the activating times of an admissible trajectory x of Problem (OSCP) are
sampling times. In particular x displays the bouncing trajectory phenomenon and the contact times
occur at most at the sampling times ti (and thus in a finite number and at precise instants).

Proof. Let (x, u) be an admissible couple of Problem (OSCP). Let t ∈ [0, T ] be an activating
time and assume by contradiction that t ∈ (ti, ti+1) for some i = 0, . . . , N − 1. In particular we
have (x(t), t) ∈ M. Since ui ∈ U, from Hypothesis (H1), we know that `′ := `′(x(t), ui, t) < +∞
and it holds that h[`′](x(t), ui, t) 6= 0. From Taylor’s theorem it holds that

h(x(t+ ε), t+ ε) = ε`
′

(
h[`′](x(t), ui, t)

`′!
+R(ε)

)
,

for all ε ∈ R such that t + ε ∈ (ti, ti+1), where the remainder term R satisfies limε→0R(ε) = 0.
Thus there exists ε̄ > 0 such that (t − ε̄, t + ε̄) ⊂ (ti, ti+1) and h(x(t′), t′) has the same sign
than (t′ − t)`

′
h[`′](x(t), ui, t) for all t′ ∈ (t − ε̄, t + ε̄) with t′ 6= t. We now distinguish two

cases: `′ odd and `′ even. If `′ is odd, then there clearly exists t′ ∈ (t − ε̄, t + ε̄) with t′ 6= t
such that h(x(t′), t′) > 0 which raises a contradiction with the admissibility of (x, u). If `′ is even,
then ui ∈ N (x(t), t) and, from Hypothesis (H2), it holds that h[`′](x(t), ui, t) > 0. We easily deduce
that there exists t′ ∈ (t − ε̄, t + ε̄) with t′ 6= t such that h(x(t′), t′) > 0 which raises the same
contradiction. The proof is complete.

Remark 4.1. We emphasize that Hypotheses (H1) and (H2) are assumptions which exactly guar-
antee the validity of the arguments presented heuristically in the items (i) and (ii) of Section 4.1.

In the context of Proposition 4.1, it is ensured that an admissible trajectory of Problem (OSCP)
activates the running inequality state constraint at most at the sampling times ti (and thus in a
finite number and at precise instants). We will see in Section 5 below that this bouncing trajectory
phenomenon (with localized rebounds) presents some benefits from a numerical point of view.
Taking this advantage we will numerically solve some simple examples in which Hypotheses (H1)
and (H2) are both satisfied and we will observe optimal trajectories bouncing on the running
inequality state constraint considered.

5 Numerical experiments

Two predominant kinds of numerical methods are known in classical optimal control theory (that
is, with permanent controls) without running inequality state constraints. The first kind is usu-
ally called direct methods and they consist in making a full discretization of the optimal control
problem which results into a constrained finite-dimensional optimization problem that can be nu-
merically solved from various standard algorithms and techniques. The second strategy is called
indirect methods because they are based on the Pontryagin maximum principle. Precisely, if the
Hamiltonian maximization condition allows to express the optimal control u as a function of the
state x and of the (absolutely continuous) adjoint vector p, then the indirect methods consist in
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the numerical resolution by a shooting method of the boundary value problem on the augmented
vector (x, p) derived in the Pontryagin maximum principle. We emphasize that neither direct nor
indirect methods are fundamentally better than the other. We refer for instance to [56, p.170-171]
for details and discussions on the advantages and drawbacks of each kind of methods.

In the presence of running inequality state constraints, direct methods can easily be adapted.
On the other hand, solving optimal permanent control problems with running inequality state
constraints using indirect methods might be more difficult than the unconstrained state case.
Indeed, in that situation, the adjoint vector p is not absolutely continuous in general, but (only)
of bounded variations. From the Lebesgue decomposition (see, e.g., [17, Corollary 20.20 p.373]),
we can write

p = pac + pcs + ps,

where pac is the absolutely continuous part, pcs is the singularly continuous part and ps is the saltus
or pure jump part of p. From the complementary slackness condition, it is well-known that the
adjoint vector p is absolutely continuous outside the activating times of x. On the other hand,
on boundary intervals, the adjoint vector p may have an infinite number of unlocalized jumps
or a pathological behavior due to its singular part. As a consequence, an important part of the
literature is devoted to the analysis of the behavior of the adjoint vector p and some constraint
qualification conditions have been established. We refer for instance to [9, 34, 38, 45].

In this paper we have established a Pontryagin maximum principle (Theorem 3.1) and our aim in
this section is to propose an indirect method for solving optimal sampled-data control problems
with running inequality state constraints. As in the classical theory (with permanent controls), it
appears that the adjoint vector obtained in Theorem 3.1 is (only) a function of bounded variations
and we will a priori encounter the same difficulties outlined above. Nevertheless, as detailed in
Section 4, we have proved in Proposition 4.1 that, under (quite unrestrictive) Hypotheses (H1)
and (H2), the optimal trajectory x of Problem (OSCP) activates the running inequality state
constraint at most at the sampling times ti. As detailed in Section 5.1 below, it follows that
the corresponding adjoint vector p has no singular part and admits a finite number of jumps
which are localized at most at the sampling times ti. Taking advantage of this knowledge, we will
propose in Section 5.1 a simple indirect method in order to solve numerically optimal sampled-data
control problems with running inequality state constraints of the form of Problem (OSCP) under
Hypotheses (H1) and (H2).

In Sections 5.2, 5.3 and 5.4, this indirect method is implemented in order to numerically solve three
simple examples. We precise that the parameters of these examples have been chosen in order to
obtain figures which illustrate and highlight the bouncing trajectory phenomenon and the jumps
of the adjoint vector. Furthermore note that the numerical results returned by the indirect method
suggests the convergence of the optimal sampled-data controls to the optimal permanent control
as N tends to +∞. This provides a very interesting perspective to investigate in future works.
We mention that such a result has already been established in [15] in the case of linear-quadratic
optimal sampled-data control problems and without running inequality state constraint.

We conclude this paragraph by remarking that the indirect method proposed in Section 5.1 (and
its implementation in Sections 5.2, 5.3 and 5.4) is based on the assumption that there exists a
solution to Problem (OSCP). This question of existence has not been addressed in the present
paper and constitutes an open question for future works, see Remark 3.2.

5.1 A shooting function for an indirect method

In this subsection our aim is to provide an indirect method, based on the Pontryagin maximum
principle given in Theorem 3.1, which allows to numerically solve some optimal sampled-data
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control problems with running inequality state constraints.

Let (x, u) be a solution to Problem (OSCP). We denote by p0, η, p the elements provided by the
Pontryagin maximum principle given in Theorem 3.1. In the sequel we assume that the case is
normal and we normalize p0 = −1 (see Remark 3.4). As explained at the beginning of Section 5,
the adjoint vector p may have a pathological behavior which would imply some theoretical and/or
numerical difficulties. Our aim in the sequel is to take advantage of Proposition 4.1 established
in Section 4. To this aim, we assume in the sequel that q = 1, that f and h are of class C∞ in
all variables and that Hypotheses (H1) and (H2) are satisfied. As a consequence, it follows from
Proposition 4.1 that x activates the running inequality state constraint at most at the sampling
times ti. From the complementary slackness condition in Theorem 3.1, we deduce that η admits
exactly (N + 1) nonnegative jumps localized exactly at the sampling times ti, and that η remains
constant over (t0, t1) and over all [ti, ti+1) with i = 1, . . . , N − 1. In the sequel we denote the
nonnegative jumps of η as follows:

η[0] := η(t+0 )− η(t0), η[1] := η(t1)− η(t+0 ) and ∀i = 2, . . . , N, η[i] := η(ti)− η(ti−1).

From the adjoint equation in Theorem 3.1, it follows that the adjoint vector p has no singular
part, that it admits (N + 1) jumps localized exactly at the sampling times ti, and that p remains
absolutely continuous over (t0, t1) and over all [ti, ti+1) with i = 1, . . . , N − 1. Moreover, from the
integral representation of p, the jumps of the adjoint vector are given by

p[i] := −η[i]∂1h(x(ti), ti),

for all i = 0, . . . , N .

The general indirect numerical method proposed in this paper is based on the shooting map(
x(T ), (η[i])i=0,...,N

)
7−→

(
x(0)− x0,

(
η[i]h(x(ti), ti)

)
i=0,...,N

)
,

where:

(i) we provide a guess of the final value x(T ) and of the nonnegative jumps η[i] for all i = 0, . . . , N ;

(ii) we compute p(T ) = −∇g(x(T ));

(iii) we solve numerically the state equation and the adjoint equation in a backward way (from t =
T to t = 0), by using the nonpositive averaged Hamiltonian gradient condition in order to
compute the control values ui for all i = 0, . . . , N − 1;

(iv) we finally compute x(0)− x0 and η[i]h(x(ti), ti) for all i = 0, . . . , N .

As illustrations of the above indirect numerical method, we solve three simple examples in Sec-
tions 5.2, 5.3 and 5.4 below. We precise that we used the MATLAB function fsolve in order to find
the zeros of the above shooting function. Let us mention that the numerical results obtained and
presented hereafter have all been confirmed by direct numerical approaches (using a discretization
of the whole problem resulting into a constrained finite-dimensional optimization problem solved
by the MATLAB function fmincon).

5.2 Example 1: a problem with a parabolic running inequality state
constraint

We first consider the following optimal sampled-data control problem with running inequality state
constraint given by

18



minimize

∫ 4

0

x(τ) +
1

4
u(τ)2 dτ

subject to x ∈ AC1, u ∈ PCT
1 ,

ẋ(t) = u(t) for a.e. t ∈ [0, 4],

x(0) = 6,

1
2 (t− 2)2 + 2− x(t) ≤ 0 for all t ∈ [0, 4],

u(t) ∈ [−3,+∞) for all t ∈ [0, 4],



(E1)

for fixed uniform N -partitions T of the interval [0, 4] with different values of N ∈ N∗. This simple
problem coincides with a calculus of variations problem (with running inequality state constraints
on the trajectory and its derivative, and also constraining the derivative to be piecewice constant).

We first verify that Problem (E1) satisfies Hypotheses (H1) and (H2). To this aim we follow the
notations introduced in Section 4.2. We compute that for all (y, t) ∈ M and all v ∈ [−3,+∞)
it holds that h[2](y, v, t) = 1 and so Hypothesis (H1) is satisfied. Furthermore, for all (y, t) ∈ M
and all v ∈ N (y, t), we also deduce that `′(y, v, t) = 2 and that h[`′(y,v,t)](y, v, t) = 1 > 0,
so Hypothesis (H2) is satisfied as well. We conclude from Proposition 4.1 that all admissible
trajectories activate the running inequality state constraint at most at the sampling times ti.

In the sequel we assume that there exists an optimal couple (x, u) for Problem (E1) and we denote
by p0, η, p the elements provided by the Pontryagin maximum principle given in Theorem 3.1.
Let us verify that the case is normal (in the sense of Remark 3.4). Assume by contradiction
that p0 = 0. We have the adjoint equation −dp = dη over [0, 4] with p(4) = 0. Therefore

p(t) =
∫ 4

t
dη(τ) = η(4)− η(t) for all t ∈ [0, 4]. Then, from the nontriviality of the couple (p0, η), it

follows that η 6= 0NBV1
and thus, from the complementary slackness condition, we deduce that x

necessarily activates the running inequality state constraint. Let t̄ ∈ [0, 4] denote the first activating
time. From Proposition 4.1, we know that t̄ = t̄i for some ī ∈ {0, . . . , N}. Since x(0) = 6, we have
ī ≥ 1. It follows that p(t) > 0 for all t ∈ [0, t1). Finally, from the nonpositive averaged Hamiltonian
gradient condition at i = 0, it follows that u0 ≥ v for all v ∈ [−3,+∞) which is absurd.

From the previous paragraph, we normalize p0 = −1 (see Remark 3.4). Since we are in the context
of Proposition 4.1, we can now apply the shooting method detailed in Section 5.1. As expected, we
observe in Figure 4 (with N = 5) that the optimal trajectory returned by the algorithm activates
the running inequality state constraint at most at the sampling times ti (represented by dashed
lines). As also expected, the jumps of the adjoint vector occur at the same activating times.
Figures 5 and 6 continue to illustrate this bouncing trajectory phenomenon for larger values of N
(respectively with N = 10 and N = 40).
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Figure 4: Example 1 with N = 5.
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Figure 5: Example 1 with N = 10.
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Figure 6: Example 1 with N = 40.

5.3 Example 2: an optimal consumption problem with an affine running
inequality state constraint

The second example is the optimal sampled-data control problem with running inequality state
constraint given by

minimize

∫ 12

0

(u(τ)− 1)x(τ) dτ

subject to x ∈ AC1, u ∈ PCT
1 ,

ẋ(t) = u(t)x(t) for a.e. t ∈ [0, 12],

x(0) = 1,

x(t)− 10t− 2 ≤ 0 for all t ∈ [0, 12],

u(t) ∈ [0, 1] for all t ∈ [0, 12],



(E2)

for fixed uniform N -partitions T of the interval [0, 12] with different values of N ∈ N∗. This
problem corresponds to a classical optimal consumption problem (see, e.g., [27, p.5]) revisited with
sampled-data controls and running inequality state constraint.

Let us verify that Problem (E2) satisfies Hypotheses (H1) and (H2). To this aim we follow the
notations introduced in Section 4.2. Let us assume by contradiction that there exist (y, t) ∈
M and v ∈ [0, 1] such that `′(y, v, t) = +∞. Then it follows that h[0](y, v, t) = h[1](y, v, t) =
h[2](y, v, t) = 0. From h[0](y, v, t) = 0, it holds that y > 0 and, from h[1](y, v, t) = 0, it holds that
v > 0. Therefore h[2](y, v, t) = v2y > 0 which raises a contradiction. Thus Hypothesis (H1) is
satisfied. From a similar reasoning, we prove that Hypothesis (H2) is also satisfied. We conclude
from Proposition 4.1 that all admissible trajectories activate the running inequality state constraint
at most at the sampling times ti.

In the sequel we assume that there exists an optimal couple (x, u) for Problem (E2) and we denote
by p0, η, p the elements provided by the Pontryagin maximum principle given in Theorem 3.1.
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Note that necessarily x(t) > 0 for all t ∈ [0, 12]. Let us verify that the case is normal (in the sense
of Remark 3.4). Assume by contradiction that p0 = 0. We have the adjoint equation dp = dη over

[0, 12] with p(12) = 0. Therefore p(t) = −
∫ 12

t
dη(τ) = η(t) − η(12) for all t ∈ [0, 12]. Then, from

the nontriviality of the couple (p0, η), it follows that η 6= 0NBV1
and thus, from the complementary

slackness condition, we deduce that x necessarily activates the running inequality state constraint.
Let t̄ ∈ [0, 12] denote the first activating time. From Proposition 4.1, we know that t̄ = t̄i for some
ī ∈ {0, . . . , N}. Since x(0) = 1, we know that ī ≥ 1. It follows that p(t) < 0 for all t ∈ [0, t̄i).
Finally, since x(t) > 0 for all t ∈ [0, 12] and from the nonpositive averaged Hamiltonian gradient
condition at i = 0, . . . , ī− 1, we get that u0 = . . . = uī−1 = 0, which gives x(t) = 1 for all t ∈ [0, t̄].
This raises a contradiction since x(t̄) = 10t̄+ 2 > 1.

From the previous paragraph, we normalize p0 = −1 (see Remark 3.4). Since we are in the context
of Proposition 4.1, we can now apply the shooting method detailed in Section 5.1. In Figure 7
(with N = 2) we observe that the optimal trajectory returned by the algorithm activates the
running inequality state constraint at most at the sampling times ti (represented by dashed lines).
Figures 8 and 9 continue to illustrate this bouncing trajectory phenomenon for larger values of N
(respectively with N = 4 and N = 6). Furthermore, in Figures 8 and 9, we observe that the
adjoint vector has no jump at sampling times which are not activating times.
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Figure 7: Example 2 with N = 2.
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Figure 8: Example 2 with N = 4.
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Figure 9: Example 2 with N = 6.
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5.4 Example 3: a two-dimensional problem with a linear running in-
equality state constraint

As a third and last example we consider the optimal sampled-data control problem with running
inequality state constraint given by

minimize

∫ 2

0

x2(τ) +
1

4
u(τ)2dτ

subject to x ∈ AC2, u ∈ PCT
1 ,

˙(
x1

x2

)
(t) =

(
x2(t)− u(t)

x1(t) + x2(t) + u(t)

)
for a.e. t ∈ [0, 2],

(
x1

x2

)
(0) =

(
0.05
−0.1

)
,

x1(t)− 16x2(t)− 2 ≤ 0 for all t ∈ [0, 2],

u(t) ∈ [−0.1,+∞) for all t ∈ [0, 2],



(E3)

for fixed uniform N -partitions T of the interval [0, 2] with different values of N ∈ N∗. This problem
constitutes a two-dimensional problem with a linear running inequality state constraint.

Let us verify that Problem (E3) satisfies Hypotheses (H1) and (H2). We denote by y := (y1, y2) ∈
R2 and we follow the notations introduced in Section 4.2. Let us assume by contradiction that
there exist (y, t) ∈ M and v ∈ [−0.1,+∞) such that `′(y, v, t) = +∞. Then it follows the system
of linear equalities given by

h[0](y, v, t) = y1 − 16y2 − 2 = 0,

h[1](y, v, t) = −16y1 − 15y2 − 17v = 0,

h[2](y, v, t) = −15y1 − 31y2 + v = 0,

which has a unique solution given by (y1, y2, v) = 1
9 (2,−1,−1) which raises a contradiction since v ∈

[−0.1,+∞). Thus Hypothesis (H1) is satisfied. If h[0](y, v, t) = h[1](y, v, t) = 0 for some (y, t) ∈M
and some v ∈ [−0.1,+∞), it follows that −15y1 − 31y2 = 2 + 17v. Therefore h[2](y, v, t) =
−15y1 − 31y2 + v = 2 + 18v ≥ 0.2 > 0. Thus Hypothesis (H2) is also satisfied. We conclude from
Proposition 4.1 that all admissible trajectories activate the running inequality state constraint at
most at the sampling times ti.

In the sequel we assume that there exists an optimal couple (x, u) for Problem (E3) and we denote
by p0, η, p the elements provided by the Pontryagin maximum principle given in Theorem 3.1. We
also assume that the case is normal and we normalize p0 = −1 (see Remark 3.4). Since we are in
the context of Proposition 4.1, we can now apply the shooting method detailed in Section 5.1. In
Figure 10 (with N = 4) we observe as expected a bouncing trajectory phenomenon. Figures 11
and 12 give illustrations for larger values of N (respectively with N = 5 and N = 8).

24



-0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

x
1

-0.18

-0.17

-0.16

-0.15

-0.14

-0.13

-0.12

-0.11

-0.1

x
2

Optimal trajectory x=(x
1
,x

2
)

Running state constraint

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Optimal sampled-data control u

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.5

1

1.5

2

2.5

3 Adjoint vector p
1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.5

1

1.5

2

2.5

3

3.5
Adjoint vector p

2

Figure 10: Example 3 with N = 4.
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Figure 11: Example 3 with N = 5.

A Preliminaries for the proof of Theorem 3.1

This appendix is devoted to some required preliminaries for the proof of Theorem 3.1 found in
Appendix B. In Section A.1 we give some recalls on renorming Banach spaces and on the regularity
of distance functions. Section A.2 is concerned with the sensitivity analysis of the state equation
in Problem (OSCP). Then, in Section A.3, we give some recalls on Stieltjes integrations and
on Fubini formulas. Finally Section A.4 is devoted to Duhamel formulas for Cauchy-Stieltjes
Problems (FCSP) and (BCSP).

25



-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

x
1

-0.18

-0.17

-0.16

-0.15

-0.14

-0.13

-0.12

-0.11

-0.1

x
2

Optimal trajectory x=(x
1
,x

2
)

Running state constraint

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.2

0.4

0.6

0.8

1

Optimal sampled-data control u

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

1

2

3

4

5

6

7
Adjoint vector p

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

1

2

3

4

5

6

7

8

Adjoint vector p
2

Figure 12: Example 3 with N = 8.

A.1 About renorming Banach spaces and regularity of distance func-
tions

Let (Y, ‖ · ‖) be a normed space. We recall that the dual space of (Y, ‖ · ‖), which we denote by
Y ∗ := L((Y, ‖ · ‖),R), is the space of linear continuous forms on (Y, ‖ · ‖). We recall that Y ∗ can
be endowed with the dual norm ‖ · ‖∗ defined by

‖ · ‖∗ : Y ∗ −→ R+

y∗ 7−→ ‖y∗‖∗ := sup
y∈Y
‖y‖≤1

|〈y∗, y〉Y ∗×Y |.

In this situation we denote by (Y ∗, ‖ · ‖∗) := dual(Y, ‖ · ‖). We recall the following proposition on
renorming separable Banach spaces.

Proposition A.1. Let (Y, ‖ · ‖) be a separable Banach space and let (Y ∗, ‖ · ‖∗) = dual(Y, ‖ · ‖).
Then there exists a norm N on Y equivalent to ‖ · ‖ such that:

(i) N∗ is equivalent to ‖ · ‖∗;

(ii) N∗ is strictly convex;

where (Y ∗,N∗) = dual(Y,N).

Proof. We refer to [43, Theorem 2.18 p.42] or to [10, Proposition 4 p.16] for a complete proof.

Let F : Y → R be a convex function. Recall that the subdifferential of F at a point y ∈ Y is
defined to be the set

∂F (y) := {y∗ ∈ Y ∗ | 〈y∗, y′ − y〉Y ∗×Y ≤ F (y′)− F (y) for all y′ ∈ Y }.

We recall that a function F : Y → R is said to be strictly Hadamard-differentiable at a point y ∈ Y
with the strict Hadamard derivative DF (y) ∈ Y ∗ if

lim
y′→y
t↘0

[
sup
y′′∈K

∣∣∣∣F (y′ + ty′′)− F (y′)

t
− 〈DF (y), y′′〉Y ∗×Y

∣∣∣∣] = 0,
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for every compact set K ⊂ Y . We refer to [48, p.312-313] for more details. Finally we denote by dS :
Y → R the distance function to a nonempty subset S ⊂ Y defined by dS(y) := infy′∈S ‖y − y′‖
for all y ∈ Y , and by d2

S : Y → R the squared distance function defined by d2
S(y) := dS(y)2 for

all y ∈ Y . We recall the following proposition on the regularity of distance functions.

Proposition A.2. Let (Y, ‖ · ‖) be a normed space. Let S ⊂ Y be a nonempty closed convex subset
and let us assume that ‖ · ‖∗ is strictly convex, where (Y ∗, ‖ · ‖∗) := dual(Y, ‖ · ‖). Then it holds
that:

(i) dS is convex and 1-Lipschitz continuous;

(ii) dS is strictly Hadamard-differentiable on Y \ S with ‖DdS(y)‖∗ = 1 and ∂dS(y) = {DdS(y)}
for all y ∈ Y \ S;

(iii) d2
S is strictly Hadamard-differentiable on Y \S with Dd2

S(y) = 2dS(y)DdS(y) for all y ∈ Y \S;

(iv) d2
S is Fréchet-differentiable on S with Dd2

S(y) = 0Y ∗ for all y ∈ S.

Proof. The proof of (i) is a standard result. We refer to [48, Theorem 3.54 p.313] and [10, Ap-
pendix B.2] for the proof of (ii). The proofs of (iii) and (iv) are straightforward.

A.2 About sensitivity analysis of the state equation in Problem (OSCP)

For all u ∈ L∞m we consider the Cauchy problem (CPu) given byẋ(t) = f(x(t), u(t), t) for a.e. t ∈ [0, T ],

x(0) = x0.
(CPu)

Before proceeding to the sensitivity analysis of the Cauchy problem (CPu) with respect to the
control u, we first recall some definitions and results from the classical Cauchy-Lipschitz (or Picard-
Lindelöf) theory (see, e.g., [21]).

Definition A.1. Let u ∈ L∞m . A (local) solution to the Cauchy problem (CPu) is a couple (x, I)
such that:

(i) I is an interval such that {0}  I ⊂ [0, T ];

(ii) x ∈ AC([0, T ′],Rn), with ẋ(t) = f(x(t), u(t), t) for almost every t ∈ [0, T ′], for all T ′ ∈ I;

(iii) x(0) = x0.

Let (x1, I1) and (x2, I2) be two (local) solutions to the Cauchy problem (CPu). We say that (x2, I2)
is an extension (resp. strict extension) to (x1, I1) if I1 ⊂ I2 (resp. I1  I2) and x2(t) = x1(t) for
all t ∈ I1. A maximal solution to the Cauchy problem (CPu) is a (local) solution that does not admit
any strict extension. Finally a global solution to the Cauchy problem (CPu) is a solution (x, I)
such that I = [0, T ].

Proposition A.3. For all u ∈ L∞m , the Cauchy problem (CPu) admits a unique maximal solution,
denoted by (x(·, u), I(u)), which is an extension to any other local solution.

We now introduce the notion of controls admissible for globality.

Definition A.2. A control u ∈ L∞m is said to be admissible for globality if the corresponding
maximal solution (x(·, u), I(u)) is global, that is, if I(u) = [0, T ]. In the sequel we denote by AG ⊂
L∞m the set of all controls admissible for globality.
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In the following lemma we state a continuous dependence result for the trajectory x(·, u) with
respect to the control u. In particular we prove that AG is open.

Lemma A.1. For all u ∈ AG, there exists εu > 0 such that BL∞m
(u, εu) ⊂ AG, where BL∞m

(u, εu)
stands for the standard closed ball in L∞m centered at u and of radius εu. Moreover the map

u′ ∈ (BL∞m
(u, εu), ‖ · ‖L∞m ) 7−→ x(·, u′) ∈ (Cn, ‖ · ‖∞),

is Lipschitz continuous.

Proof. This proof is standard and essentially based on the classical Gronwall lemma. We refer
to [12, Lemmas 1 and 3 p.3795-3797], [14, Lemmas 4.3 and 4.5 p.73-74] (in the general framework
of time scale calculus) or to [10, Propositions 1 and 2 p.4-5] (in a more classical framework, closer
to the present considerations) for similar statements with detailed proofs.

Remark A.1. Let u ∈ AG and εu > 0 as given in Lemma A.1. Let u′ ∈ BL∞m
(u, εu) and (uk)k∈N

be a sequence in BL∞m
(u, εu) converging to u′ in L∞m . From Lemma A.1, we deduce that the se-

quence (x(·, uk))k∈N uniformly converges to x(·, u′) over [0, T ].

In the next proposition we state a differentiability result for the trajectory x(·, u) with respect to
a convex L∞-perturbation of the control u.

Proposition A.4. Let u ∈ AG and let z ∈ L∞m . We consider the convex L∞-perturbation of u
given by

uz(·, ρ) := u+ ρ(z − u),

for all ρ ∈ [0, 1]. Then:

(i) there exists 0 < ρ0 ≤ 1 such that uz(·, ρ) ∈ AG for all ρ ∈ [0, ρ0];

(ii) the map
ρ ∈ ([0, ρ0], | · |) 7−→ x(·, uz(·, ρ)) ∈ (Cn, ‖ · ‖∞),

is differentiable at ρ = 0 and its derivative is equal to the variation vector wz(·, u) ∈ ACn
being the unique solution (that is global) to the linearized Cauchy problem given byẇ(t) = ∂1f(x(t, u), u(t), t)× w(t) + ∂2f(x(t, u), u(t), t)× (z(t)− u(t)) for a.e. t ∈ [0, T ],

w(0) = 0Rn .

Proof. This proof is standard and essentially based on the classical Gronwall lemma. We refer
to [12, Lemma 4 and Proposition 1 p.3797-3798] for a similar statement with detailed proof.

We conclude this section by a technical lemma on the convergence of variation vectors which is
required in the proof of our main result.

Lemma A.2. Let u ∈ AG and εu > 0 as in Lemma A.1. Let z ∈ L∞m . Let u′ ∈ BL∞m
(u, εu)

and (uk)k∈N be a sequence in BL∞m
(u, εu) converging to u′ in L∞m . Then the sequence (wz(·, uk))k∈N

uniformly converges to wz(·, u′) over [0, T ].

Proof. This proof is standard and essentially based on the classical Gronwall lemma. We refer
to [12, Lemmas 4.8 and 4.9 p.77-78] for a similar statement with detailed proof.
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A.3 About Stieltjes integrations and Fubini formulas

In this section our aim is to recall some notions on Stieltjes integrations and to recall some Fubini
formulas. We refer to standard references and books such as [3, 16, 17, 29, 61] for more details.
We also refer to [10, Appendix C] and references therein. In the sequel we denote by C+

n :=
C([0, T ], (R+)n) where R+ := [0,+∞). We denote by C∗n as the dual space of Cn (see Section A.1
for some details on dual spaces). We first recall the following Riesz representation theorem (see [44,
Theorem 14.5 p.245-246] or [10, Proposition 7 p.19]).

Proposition A.5. (Riesz representation theorem). Let ψ∗ ∈ C∗1. Then there exists a unique η ∈
NBV1 such that:

〈ψ∗, ψ〉C∗1×C1
=

∫ T

0

ψ(τ) dη(τ),

for all ψ ∈ C1. Moreover it holds that:

(i) 〈ψ∗, ψ〉C∗1×C1
≥ 0 for all ψ ∈ C+

1 if and only if η is monotonically increasing on [0, T ];

(ii) ψ∗ = 0C∗1
if and only if η = 0NBV1

.

Recall that if η ∈ NBV1 is monotonically increasing on [0, T ], then η induces a finite nonnegative
Borel measure dη on [0, T ] by defining dη({0}) := η(0+) and dη((a, b]) := η(b) − η(a) for all
semiopen intervals (a, b] ⊂ [0, T ] and by using the Carathéodory extension theorem. Furthermore,

for all ψ ∈ C1, the Riemann-Stieltjes integral
∫ b
a
ψ(τ)dη(τ) coincides with the Lebesgue-Stieltjes

integral
∫

(a,b]
ψ(τ)dη(τ) for all 0 ≤ a ≤ b ≤ T . We refer to [29, p.83] and [61, p.288] for more

details. Consequently the Fubini formula∫ T

0

∫ τ

0

Ψ(τ, s) ds dη(τ) =

∫ T

0

∫ T

s

Ψ(τ, s) dη(τ) ds, (4)

holds for all Ψ ∈ L∞([0, T ]2,R) such that Ψ is continuous in its first variable.

We now introduce some notations for Riemann-Stieltjes integrals with respect to vectorial functions
of bounded variations. We denote by∫ T

0

〈ψ(τ), dη(τ)〉 :=

q∑
j=1

∫ T

0

ψj(τ) dηj(τ) ∈ R,

for all ψ = (ψj)j=1,...,q ∈ Cq and all η = (ηj)j=1,...,q ∈ BVq. Moreover we denote by

∫ T

0

M(τ)× dη(τ) :=

 q∑
j=1

∫ T

0

mrj(τ) dηj(τ)


r=1,...,n

∈ Rn,

and ∫ T

0

〈ψ(τ),M(τ)× dη(τ)〉 :=

∫ T

0

〈M(τ)> × ψ(τ), dη(τ)〉 ∈ R,

for all ψ = (ψr)r=1,...,n ∈ Cn, all η = (ηj)j=1,...,q ∈ BVq and all continuous matrices M = (mrj)rj :
[0, T ]→ Rn×q. In particular one can easily prove that, if ψ ∈ Rn (i.e. ψ ∈ Cn constant), then∫ T

0

〈ψ,M(τ)× dη(τ)〉 =

〈
ψ,

∫ T

0

M(τ)× dη(τ)

〉
Rn

,
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for all η = (ηj)j=1,...,q ∈ BVq and all continuous matrices M = (mrj)rj : [0, T ]→ Rn×q.

Finally, from the Fubini formula (4) and the above notations, one can easily deduce that the Fubini
formula ∫ T

0

〈∫ τ

0

Ψ(τ, s) ds, dη(τ)

〉
=

∫ T

0

∫ T

s

〈Ψ(τ, s), dη(τ)〉 ds,

holds for all Ψ ∈ L∞([0, T ]2,Rq) being continuous in its first variable and for all η = (ηj)j=1,...,q ∈
NBVq such that ηj is monotonically increasing on [0, T ] for each j = 1, . . . , q.

A.4 About Problems (FCSP) and (BCSP) and Duhamel formulas

Let us consider the framework and the notations introduced in Section 2.2. Our aim in this section
is to provide Duhamel formulas for the solutions to Problems (FCSP) and (BCSP). To this aim, we
recall that the state-transition matrix Φ(·, ·) : [0, T ]2 → Rn×n associated to A ∈ L∞([0, T ],Rn×n)
is defined as follows. For all s ∈ [0, T ], Φ(·, s) is the unique solution (that is global) to the linear
forward/backward Cauchy problem given by{

Φ̇(t) = A(t)× Φ(t) for a.e. t ∈ [0, T ],

Φ(s) = Idn.

The equalities

Φ(t, s) = Idn +

∫ t

s

A(τ)× Φ(τ, s) dτ = Idn +

∫ t

s

Φ(t, τ)×A(τ) dτ,

both hold for all (t, s) ∈ [0, T ]2. From these two equalities and the Fubini formulas from Section A.3,
one can easily derive the following proposition. We also refer to [10, Appendix D] for some details.

Proposition A.6 (Duhamel formulas). The solutions to (FCSP) and (BCSP) are given by

x(t) = Φ(t, 0)× x0 +

∫ t

0

Φ(t, τ)×B(τ) dτ +

q∑
j=1

∫ t

0

Φ(t, τ)× Cj(τ) dηj(τ),

and

p(t) = Φ(T, t)> × pT +

∫ T

t

Φ(τ, t)> ×B(τ) dτ +

q∑
j=1

∫ T

t

Φ(τ, t)> × Cj(τ) dηj(τ),

for all t ∈ [0, T ], where Φ(·, ·) stands for the state-transition matrix associated to A.

B Proof of Theorem 3.1

This appendix is dedicated to the detailed proof of Theorem 3.1. Section B.1 deals with the
case L = 0 (the case L 6= 0 is treated in Section B.2 with a simple change of variable). In
Section B.1.1 the Ekeland variational principle is applied on an appropriate penalized functional
in order to derive a crucial inequality (see Inequality (9)). In Section B.1.2 we conclude the proof
of Theorem 3.1 by introducing the adjoint vector p.

We first remark that the running inequality state constraints in Problem (OSCP) can be written
as h(x) ∈ S where:

• h : Cn → Cq is defined as h(x) := h(x, ·) for all x ∈ Cn. Note that h is of class C1

with Dh(x)(x′) = ∂1h(x, ·)× x′ for all x, x′ ∈ Cn;
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• S := C([0, T ], (R−)q) where R− := (−∞, 0]. We emphasize that S ⊂ Cq is a nonempty closed
convex cone of Cq with a nonempty interior.

Recall that (Cq, ‖ · ‖∞) is a separable Banach space. Applying Proposition A.1, we endow Cq
with an equivalent norm ‖ · ‖Cq

such that the associated dual norm ‖ · ‖C∗q is strictly convex. We
denote by dS : Cq → R the 1-Lipschitz continuous distance function to S (see Section A.1). Then,
from Proposition A.2, we know that dS and d2

S are strictly Hadamard-differentiable on Cq \ S
with Dd2

S(x) = 2dS(x)DdS(x) and ‖DdS(x)‖C∗q = 1 for all x ∈ Cq \ S, and that d2
S is Fréchet-

differentiable on S with Dd2
S(x) = 0C∗q

for all x ∈ S.

B.1 The case L = 0

In the whole section we will assume that L = 0 in Problem (OSCP) (see Section B.2 for the case
L 6= 0). Let (x, u) ∈ ACn × PCT

m be a solution to Problem (OSCP). Following the notation
introduced in Section A.2, it holds that u ∈ AG and that x = x(·, u). In the sequel we will also
consider the positive real number εu > 0 given in Lemma A.1.

B.1.1 Application of the Ekeland variational principle

Let us recall a simplified version (but sufficient for our purposes) of the Ekeland varational principle
(see [26]).

Proposition B.1 (Ekeland variational principle). Let (E,dE) be a complete metric set. Let J :
E → R+ be a continuous nonnegative map. Let ε > 0 and e ∈ E such that J (e) = ε. Then there
exists eε ∈ E such that dE(eε, e) ≤

√
ε, and −

√
ε dE(e′, eε) ≤ J (e′)− J (eε) for every e′ ∈ E.

We introduce the set

Eu := {u′ ∈ BL∞m
(u, εu) | u′ ∈ PCT

m and u′(t) ∈ U for all t ∈ [0, T ]}.

From the closedness assumption on U, one can easily prove that (Eu, ‖·‖L∞m ) is a complete metric set.
Let us choose a sequence (εk)k∈N such that 0 <

√
εk < εu for all k ∈ N and satisfying limk→∞ εk =

0. We introduce the penalized functional

Jk : Eu −→ R+

u′ 7−→ Jk(u′) :=

√√√√((g(x(T, u′))− g(x(T )) + εk

)+
)2

+ d2
S

(
h(x(·, u′))

)
,

for all k ∈ N. From Lemma A.1, note that Jk is correctly defined for all k ∈ N. Also, from
Lemma A.1 and from the continuities of g, h and d2

S (see Proposition A.2), it follows that Jk is
continuous as well for all k ∈ N. Note that Jk is nonnegative and, since the constraint h(x) ∈ S is
satisfied, it holds that Jk(u) = εk for all k ∈ N. Therefore, from the Ekeland variational principle
(see Proposition B.1), we conclude that there exists a sequence (uk)k∈N ⊂ Eu such that

‖uk − u‖L∞m ≤
√
εk, (5)

and

−
√
εk ‖u′ − uk‖L∞m ≤ Jk(u′)− Jk(uk), (6)

for all u′ ∈ Eu and all k ∈ N. In particular, from Inequality (5), note that the sequence (uk)k∈N
converges to u in L∞m . From optimality of the couple (x, u), note that Jk(u′) > 0 for all u′ ∈ Eu
and all k ∈ N. We thus define correctly the couple (λk, ψ

∗
k) ∈ R× C∗q as

λk :=
1

Jk(uk)

(
g(x(T, uk))− g(x(T )) + εk

)+

≥ 0,
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and

ψ∗k :=


1

Jk(uk)
dS

(
h(x(·, uk))

)
DdS

(
h(x(·, uk))

)
if h(x(·, uk)) /∈ S,

0C∗q
if h(x(·, uk)) ∈ S,

for all k ∈ N. From Proposition A.2 it holds that |λk|2 + ‖ψ∗k‖2C∗q = 1 for all k ∈ N. As a

consequence, we can extract subsequences (which we do not relabel) such that (λk)k∈N converges
to some λ ≥ 0 and (ψ∗k)k∈N weakly∗ converges to some ψ∗ ∈ C∗q . In particular it holds that
|λ|2 + ‖ψ∗‖2C∗q ≤ 1. At this step note that we cannot ensure that the couple (λ, ψ∗) is not trivial.

The nontriviality is guaranteed by the next proposition.

Proposition B.2. The couple (λ, ψ∗) ∈ R× C∗q is nontrivial and it holds that

〈ψ∗, ψ − h(x)〉C∗q×Cq
≤ 0, (7)

for all ψ ∈ S.

Proof. Let k ∈ N be fixed. From Proposition A.2, if h(x(·, uk)) /∈ S, then DdS(h(x(·, uk))) ∈
∂dS(h(x(·, uk))). Hence, if h(x(·, uk)) /∈ S, it holds that〈

DdS

(
h(x(·, uk))

)
, ψ − h(x(·, uk))

〉
C∗q×Cq

≤ dS(ψ)− dS

(
h(x(·, uk)

)
≤ 0,

for all ψ ∈ S. As a consequence, in both cases h(x(·, uk)) ∈ S and h(x(·, uk)) /∈ S, it holds that〈
ψ∗k, ψ − h(x(·, uk))

〉
C∗q×Cq

≤ 0, (8)

for all ψ ∈ S. Using Lemma A.1 and taking the limit as k tends to +∞, we get Inequality (7).
Now let us prove that the couple (λ, ψ∗) ∈ R× C∗q is nontrivial. Since S has a nonempty interior,

there exists ξ ∈ S and δ > 0 such that ξ + δψ ∈ S for all ψ ∈ BCq
(0Cq

, 1). Hence we obtain from
Inequality (8) that

δ〈ψ∗k, ψ〉C∗q×Cq
≤ 〈ψ∗k, h(x(·, uk))− ξ〉C∗q×Cq

,

for all ψ ∈ BCq
(0Cq

, 1) and all k ∈ N. We deduce that

δ‖ψ∗k‖C∗q = δ
√

1− |λk|2 ≤ 〈ψ∗k, h(x(·, uk))− ξ〉C∗q×Cq ,

for all k ∈ N. Using Lemma A.1 and taking the limit as k tends to +∞, we obtain that

δ
√

1− |λ|2 ≤ 〈ψ∗, h(x)− ξ〉C∗q×Cq
.

Since δ > 0, the last inequality implies that the couple (λ, ψ∗) is nontrivial which completes the
proof.

Finally, in the next result, we use Inequality (6) with convex L∞-perturbations of the control uk
in order to establish a crucial inequality.

Proposition B.3. The inequality

λ
〈
∇g(x(T )), wz(T, u)

〉
Rn

+
〈
ψ∗, ∂1h(x, ·)× wz(·, u)

〉
C∗q×Cq

≥ 0, (9)

holds for all z ∈ PCT
m with values in U, where wz(·, u) is the variation vector defined in Proposi-

tion A.4.
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Proof. Let z ∈ PCT
m with values in U. We fix k ∈ N. Since U is convex, it is clear that the

convex L∞-pertubation of the control uk associated to z, defined by uk,z(t, ρ) := uk(t) + ρ(z(t)−
uk(t)) for all t ∈ [0, T ] and all 0 ≤ ρ ≤ 1, belongs to PCT

m and takes values in U. Furthermore it
holds that ‖uk,z(·, ρ)−u‖L∞m ≤ ρ‖z−uk‖L∞m + ‖uk−u‖L∞m ≤ ρ‖z−uk‖L∞m +

√
εk. Since

√
εk < εu,

we deduce that uk,z(·, ρ) ∈ Eu for small enough ρ > 0. From Inequality (6) we get that

−
√
εk ‖z − uk‖L∞m ≤

1

Jk(uk,z(·, ρ)) + Jk(uk)
× Jk(uk,z(·, ρ))2 − Jk(uk)2

ρ
,

for small enough ρ > 0. From Proposition A.4 and from strict Hadamard-differentiability of d2
S

over Cq \ S and Fréchet-differentiability of d2
S over S (see Proposition A.2), taking the limit as ρ

tends to 0, we get that

−
√
εk ‖z − uk‖L∞m ≤

1

2Jk(uk)

[
2
(
g(x(T, uk))− g(x(T )) + εk

)+〈
∇g(x(T, uk)), wz(T, uk)

〉
Rn

+
〈

2dS(h(x(·, uk)))DdS(h(x(·, uk))), ∂1h(x(·, uk), ·)× wz(·, uk)
〉

C∗q×Cq

]
,

with the convention that the second term on the right-hand side is zero if h(x(·, uk)) ∈ S. Using
the definition of λk and ψ∗k, we deduce that

−
√
εk ‖z − uk‖L∞m ≤ λk

〈
∇g(x(T, uk)), wz(T, uk)

〉
Rn

+
〈
ψ∗k, ∂1h(x(·, uk), ·)× wz(·, uk)

〉
C∗q×Cq

.

We take the limit of this inequality as k tends to +∞. From the smoothness of g and h and from
Lemmas A.1 and A.2, Inequality (9) is proved.

B.1.2 Introduction of the adjoint vector

We are now in a position to conclude the proof of Theorem 3.1 (in the case L = 0) by introducing
the adjoint vector p. We refer to Sections 2.2, A.3 and A.4 for notations and background concerning
Stieltjes integrations and linear Cauchy-Stieltjes problems.

Introduction of the nontrivial couple (p0, η) and complementary slackness condition.
We introduce p0 := −λ ≤ 0 and we write ψ∗ = (ψ∗j )j=1,...,q where ψ∗j ∈ C∗1 for every j = 1, . . . , q.
From the Riesz representation theorem (see Proposition A.5), there exists a unique ηj ∈ NBV1

such that

〈ψ∗j , ψ〉C∗1×C1
=

∫ T

0

ψ(τ) dηj(τ),

for all ψ ∈ C1 and all j = 1, . . . , q. Furthermore ψ∗j = 0C∗1
if and only if ηj = 0NBV1 . Thus it

follows from Proposition B.2 that the couple (p0, η) is not trivial, where η := (ηj)j=1,...,q ∈ NBVq.
Moreover, from Inequality (7) (and the fact that S is a cone containing h(x)), one can easily deduce
that 〈ψ∗j , hj(x)〉C∗1×C1

= 0, that is, ∫ T

0

hj(x(τ), τ) dηj(τ) = 0,

for all j = 1, . . . , q. Finally one can similarly deduce from Inequality (7) that 〈ψ∗j , ψ〉C∗1×C1
≥ 0

for all ψ ∈ C+
1 and all j = 1, . . . , q. From Proposition A.5, it follows that ηj is monotonically

increasing on [0, T ] for all j = 1, . . . , q.
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Adjoint equation. We define the adjoint vector p ∈ BVn as the unique solution to the backward
linear Cauchy-Stieltjes problem given by−dp =

(
∂1f(x, u, ·)> × p

)
dt−

∑q
j=1 ∂1hj(x, ·) dηj over [0, T ],

p(T ) = p0∇g(x(T )).

From the Duhamel formula for backward linear Cauchy-Stieltjes problems (see Proposition A.6)
and using notations introduced in Section A.3, it holds that

p(t) = Φ(T, t)> ×
(
p0∇g(x(T ))

)
−
∫ T

t

Φ(τ, t)> × ∂1h(x(τ), τ)> × dη(τ),

for all t ∈ [0, T ], where Φ(·, ·) : [0, T ]2 → Rn×n stands for the state-transition matrix associated
to ∂1f(x, u, ·) ∈ L∞([0, T ],Rn×n).

Nonpositive averaged Hamiltonian gradient condition. From Inequality (9) and using
notations introduced in Section A.3, it holds that

λ
〈
∇g(x(T )), wz(T, u)

〉
Rn

+

∫ T

0

〈
∂1h(x(τ), τ)× wz(τ, u), dη(τ)

〉
≥ 0,

for all z ∈ PCT
m with values in U. From the definition of the variation vector wz(·, u) and the

classical Duhamel formula for standard forward linear Cauchy problems, it holds that

wz(τ, u) =

∫ τ

0

Φ(τ, s)× ∂2f(x(s), u(s), s)× (z(s)− u(s)) ds,

for all τ ∈ [0, T ]. Substituting this expression into the previous inequality and using the last Fubini
formula given in Section A.3, it follows that∫ T

0

〈
Φ(T, s)> ×

(
p0∇g(x(T ))

)
, ∂2f(x(s), u(s), s)× (z(s)− u(s))

〉
Rn

ds

−
∫ T

0

〈
∂2f(x(s), u(s), s)× (z(s)− u(s)),

∫ T

s

Φ(τ, s)> × ∂1h(x(τ), τ)> × dη(τ)
〉
Rn
ds ≤ 0,

for all z ∈ PCT
m with values in U. Finally, grouping like terms, we exactly obtain∫ T

0

〈
p(s), ∂2f(x(s), u(s), s)× (z(s)− u(s))

〉
Rn
ds ≤ 0,

for all z ∈ PCT
m with values in U. For all i = 0, . . . , N −1 and all v ∈ U, let us consider zi,v ∈ PCT

m

with values in U as

zi,v(s) :=

{
v if s ∈ [ti, ti+1),
u(s) if s /∈ [ti, ti+1),

for all s ∈ [0, T ]. Substituting z by zi,v in the above inequality and from the definition of the
Hamiltonian H, we exactly get that〈∫ ti+1

ti

∂2H(x(s), ui, p(s), p
0, s) ds, v − ui

〉
Rm

≤ 0,

for all v ∈ U and all i = 0, . . . , N − 1. The proof of Theorem 3.1 is complete (in the case L = 0).
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B.2 The case L 6= 0

In the previous section we have proved Theorem 3.1 in the case L = 0 (without Lagrange cost). This
section is dedicated to the case L 6= 0. Let (x, u) ∈ ACn×PCT

m be a solution to Problem (OSCP).
Let us introduce

X(t) :=

∫ t

0

L(x(τ), u(τ), τ) dτ,

for all t ∈ [0, T ]. We see that the augmented couple ((x,X), u) ∈ ACn+1 × PCT
m is a solution to

the augmented optimal sampled-data control problem with running inequality state constraints of
Mayer form given by

minimize g̃((x,X)(T ))

subject to (x,X) ∈ ACn+1, u ∈ PCT
m,

˙(
x
X

)
(t) =

(
f(x(t), u(t), t)
L(x(t), u(t), t)

)
for a.e. t ∈ [0, T ],

(
x
X

)
(0) =

(
x0

0

)
,

h̃j((x,X)(t), t) ≤ 0 for all t ∈ [0, T ] and all j = 1, . . . , q,

u(t) ∈ U for all t ∈ [0, T ],

(OSCPaug)

where g̃ : Rn+1 → R is defined by g̃(x1, X1) := g(x1) + X1 for all (x1, X1) ∈ Rn+1 and where h̃ :
Rn+1× [0, T ]→ Rq is defined by h̃((x1, X1), t) := h(x1, t) for all (x1, X1) ∈ Rn+1 and all t ∈ [0, T ].
Note that Problem (OSCPaug) satisfies all of the assumptions of Theorem 3.1 and is without

Lagrange cost. We introduce the augmented Hamiltonian H̃ : Rn+1 × Rm × Rn+1 × [0, T ] → R
defined as

H̃((x,X), u, (p, P ), t) :=

〈(
p
P

)
,

(
f(x, u, t)
L(x, u, t)

)〉
Rn+1

,

for all ((x,X), u, (p, P ), t) ∈ Rn+1×Rm×Rn+1× [0, T ]. Applying Theorem 3.1 (without Lagrange
cost, proved in the previous section), we deduce the existence of a nontrivial couple (p0, η), where
p0 ≤ 0 and η = (ηj)j=1,...,q ∈ NBVq, such that all conclusions of Theorem 3.1 are satisfied.
In particular, the adjoint vector (p, P ) ∈ BVn+1 satisfies the backward linear Cauchy-Stieltjes
problem given by
−

(
dp

dP

)
= ∂(x,X)

(
f

L

)
(x, u, ·)> ×

(
p

P

)
dt−

∑q
j=1 ∂(x,X)h̃j((x,X), ·) dηj over [0, T ],(

p

P

)
(T ) = p0∇(x,X)g̃((x,X)(T )).

We deduce that P (T ) = p0 and dP = 0 over [0, T ]. Thus P (t) = p0 for all t ∈ [0, T ], and we obtain
that p ∈ BVn satisfies the backward linear Cauchy-Stieltjes problem−dp =

(
∂1f(x, u, ·)> × p+ p0∂1L(x, u, ·)

)
dt−

∑q
j=1 ∂1hj(x, ·) dηj over [0, T ],

p(T ) = p0∇g(x(T )).

The rest of the proof is straightforward from all the necessary conditions obtained from the version
of Theorem 3.1 without Lagrange cost.
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[29] J. Faraut. Calcul intégral (L3M1). EDP sciences, 2012.

[30] R. V. Gamkrelidze. Optimal control processes for bounded phase coordinates. Izv. Akad.
Nauk SSSR. Ser. Mat., 24:315–356, 1960.

[31] I. V. Girsanov. Lectures on mathematical theory of extremum problems. Springer-Verlag,
Berlin-New York, 1972. Edited by B. T. Poljak, Translated from the Russian by D. Louvish,
Lecture Notes in Economics and Mathematical Systems, Vol. 67.
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