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Continuity/constancy of the Hamiltonian function in a

Pontryagin maximum principle for optimal sampled-data

control problems with free sampling times

Löıc Bourdin∗, Gaurav Dhar†

Abstract

In a recent paper by Bourdin and Trélat, a version of the Pontryagin maximum principle
(in short, PMP) has been stated for general nonlinear finite-dimensional optimal sampled-data
control problems. Unfortunately their result is only concerned with fixed sampling times, and
thus it does not take into account the possibility of free sampling times. The present paper
aims to fill this gap in the literature. Precisely we establish a new version of the PMP that can
handle free sampling times. As in the aforementioned work by Bourdin and Trélat, we obtain
a first-order necessary optimality condition written as a nonpositive averaged Hamiltonian
gradient condition. Furthermore, from the freedom of choosing sampling times, we get a new
and additional necessary optimality condition which happens to coincide with the continuity of
the Hamiltonian function. In an autonomous context, even the constancy of the Hamiltonian
function can be derived. Our proof is based on the Ekeland variational principle. Finally a
linear-quadratic example is numerically solved using shooting methods, illustrating the possible
discontinuity of the Hamiltonian function in the case of fixed sampling times and highlighting
its continuity in the instance of optimal sampling times.

Keywords: Sampled-data control, optimal control, optimal sampling times, Pontryagin maximum
principle, Hamiltonian continuity, Hamiltonian constancy, Ekeland variational principle.

AMS Classification: 34K35, 34H05, 49J15, 49K15, 93C15, 93C57, 93C62, 93C83.

1 Introduction

In mathematics a dynamical system describes the evolution of a point (usually called the state
of the system) in an appropriate set following an evolution rule (known as the dynamics of the
system). Dynamical systems are of many different natures and they can be categorized in different
classes such as: continuous systems versus discrete systems (see details hereafter), deterministic
systems versus stochastic systems, etc. A continuous system is a dynamical system in which the
state evolves in a continuous way in time (for instance, ordinary differential equations, evolution
partial differential equations, etc.), while a discrete system is a dynamical system in which the state
evolves in a discrete way in time (for instance, difference equations, quantum differential equations,
etc.). A control system is a dynamical system in which a control parameter influences the evolution
of the state. Finally an optimal control problem consists of determining a control which allows to
steer the state of a control system from a specified configuration to some desired target while
minimizing a given criterion. Established in [29] by Pontryagin et al. at the end of the 1950’s,
the Pontryagin maximum principle (in short, PMP) is the milestone of optimal control theory.
It provides first-order necessary optimality conditions for continuous optimal control problems in
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which the dynamics is described by a general nonlinear ordinary differential equation. Roughly
speaking, the classical PMP ensures the existence of an adjoint vector such that the optimal control
satisfies the so-called Hamiltonian maximization condition. Soon afterwards and even nowadays,
the PMP has been adapted to many situations, for control systems of different natures, with various
constraints, etc. It is not the aim of the present paper to give a state of the art. Nevertheless we
precise that several versions of the PMP were derived for discrete optimal control problems in which
the dynamics is described by a difference equation (see, e.g., [9, 23, 24]). In these discrete versions
of the PMP, the historical Hamiltonian maximization condition does not hold in general (see a
counterexample in [9, Examples 10.1-10.4 p.59-62]) and has to be replaced by a weaker condition
known as a nonpositive Hamiltonian gradient condition (see, e.g., [9, Theorem 42.1 p.330]). Note
that some appropriate convexity conditions on the dynamics have been considered in order to
recover the Hamiltonian maximization condition in the discrete case (see, e.g., [24]).

In this paper we are interested in sampled-data control systems in which the state evolves contin-
uously in time while the control evolves discretely in time. More precisely the value of the control
is authorized to be modified only a finite number of times. The times in which the control can
be modified are usually called the sampling times. Note that sampled-data control systems have
the peculiarity of presenting a mixed continuous/discrete structure. They have been considered as
models mostly in Engineering implemented by digital controllers which have a finite precision (see,
e.g., [30, 36]). Numerous texts and articles have developed control theory for sampled-data control
systems (see, e.g., [1, 2, 3, 18, 25] and references therein). For instance, global controllability for
sampled-data control systems has been investigated in [20]. Sampled-data control systems are used
in Automation, notably in model predictive control algorithms in which the control value at each
sampling time is chosen as the first value of a finite sequence of control values optimizing the given
cost on a fixed finite horizon (see, e.g., [21]). Optimal sampled-data control problems have been
investigated in the literature with different approaches. One approach has been to apply H2-H∞
optimization theory (see [7, 15]) where the closed-loop transfer matrix under the H2- and H∞-
norms is taken as the criterion. Another approach involves the Karush-Kuhn-Tucker necessary
conditions and dynamic programming (see [6]). However one should note that the aforementioned
results are not formulated in terms of a PMP. Recently Bourdin and Trélat have obtained in [13] a
version of the PMP for general nonlinear optimal sampled-data control problems. In that sampled-
data control framework, as in the purely discrete case addressed in the previous paragraph, the
usual Hamiltonian maximization condition does not hold in general and has to be replaced by a
weaker condition known as a nonpositive averaged Hamiltonian gradient condition (see [13, Theo-
rem 2.6 p.62]). Note that the PMP enunciated in [13, Theorem 2.6 p.62] is actually stated in the
more general framework of time scale calculus and a version which does not take into account such
a generality, and therefore closer to the considerations of the present paper, can be found in [12,
Theorem 1 p.81] or [13, Theorem 1.1 p.55]. Unfortunately this PMP is only concerned with fixed
sampling times, and thus it does not take into account the possibility of free sampling times that
can be chosen from a given interval. The main objective of the present paper is to fill this gap
in the literature by deriving a PMP for general nonlinear optimal sampled-data control problems
with free sampling times. We mention that optimal sampling times problems have already been in-
vestigated in the literature but, to the best of our knowledge, never from a PMP point of view. For
example many authors consider the related problem of finding the optimal fixed sampling interval
(or time step) such as in [26, 28]. Nonuniform sampling partitions have also been studied but in
specific cases such as for the linear-quadratic integrator in [31]. In [32] the optimal sampled-data
control problem is transformed into a purely discrete one by integrating the state over the sampling
intervals and then is treated as an usual optimization problem.

The main theoretical result of the present paper (Theorem 2.1 in Section 2.3) is a PMP for nonlin-
ear optimal sampled-data control problems with free sampling times. Similarly to the PMP derived
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in [12, Theorem 1 p.81] or [13, Theorem 1.1 p.55] for fixed sampling times, we obtain a first-order
necessary optimality condition described by a nonpositive averaged Hamiltonian gradient condi-
tion (see Inequality (2)). Furthermore, from the freedom of choosing sampling times, we get a
new and additional necessary optimality condition (see Equality (3)) which happens to coincide
with the continuity of the Hamiltonian function. In an autonomous context, even the constancy of
the Hamiltonian function can be derived. We refer to Section 2.4 for a detailed discussion on the
continuity/constancy of the Hamiltonian function. Moreover, in case of additional constraints on
the size of sampling intervals (in practice one can expect a minimum size for instance), the conti-
nuity of the Hamiltonian function is replaced by a weaker inequality (see Remarks 2.17 and 2.18
for details).

We must remark that in the classical case of purely continuous optimal control problems, the
(absolute) continuity of the Hamiltonian function is a very well-known fact (see, e.g., [19, Theo-
rem 2.6.3 p.73]). With the help of a simple linear-quadratic example, we show in Section 3 that this
classical property does not hold in general for optimal sampled-data control problems with fixed
sampling times (see Figure 1). On the other hand, the present work proves that this continuity
property is recovered when considering optimal sampling times, which is illustrated with the same
aforementioned linear-quadratic example (see Figure 2). Furthermore the linear-quadratic example
developed in Section 3 allows us to prove the interest of our main result since it is numerically
solved by using, in one hand, the Riccati theory developed in [14, Theorem 2 and Corollary 1 p.276]
and, in the other hand, a shooting method based on the Hamiltonian continuity condition derived
in Theorem 2.1. We conclude this paragraph by mentioning that, in the context of hybrid optimal
control problems, a similar Hamiltonian continuity condition at crossing times (resp. at switching
times) can be found in [22, Remark 1.3] by Haberkorn and Trélat (resp. in [34, Definition 13] by
Sussmann under the name of Hamiltonian value condition). Nevertheless, due to the nature of the
sampling times and of the sampled-data controls considered in the present paper, our main result
(in particular the nonpositive averaged Hamiltonian gradient condition) cannot, to the best of our
knowledge, be seen as a direct consequence of the works [22, 34].

In this paragraph our aim is to give some details about the strategy adopted in this paper and
the major difficulties encountered. The proof of our main result is detailed in Appendix A and,
similarly to [13, Theorem 2.6 p.62], it is based on the classical Ekeland variational principle [17,
Theorem 1.1 p.324]. This leads us to consider a sequence of sampled-data controls converging in L1-
norm to the optimal one. A first difficulty emerges in the fact that the associated sampling times do
not necessarily converge to the optimal sampling times. Indeed a degenerate situation can occur if
the optimal control is constant over two consecutive sampling intervals. Moreover another obstacle
is the possible phenomenon of accumulation of sampling times. These two difficulties are overcome
by introducing a technical control set (see Equation (5) in Appendix A.1) which guarantees that
the sampling times produced by the Ekeland variational principle, firstly, remain unchanged for the
ones corresponding to the consecutive sampling intervals on which the optimal control is constant
(avoiding thus the first difficulty) and, secondly, are contained in disjoint intervals for the others
(avoiding thus the second difficulty). We refer to Proposition A.2 in Appendix A.1 for details. A
final obstacle lies in the non-convexity of the set of N -piecewise constant functions (where N ∈ N∗
is fixed). Therefore the standard procedure of considering convex L∞-perturbations of the control
(as in [13, Lemma 4.17 p.84]) has to be adapted by considering convex L∞-perturbations respecting
the same N -partition. We refer to the proof of Lemma A.10 for details. We conclude this paragraph
by mentioning that, thanks to the reviewing process of the present paper, an alternative proof of
our main result has been brought to our attention. This different approach is based on a remarkable
technique exposed in the paper [16] by Dmitruk and Kaganovich. We refer to Remark 2.12 for the
details.
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The paper is organized as follows. Section 2 is dedicated to our main result (Theorem 2.1). Precisely
we introduce in Section 2.1 the notations and the functional framework required for our work.
The optimal sampled-data control problem considered in this paper (with possibly free sampling
times) is presented in details in Section 2.2 (see Problem (OSCP)). The corresponding Pontryagin
maximum principle (Theorem 2.1) is stated in Section 2.3 and a list of general comments is in
order. Finally we devote Section 2.4 to a discussion on the continuity/constancy of the Hamiltonian
function. In Section 3 we numerically solve a simple linear-quadratic optimal sampled-data control
problem and we compare the two following situations: fixed sampling times versus free sampling
times. As expected from our main result, the Hamiltonian function admits discontinuities in the
first case (see Figure 1), while it does not in the second case (see Figure 2). Appendix A is devoted
to the detailed proof of Theorem 2.1.

2 Main result and comments

Section 2.1 is devoted to the notations and the functional framework required for our work. In
Section 2.2, the general nonlinear optimal sampled-data control problem considered in this paper
(with possibly free sampling times) is presented with terminology and assumptions. In Section 2.3,
the corresponding Pontryagin maximum principle, which constitutes our main result, is stated. A
list of general comments is in order. Finally Section 2.4 is dedicated to a discussion about the
continuity/constancy of the Hamiltonian function.

2.1 Notations and functional framework

Let n ∈ N∗ and I ⊂ R be a subinterval of R. In this paper we denote by:

- L1(I,Rn) the Lebesgue space of integrable functions defined on I with values in Rn, endowed
with its usual norm ‖ · ‖L1(I,Rn);

- L∞(I,Rn) the Lebesgue space of essentially bounded functions defined on I with values in Rn,
endowed with its usual norm ‖ · ‖L∞(I,Rn);

- C(I,Rn) the space of continuous functions defined on I with values in Rn, endowed with the
standard uniform norm ‖ · ‖C(I,Rn);

- AC(I,Rn) the subspace of C(I,Rn) of absolutely continuous functions.

Let m ∈ N∗ and τ > 0 be fixed in this whole section. For all N ∈ N∗, the set of all N -partitions
of the interval [0, τ ] is defined by

PτN := {T = (ti)i=0,...,N | 0 = t0 < t1 < . . . < tN−1 < tN = τ}.

Then, for all N ∈ N∗ and all T = (ti)i=0,...,N ∈ PτN , the set of all piecewise constant functions
over [0, τ ] respecting the N -partition T is defined by

PCT
N ([0, τ ],Rm) := {u ∈ L∞([0, τ ],Rm) | ∀i = 0, . . . , N−1, ∃ui ∈ Rm, u(t) = ui a.e. t ∈ [ti, ti+1]}.

In this paper, as usual in the Lebesgue space L∞([0, τ ],Rm), two functions in PCT
N ([0, τ ],Rm)

which are equal almost everywhere on [0, τ ] will be identified. Precisely, if u ∈ PCT
N ([0, τ ],Rm),

then u is identified to the function

u(t) =

{
ui if t ∈ [ti, ti+1), i ∈ {0, . . . , N − 2},
uN−1 if t ∈ [tN−1, tN ],

for all t ∈ [0, τ ]. Note that PCT
N ([0, τ ],Rm) is a linear subspace of L∞([0, τ ],Rm).
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Remark 2.1. Note that the inclusion PCT′
M ([0, τ ],Rm) ⊂ PCT

N ([0, τ ],Rm) holds true for all M ,
N ∈ N∗ such that M ≤ N , and all T′ ∈ PτM , T ∈ PτN such that T′ ⊂ T.

Finally, for all N ∈ N∗, the set of all piecewise constant functions over [0, τ ] respecting at least
one N -partition is defined by

PCN ([0, τ ],Rm) :=
⋃

T∈PτN

PCT
N ([0, τ ],Rm).

Note that PCN ([0, τ ],Rm) is included in L∞([0, τ ],Rm), but it is not a linear subspace, neither a
convex subset. As explained in Introduction, this lack of convexity constitutes a difficulty in the
present work. Precisely it leads us to adapt in the proof of Lemma A.10 the standard procedure of
convex L∞-perturbations of the control that can be found for example in [13, Lemma 4.17 p.84].

Remark 2.2. Similarly to Remark 2.1, note that PCM ([0, τ ],Rm) ⊂ PCN ([0, τ ],Rm) for all M ,
N ∈ N∗ such that M ≤ N .

2.2 The optimal sampled-data control problem: terminology and as-
sumptions

Let m, n, j, N ∈ N∗ be four positive integers fixed in the whole paper. In the present work we
focus on the general optimal sampled-data control problem (OSCP) given by

minimize ϕ(x(0), x(T ), T ) +

∫ T

0

L(x(t), u(t), t) dt,

subject to T > 0 fixed or free,

T = (ti)i=0,...,N ∈ PTN fixed or free,

x ∈ AC([0, T ],Rn), u ∈ PCT
N ([0, T ],Rm),

ẋ(t) = f(x(t), u(t), t), a.e. t ∈ [0, T ],

g(x(0), x(T ), T ) ∈ S,

ui ∈ Ω, for all i = 0, . . . , N − 1.



(OSCP)

A solution to Problem (OSCP) is thus a quadruple (T,T, x, u) which satisfies all above constraints
and which minimizes the cost among all quadruples satisfying these constraints. Our aim in this
section is to fix the terminology and the assumptions associated to Problem (OSCP).

In Problem (OSCP), x is the state function (also called trajectory) and u is the control function.
In the classical literature about the Pontryagin maximum principle (see, e.g., [29, 33, 35] and
references therein), the control u usually can be any function in L∞([0, T ],Rm), satisfying moreover
the constraint u(t) ∈ Ω for almost every t ∈ [0, T ]. In the present paper, the control u is constrained
to be a piecewise constant function respecting at least one N -partition, where N ∈ N∗ is fixed.
In other words, the value of the control is authorized to be modified at most N − 1 times. In
that situation the standard terminology adopted in the literature is to say that the control u in
Problem (OSCP) is a sampled-data control (see, e.g., [6, 12, 13, 14] and references therein).

In Problem (OSCP), the final time T > 0 can be fixed or not. In the case where the final time is
free, it becomes a parameter to optimize. Similarly the N -partition T = (ti)i=0,...,N can be fixed
or not in Problem (OSCP). For i = 1, . . . , N − 1, the elements ti of T are called the sampling
times because they correspond to the times in which the value of the sampled-data control u can
be modified. We distinguish two situations:
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(i) If the N -partition is fixed in Problem (OSCP), we say that the sampling times ti are fixed
and Problem (OSCP) is an optimal sampled-data control problem with fixed sampling times;

(ii) If the N -partition is free in Problem (OSCP), we say that the sampling times ti are free and
they become N − 1 parameters to optimize. In that case, Problem (OSCP) is said to be an
optimal sampled-data control problem with free sampling times.

In this paper we consider the following regularity and topology assumptions:

- the functions ϕ : Rn ×Rn ×R+ → R and L : Rn ×Rm ×R+ → R, that describe respectively

the Mayer cost ϕ(x(0), x(T ), T ) and the Lagrange cost
∫ T
0
L(x(t), u(t), t) dt, are of class C1;

- the set S ⊂ Rj is a nonempty closed convex subset of Rj and the function g : Rn×Rn×R+ →
Rj , that describes the terminal state constraint g(x(0), x(T ), T ) ∈ S, is of class C1;

- the set Ω ⊂ Rm, that describes the control constraint ui ∈ Ω, is a nonempty closed convex
subset of Rm;

- the dynamics f : Rn ×Rm ×R+ → Rn, that drives the state equation ẋ(t) = f(x(t), u(t), t),
is of class C1. In particular, for every compact subset K ⊂ Rn × Rm × R+, there exists a
nonnegative constant L ≥ 0 such that ‖∂1f(x, u, t)‖Rn×n ≤ L, ‖∂2f(x, u, t)‖Rn×m ≤ L for all
(x, u, t) ∈ K, and such that

‖f(x2, u2, t)− f(x1, u1, t)‖Rn ≤ L(‖x2 − x1‖Rn + ‖u2 − u1‖Rm), (1)

for all (x1, u1, t), (x2, u2, t) ∈ K.

Since the total cost ϕ(x(0), x(T ), T )+
∫ T
0
L(x(t), u(t), t) dt considered in Problem (OSCP) is written

as the sum of a Mayer cost and a Lagrange cost, it is said to be of Bolza form.

Remark 2.3. In Problem (OSCP), since the N -partition depends on the final time, note that the
problem has no sense if the final time is free while the N -partition is fixed. This case will not be
treated in this paper. In order to deal with it, one should introduce a different framework that can
handle partitions that are independent of the final time. This is not the aim of the present paper.
Our objective here is to focus on the free sampling times case.

Remark 2.4. If the final time is fixed in Problem (OSCP), one can directly consider that the two
functions ϕ and g are both independent of T , and we directly write the Mayer cost as ϕ(x(0), x(T ))
and the terminal state constraint as g(x(0), x(T )) ∈ S.

Remark 2.5. In the free sampling times case, Problem (OSCP) can be rewritten by removing the
third line, and by replacing “u ∈ PCT

N ([0, T ],Rm)” in the fourth line by “u ∈ PCN ([0, T ],Rm)”.

Remark 2.6. Let (T,T, x, u) be a solution to Problem (OSCP). One can easily deduce, respectively
from Remarks 2.1 and 2.2, that:

- if the sampling times are fixed in Problem (OSCP) and u ∈ PCT′
M ([0, T ],Rm) for some M ≤ N

and some T′ ∈ PTM such that T′ ⊂ T, then the quadruple (T,T′, x, u) is a solution to the same
problem as Problem (OSCP) replacing N by M and T by T′. A similar remark was already
done in [13, Remark 3 p.60];

- if the sampling times are free in Problem (OSCP) and u ∈ PCT′
M ([0, T ],Rm) for some M ≤ N

and some T′ ∈ PTM , then the quadruple (T,T′, x, u) is a solution to the same problem as
Problem (OSCP) replacing N by M .
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Remark 2.7. Let (T,T, x, u) be a quadruple satisfying all constraints of Problem (OSCP). From
the state equation and since u is a piecewise constant function, it is clear that x is not only
absolutely continuous but also piecewise smooth of class C1 over the interval [0, T ], in the sense
that x is of class C1 over each interval [ti, ti+1].

Remark 2.8. A Filippov-type theorem for the existence of a solution to Problem (OSCP) in case
of fixed sampling times was derived in [13, Theorem 2.1 p.61]. The present work focuses only on
necessary optimality conditions and thus it is not our aim to discuss the extension of the previously
mentioned result to the case of free sampling times. Nevertheless we precise that, in the context of
free sampling times, one would likely be faced with the same difficulty encountered in the proof of
Theorem 2.1 developed in Appendix A. Precisely, considering a minimizing sequence of sampled-
data controls would lead to a sequence of partitions and thus to the possibility of accumulation
of sampling times. As a consequence, a cautious and rigorous mathematical treatment would be
required in order to give a meaning to the limit of the sequence of sampled-data controls when
accumulations of sampling times appear. Moreover, note that the standard Filippov’s theorem is
usually established in case of permanent controls, that is, with controls that belong to the infinite
dimensional space L∞([0, T ],Rm), while the sampled-data control framework considered here (with
fixed or free sampling times) can be seen as a finite dimensional optimization problem. This fun-
damental difference could potentially lead to existence results in case of sampled-data controls with
relaxed assumptions with respect to the case of permanent controls. As a conclusion, the issue of
existence in case of sampled-data controls with free sampling times will be the central topic of a
future and full fledged paper.

2.3 Pontryagin maximum principle and general comments

The main objective of the present paper is to state a Pontryagin maximum principle for Prob-
lem (OSCP). As mentioned in the previous section, one of the novelties of Problem (OSCP) with
respect to the classical literature is to consider sampled-data controls. Note that this framework
was already considered by Bourdin and Trélat in [12, 13] in which a Pontryagin maximum prin-
ciple was already established. However, in contrary to the framework considered in [12, 13], the
sampling times ti in Problem (OSCP) are not necessarily fixed and can be free. Hence the major
contribution of the present paper is to state a Pontryagin maximum principle that can handle, not
only sampled-data controls, but also free sampling times. In that particular case, a new necessary
optimality condition is derived (see Equality (3) in Theorem 2.1 below). This additional necessary
optimality condition happens to coincide with the continuity of the Hamiltonian function. A dis-
cussion devoted to this phenomenon is provided in Section 2.4. Before stating our main result, we
first need to recall the three following standard notions.

Definition 2.1 (Hamiltonian). The Hamiltonian H : Rn ×Rm ×Rn ×R×R+ → R associated to
Problem (OSCP) is defined by

H(x, u, p, p0, t) := 〈p, f(x, u, t)〉Rn + p0L(x, u, t),

for all (x, u, p, p0, t) ∈ Rn × Rm × Rn × R× R+.

Definition 2.2 (Normal cone). The normal cone to S ⊂ Rj at a point z ∈ S is defined as the set

NS[z] := {z′ ∈ Rj | ∀z′′ ∈ S, 〈z′, z′′ − z〉Rj ≤ 0}.

It is a closed convex cone containing 0Rj .
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Definition 2.3 (Submersiveness). We say that g is submersive at a point (x1, x2, τ) ∈ Rn×Rn×R+

if its differential at this point, that is

Dg(x1, x2, τ) =
(
∂1g(x1, x2, τ) ∂2g(x1, x2, τ) ∂3g(x1, x2, τ)

)
∈ Rj×(2n+1),

is surjective.

We are now in a position to state the main result of the present paper.

Theorem 2.1 (Pontryagin maximum principle). Let (T,T, x, u) be a solution to Problem (OSCP).
If g is submersive at (x(0), x(T ), T ), then there exists a nontrivial couple (p, p0) ∈ AC([0, T ],Rn)×
R− such that:

(i) Adjoint equation: p satisfies

−ṗ(t) = ∂1f(x(t), u(t), t)> × p(t) + p0∂1L(x(t), u(t), t),

for almost every t ∈ [0, T ];

(ii) Transversality conditions on the adjoint vector: p satisfies

−p(0) = p0∂1ϕ(x(0), x(T ), T ) + ∂1g(x(0), x(T ), T )> ×Ψ,

p(T ) = p0∂2ϕ(x(0), x(T ), T ) + ∂2g(x(0), x(T ), T )> ×Ψ,

where Ψ ∈ Rj is such that −Ψ ∈ NS[g(x(0), x(T ), T )];

(iii) Nonpositive averaged Hamiltonian gradient condition: the condition〈∫ ti+1

ti

∂2H(x(t), ui, p(t), p
0, t) dt, ω − ui

〉
Rm
≤ 0, (2)

is satisfied for all ω ∈ Ω and all i = 0, . . . , N − 1;

(iv) If moreover the sampling times are free in Problem (OSCP): the optimal sampling
times ti satisfy the Hamiltonian continuity condition

H(x(ti), ui−1, p(ti), p
0, ti) = H(x(ti), ui, p(ti), p

0, ti), (3)

for all i = 1, . . . , N − 1;

(v) If moreover the final time is free in Problem (OSCP): the optimal final time T
satisfies the transversality condition

−H(x(T ), uN−1, p(T ), p0, T ) = p0∂3ϕ(x(0), x(T ), T ) + ∂3g(x(0), x(T ), T )> ×Ψ,

where Ψ ∈ Rj is introduced in the transversality conditions on the adjoint vector.

Appendix A is dedicated to the proof of Theorem 2.1. A list of comments is in order. We just
point out, as detailed in Remarks 2.14 and 2.15 below, that the submersion property considered
in Theorem 2.1 is not restrictive. The reader who is interested in the continuity/constancy of the
Hamiltonian function may jump directly to the specific Section 2.4.

Remark 2.9. The nontrivial couple (p, p0) in Theorem 2.1, which is a Lagrange multiplier, is
defined up to a positive multiplicative scalar. In the normal case p0 6= 0, it is usual to normalize
the Lagrange multiplier so that p0 = −1.
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Remark 2.10. Let us consider the framework of Theorem 2.1. One can easily see that the cou-
ple (x, p) satisfies the Hamiltonian system

ẋ(t) = ∂3H(x(t), u(t), p(t), p0, t), −ṗ(t) = ∂1H(x(t), u(t), p(t), p0, t),

for almost every t ∈ [0, T ].

Remark 2.11. Our strategy in Appendix A in order to prove Theorem 2.1 is based on the Ekeland
variational principle [17, Theorem 1.1 p.324]. It requires the closedness of Ω in order to define the
corresponding penalized functional on a complete metric set (see details in Appendix A.3). The
closure of Ω is thus a crucial assumption in our strategy. On the other hand, the convexity of Ω
is also an essential hypothesis for our strategy in order to consider convex L∞-perturbation of the
control (see the proof of Lemma A.10).

Remark 2.12. The authors of the present paper are very grateful to the anonymous reviewer for
bringing to their attention an alternative proof of Theorem 2.1. By adapting a remarkable technique
exposed in the paper [16] by Dmitruk and Kaganovich, optimal sampled-data control problems with
free sampling times, considered in this paper, can indeed be reparameterized such that each sampling
interval [ti, ti+1] maps to the interval [0, 1]. In that situation, the free sampling times ti play the role
of free terminal states which lead, through the application of the classical PMP, to transversality
conditions which exactly coincide with the Hamiltonian continuity condition (3), while the values ui
of the sampled-data control play the role of parameters which lead, through the application of a
“PMP with parameters” (see, e.g., [11, Remark 5 p.3790]), to a necessary optimality condition
written in integral form which exactly coincides with the nonpositive averaged Hamiltonian gradient
condition (2). This alternative approach should undoubtedly be the subject of a forthcoming work.
On the other hand, the authors of the present paper are particularly interested in the extension of
optimal control problems using the tools of time scale calculus (see, e.g., [11, 13]) and fractional
calculus (see, e.g., [5]). It has to be noted that the method developed in [16] is strongly based on the
standard chain rule which has no analogue neither in time scale calculus, nor in fractional calculus.
As a consequence, the technique developed in [16] cannot be used in order to extend our main result
(Theorem 2.1) in both of these contexts, while the proof based on Ekeland’s variational principle
proposed in the present paper probably can. We take this occasion to mention that the continuity
of the Hamiltonian function in the framework of fractional optimal control problems remains an
open challenge (see details in [5, Section 5.1]).

Remark 2.13. If Ω = Rm (that is, if there is no control constraint in Problem (OSCP)), then
the nonpositive averaged Hamiltonian gradient condition in Theorem 2.1 (see Inequality (2)) can
be rewritten as ∫ ti+1

ti

∂2H(x(t), ui, p(t), p
0, t) dt = 0Rm ,

for all i = 0, . . . , N − 1.

Remark 2.14. In this remark, for simplicity, we suppose that the final time is fixed in Prob-
lem (OSCP). Our aim here is to describe some typical terminal state constraint g(x(0), x(T )) ∈ S
and the corresponding transversality conditions on the adjoint vector derived in Theorem 2.1:

- If the terminal points are fixed in Problem (OSCP) (that is, x(0) = x0 and x(T ) = xf ), one
may consider j = 2n, g as the identity function and S = {x0} × {xf}. In that case, the
normal cone to S is the entire space, and thus the transversality conditions on the adjoint
vector in Theorem 2.1 do not provide any additional information.
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- If the initial point is fixed (that is, x(0) = x0) and the final point x(T ) is free in Prob-
lem (OSCP), one may consider j = 2n, g as the identity function and S = {x0} × Rn. In
that case, the nontriviality of the couple (p, p0) and the second transversality condition on
the adjoint vector in Theorem 2.1 imply that p0 6= 0 (which we normalize to p0 = −1, see
Remark 2.9) and p(T ) = −∂2ϕ(x(0), x(T )).

- If the initial point is fixed (that is, x(0) = x0) and the final point x(T ) is subject to inequality
constraints G`(x(T )) ≥ 0 for ` = 1, . . . , nG, for some nG ∈ N∗, one may consider j = n+nG,
g : Rn×Rn → Rn+nG given by g(x1, x2) := (x1, G(x2)) where G = (G1, . . . , GnG) : Rn → RnG
and S = {x0}×(R+)nG . If G is of class C1 and the differential DG(x2) ∈ RnG×n is surjective
at any point x2 ∈ G−1((R+)nG), then the second transversality condition on the adjoint vector
in Theorem 2.1 can be written as p(T ) = p0∂2ϕ(x(0), x(T )) +

∑nG
`=1 λ`∇G`(x(T )), for some

λ` ≥ 0 satisfying moreover the slackness condition λ`G`(x(T )) = 0, for all ` = 1, . . . , nG.

- If there is no Mayer cost (that is, ϕ = 0) and the periodic condition x(0) = x(T ) is considered
in Problem (OSCP), one may consider j = n, g : Rn×Rn → Rn given by g(x1, x2) := x2−x1
and S = {0Rn}. In that case the transversality conditions on the adjoint vector in Theorem 2.1
yield that p(0) = p(T ).

We point out that, in all examples above, the submersiveness condition is satisfied.

Remark 2.15. Let (T,T, x, u) be a solution to Problem (OSCP). If the submersion property is not
satisfied, one can easily go back to the submersive case by noting that (T,T, x, u) is also a solution
to the same problem as Problem (OSCP) replacing j by j̃ := 2n + 1, g by the identity function g̃
and S by the singleton S̃ := {x(0)}×{x(T )}×{T}. With this new problem the submersion property
is obviously satisfied and Theorem 2.1 can be applied. However, with this new problem, the normal
cone to S̃ is the entire space, and thus the transversality conditions on the adjoint vector and on
the final time do not provide any information. In other words, if the submersion property is not
satisfied, then Theorem 2.1 is still valid by removing the two items (ii) and (v).

Remark 2.16. Following the proof of Theorem 2.1 in Appendix A, one can easily see that the
theorem is still valid for a quadruple (T,T, x, u) which is solution to Problem (OSCP) in (only) a
local sense to precise.

Remark 2.17. In the case of free sampling times in Problem (OSCP), one may be interested by
the additional constraint ti+1−ti ≥ δmin for all i = 0, . . . , N−1, for some δmin > 0 fixed. Following
the proof of Theorem 2.1 in Appendix A, one can easily see that Equality (3) is preserved for all
i ∈ {1, . . . , N − 1} such that min(ti − ti−1, ti+1 − ti) > δmin, but has to be replaced by the weaker
condition

H(x(ti), ui−1, p(ti), p
0, ti) ≤ H(x(ti), ui, p(ti), p

0, ti),

for all i ∈ {1, . . . , N−1} such that ti−ti−1 = δmin and ti+1−ti > δmin, and by the weaker condition

H(x(ti), ui−1, p(ti), p
0, ti) ≥ H(x(ti), ui, p(ti), p

0, ti),

for all i ∈ {1, . . . , N − 1} such that ti − ti−1 > δmin and ti+1 − ti = δmin. However, if ti − ti−1 =
ti+1 − ti = δmin, then no necessary optimality condition on ti can be derived from our strategy in
Appendix A.

Remark 2.18. Remark 2.17 can be easily adapted to the case of the additional constraint ti+1−ti ≤
δmax for all i = 0, . . . , N − 1, for some δmax > 0 fixed. One can also obtain a similar remark than
Remark 2.17 by considering the additional constraint δmin ≤ ti+1−ti ≤ δmax for all i = 0, . . . , N−1,
for some 0 < δmin < δmax fixed.
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Remark 2.19. Thanks to the reviewing process of the present paper, several research perspectives
have been brought to our attention. We take this occasion to thank the anonymous reviewers and
to provide a (nonexhaustive) list of perspectives for future works:

(i) In the context of linear-quadratic problems, the authors of [14] prove that the optimal sampled-
data controls (with fixed sampling times) converge pointwisely to the optimal permanent con-
trol when the lengths of sampling intervals tend uniformly to zero. The convergence of the
corresponding costs and the uniform convergence of the corresponding states and costates are
also derived. An interesting research perspective would be to get similar convergence results in
the context of the present work. Several directions can be investigated: nonlinear dynamics,
terminal state constraints, free sampling times (whereas sampling times are fixed in [14]). In
context of free sampling times, a wonderful challenge would be to study the asymptotic behav-
ior when letting N tend to +∞ (which is a weaker condition than the uniform convergence
to zero of the lengths of sampling intervals).

(ii) In view of initializations of numerical algorithms, it would be relevant to get theoretical results
about the distribution of optimal sampling times with respect to N and/or with respect to the
data (cost, dynamics, constraints) of the considered problem.

(iii) The present paper focuses on finite partitions. In view of handling chattering phenomenon, it
would be relevant to extend the present framework to the case of infinite partitions. For exam-
ple, one may consider the case of countably infinite partitions with exactly one accumulation
point (as in the well-known Fuller’s example).

(iv) As evoked in the survey [27] by Margaliot, a sufficient condition for the stabilization of a
switched system is obviously given by the stability of the trajectory associated to the worst-
case switching law, itself implied by the stability of the trajectories associated to the convex-
ified differential inclusion (in which a permanent control is introduced for playing the role
of convexifying parameter). Having in mind this strategy, finding the most destabilizing per-
manent control can be solved using variational approaches, as well illustrated in [27]. In the
other hand, in case of switched systems with a maximal number of switches, we note that
the stability of the trajectories associated to the convexified differential inclusion by consid-
ering sampled-data controls with free sampling times is a weaker sufficient condition than
considering permanent controls. As a consequence, the application of Theorem 2.1 in order
to study the stabilization of switched systems in the previously mentioned context constitutes
an attractive perspective for future works.

(v) Last (but not least) a relevant research perspective would concern the extension of the present
paper to the more general framework in which the values of the free sampling times ti intervene
explicitly in the cost to minimize and/or in the dynamics. Let us take this occasion to
mention the paper [4] in which the authors derive Pontryagin-type conditions for a specific
problem from medicine that can be written as an optimal sampled-data control problem in
which the sampling times ti are free and intervene explicitly in the expression of the dynamics.
We precise that, even in this very particular context, giving an expression of the necessary
optimality conditions in an Hamiltonian form still remains an open mathematical question.

2.4 Continuity/constancy of the Hamiltonian function

Let us first recall the following standard notion.

Definition 2.4 (Hamiltonian function). With the framework of Theorem 2.1, the corresponding
Hamiltonian function H : [0, T ]→ R is defined by

H(t) := H(x(t), u(t), p(t), p0, t),
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for all t ∈ [0, T ].

Remark 2.20. If the final time is free in Problem (OSCP), note that the transversality condition
on the optimal final time T in Theorem 2.1 can be rewritten as

−H(T ) = p0∂3ϕ(x(0), x(T ), T ) + ∂3g(x(0), x(T ), T )> ×Ψ,

since u(T ) = uN−1.

Remark 2.21. In the classical case of purely continuous optimal contol problems, we recall that
the (absolute) continuity of the Hamiltonian function H is a very well-known fact (see, e.g., [19,
Theorem 2.6.3 p.73]). Moreover it holds that

Ḣ(t) = ∂5H(x(t), u(t), p(t), p0, t),

for almost all t ∈ [0, T ].

Let us consider the framework of Theorem 2.1. Similarly to the trajectory x (see Remark 2.7),
it can easily be seen from the adjoint equation that the adjoint vector p is not only absolutely
continuous but also piecewise smooth of class C1 over the interval [0, T ], in the sense that p is of
class C1 over each interval [ti, ti+1]. Since moreover u is piecewise constant, it is clear that the
Hamiltonian function H is piecewise smooth of class C1 over [0, T ], in the sense that H is of class C1

over each semi-open interval [ti, ti+1) for i = 0, . . . , N − 2 and over the closed interval [tN−1, tN ].
Moreover, since the couple (x, p) satisfies the Hamiltonian system (see Remark 2.10), it clearly
holds that

Ḣ(t) = ∂5H(x(t), u(t), p(t), p0, t),

over each semi-open interval [ti, ti+1) for i = 0, . . . , N − 2 and over the closed interval [tN−1, tN ].

However, in contrary to the couple (x, p), the Hamiltonian function H is not continuous over [0, T ]
in general. It may admit a discontinuity at each sampling times ti. We provide an example of this
phenomenon in Section 3 (see Figure 1 in which the sampling times are fixed). Nevertheless, if the
sampling times are free in Problem (OSCP), Equality (3) in Theorem 2.1 implies that the optimal
sampling times ti satisfy

lim
t→ti
t<ti

H(t) = H(x(ti), ui−1, p(ti), p
0, ti) = H(x(ti), ui, p(ti), p

0, ti) = H(ti),

for all i = 1, . . . , N − 1, which correspond exactly to the continuity of H at each optimal sampling
time ti. In that situation we conclude that the Hamiltonian function H is continuous over the
whole interval [0, T ]. The following result summarizes the previous remarks.

Proposition 2.1. Let us consider the framework of Theorem 2.1. Then, the Hamiltonian func-
tion H is piecewise smooth of class C1 over the interval [0, T ], in the sense that H is of class C1

over each semi-open interval [ti, ti+1) for i = 0, . . . , N − 2 and over the closed interval [tN−1, tN ],
with the derivative

Ḣ(t) = ∂5H(x(t), u(t), p(t), p0, t). (4)

Moreover:

(i) If the sampling times are fixed in Problem (OSCP), then H may admit a discontinuity at
each sampling time ti.

(ii) If the sampling times are free in Problem (OSCP), then the Hamiltonian function H is
continuous at each optimal sampling time ti. In that case, H is continuous over the whole
interval [0, T ].
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Proposition 2.1 is illustrated with a simple linear-quadratic example numerically solved in the next
Section 3.

We conclude this section by discussing the case where Problem (OSCP) is autonomous, in the sense
that the dynamics f and the Lagrange cost function L are independent of the variable t. In that
case, the Hamiltonian H is also independent of the variable t. In that situation, from Equality (4),
we deduce that the Hamiltonian function H is constant over each semi-open interval [ti, ti+1) for
i = 0, . . . , N − 2 and over the closed interval [tN−1, tN ]. If moreover the sampling times are free
in Problem (OSCP), we deduce from Proposition 2.1 that the Hamiltonian function H is constant
over the whole interval [0, T ].

3 Numerical illustration with a simple linear-quadratic ex-
ample

Bourdin and Trélat have recently extended in [14, Section 3 p.275] the classical Riccati theory to
the sampled-data control framework. In particular they provide in [14, Theorem 2 and Corollary 1
p.276] a numerical way to compute the optimal sampled-data control for linear-quadratic problems
in the case of fixed sampling times. Our aim in this section is to adapt this method in order to
numerically solve a simple linear-quadratic example with free sampling times, and to illustrate
our discussion in Section 2.4 about the continuity of the Hamiltonian function. Precisely we will
focus in this section on the following unidimensional linear-quadratic optimal sampled-data control
problem (LQOSCP) given by

minimize x(1)2 +

∫ 1

0

3x(t)2 + u(t)2 dt,

subject to T = (ti)i=0,...,N ∈ P1
N free,

x ∈ AC([0, 1],R), u ∈ PCT
N ([0, 1],R),

ẋ(t) = x(t)− u(t) + t, a.e. t ∈ [0, 1],

x(0) = −4,


(LQOSCP)

with different values of N ∈ N∗. Note that Problem (LQOSCP) satisfies all the assumptions of
Section 2.2 and of Theorem 2.1, with the final time T = 1 being fixed.

For the needs of this section, for all N -partitions T ∈ P1
N , we will denote by (LQOSCPT) the

same problem as Problem (LQOSCP) replacing “free” by “fixed”, that is, Problem (LQOSCPT)
corresponds to Problem (LQOSCP) but with the fixed partition T. As recalled in the beginning
of the section, [14, Theorem 2 and Corollary 1 p.276] allows us to numerically compute, for all N -
partitions T ∈ P1

N , the optimal cost (denoted by CT) and the Hamiltonian function (denoted byHT)
corresponding to Problem (LQOSCPT). Hence, in order to numerically solve Problem (LQOSCP)
(with free sampling times), we can follow two different methods:

(i) Firstly we directly minimize the optimal cost mapping T 7−→ CT (using the MATLAB func-
tion fmincon).

(ii) Secondly, following the Hamiltonian continuity conditions (3) in Theorem 2.1, we apply a
shooting method (based on the MATLAB function fsolve) on the Hamiltonian discontinuities
mapping given by

T = (ti)i=0,...,N 7−→
(
HT(ti)− lim

t→ti
t<ti

HT(t)
)
i=1,...,N−1

.
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Both methods yield the same optimal sampling times. Hence Problem (LQOSCP) is numerically
solved and we present hereafter some numerical simulations for different values of N . In particular
we compare the results with the fixed uniform partition case (see Table 1). As expected, one can
clearly observe that the optimal cost CT is lower for the optimal sampling times than for the fixed
uniform partition.

N Fixed uniform partition CT Optimal sampling times CT
2 T = {0, 0.5, 1} 46.6828 T = {0, 0.3592, 1} 46.0285

4 T = {0, 0.25, 0.5, 0.75, 1} 44.5131 T = {0, 0.1574, 0.3544, 0.6163, 1} 44.3159

8
T = {0, 0.125, 0.25, 0.375,
0.5, 0.625, 0.75, 0.875, 1} 43.9704

T = {0, 0.0744, 0.1567, 0.2487,
0.3529, 0.4729, 0.6140, 0.7847, 1} 43.9191

Table 1: Comparison of optimal costs CT (fixed uniform partition versus optimal sampling times).
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Figure 1: The case N = 4 with fixed uniform partition.

In Figure 1 (with N = 4 and fixed uniform partition), as expected from Section 2.4, we observe that
the Hamiltonian function H is continuous over each semi-open interval [ti, ti+1) for i = 0, 1, 2 and
over the closed interval [t3, t4]. However, since the uniform partition is not optimal in that situation,
the Hamiltonian function H has discontinuities at each ti. On the contrary, in Figure 2 (with
N = 4 and optimal sampling times), we observe that the Hamiltonian function H is continuous
over the whole interval [0, 1]. These numerical results are coherent with the discussion addressed
in Section 2.4.

To conclude this section, note that the above numerical results emphasize the effectiveness of
our two methods in order to compute the optimal sampling times of a simple linear-quadratic
example. Numerous perspectives can be investigated by using other methods than the Riccati
theory from [14, Section 3 p.275] and by considering more sophisticated problems such as nonlinear
problems, multidimensional problems and by handling final state and/or control constraints, with
or without free final time, etc.
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Figure 2: The case N = 4 with optimal sampling times.

A Proof of Theorem 2.1

This appendix is devoted to the detailed proof of Theorem 2.1 in the case L = 0 (without Lagrange
cost). Indeed, reducing a Bolza problem (that is, with L 6= 0) to a Mayer problem (that is, with
L = 0) is very standard in the literature (see, e.g., [8, Section 2.1.4 p.12]).

We start with some required preliminaries in Section A.1. Then, the proof is based on the sensitivity
analysis of the state equation in Section A.2 and on the application of the Ekeland variational
principle in Section A.3.

A.1 Preliminaries

The first part of this section is devoted to some basics of convex analysis. Let dS : Rj → R+ denote
the standard distance function to S defined by dS(z) := infz′∈S ‖z− z′‖Rj for all z ∈ Rj . We recall
that, for all z ∈ Rj , there exists a unique element PS(z) ∈ S (called the projection of z onto S)
such that dS(z) = ‖z − PS(z)‖Rj . It can easily be shown that the map PS : Rj → S is 1-Lipschitz
continuous. Moreover it holds that 〈z − PS(z), z′ − PS(z)〉Rj ≤ 0 for all z ∈ Rj and all z′ ∈ S. Let
us recall the three following useful lemmas.

Lemma A.1. It holds that z − PS(z) ∈ NS[PS(z)] for all z ∈ Rj.

Lemma A.2. Let (zk)k∈N be a sequence in Rj converging to some point z ∈ S and let (ζk)k∈N be
a sequence in R+. If ζk(zk − PS(zk)) converges to some z ∈ Rj, then z ∈ NS[z].

Lemma A.3. The map
d2
S : Rj −→ R+

z 7−→ d2
S(z) := dS(z)2,

is differentiable on Rj, and its differential Dd2
S(z) at every z ∈ Rj can be expressed as

Dd2
S(z)(z′) = 2〈z − PS(z), z′〉Rj ,

for all z′ ∈ Rj.
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The second part of this section is devoted to additional notions about piecewise constant functions
and to several technical results useful for the proof of Theorem 2.1. Precisely we will introduce
a technical control set (see Equation (5)) which allows to avoid two degenerate situations in the
behavior of the sequence of sampling times produced by the Ekeland variational principle in Sec-
tion A.3. We also refer to Introduction and to Proposition A.2 for details. Let τ > 0 and N ∈ N∗
be fixed. For all T = (ti)i=0,...,N ∈ PτN and u ∈ PCT

N ([0, τ ],Rm), we denote by

‖T‖ := min{ti+1 − ti | i = 0, . . . , N − 1} > 0,

and we define the set

PτN,(u,T) :=

{
T′ = (t′i)i=0,...,N ∈ PτN | ∀i = 1, . . . , N − 1, |t′i − ti| ≤ δ{ui−1 6=ui}

‖T‖
4

}
,

where δ{ui−1 6=ui} = 1 if ui−1 6= ui, and δ{ui−1 6=ui} = 0 otherwise. In particular, if T′ = (t′i)i=0,...,N ∈
PτN,(u,T), it holds that

0 = t′0 < t1 −
‖T‖

4
≤ t′1 ≤ t1 +

‖T‖
4

< t2 −
‖T‖

4
≤ t′2 ≤ t2 +

‖T‖
4

< . . .

. . . < tN−2 −
‖T‖

4
≤ t′N−2 ≤ tN−2 +

‖T‖
4

< tN−1 −
‖T‖

4
≤ t′N−1 ≤ tN−1 +

‖T‖
4

< t′N = τ,

with t′i = ti for all i ∈ {1, . . . , N − 1} such that ui−1 = ui. Hence, for all T′ = (t′i)i=0,...,N ∈
PτN,(u,T), the elements t′i = ti remain unchanged when u is constant over two consecutive sampling

intervals [ti−1, ti) and [ti, ti+1) and all the elements t′i live in intervals which are (strictly) disjoint.
Finally we introduce the following technical control set

PCN,(u,T)([0, τ ],Rm) :=
⋃

T′∈Pτ
N,(u,T)

PCT′
N ([0, τ ],Rm). (5)

Of course note that T ∈ PτN,(u,T) and thus u ∈ PCN,(u,T)([0, τ ],Rm). Also note that the inclusion

PτN,(u,T) ⊂ P
τ
N holds and thus PCN,(u,T)([0, τ ],Rm) is included in PCN ([0, τ ],Rm) ⊂ L∞([0, τ ],Rm),

but is not a linear subspace, neither a convex subset.

Lemma A.4. Let τ > 0 and N ∈ N∗. Let T = (ti)i=0,...,N ∈ PτN and u ∈ PCT
N ([0, τ ],Rm). Then T

is the unique element T′ ∈ PτN,(u,T) such that u ∈ PCT′
N ([0, τ ],Rm).

Proof. Let T′ = (t′i)i=0,...,N ∈ PτN,(u,T) be such that u ∈ PCT′
N ([0, τ ],Rm). Let us assume by

contradiction that T′ 6= T. Let i ∈ {1, . . . , N − 1} such that ti /∈ T′. Necessarily it holds that

ui−1 6= ui and there exists j ∈ {i− 1, i} such that t′j < ti < t′j+1. Since u ∈ PCT′
N ([0, τ ],Rm), there

exists c ∈ Rm such that u(t) = c for almost every t ∈ [t′j , t
′
j+1]. Since u(t) = ui−1 for almost every

t ∈ [ti−1, ti] and u(t) = ui for almost every t ∈ [ti, ti+1], we deduce that c = ui−1 and c = ui which
raises a contradiction since ui−1 6= ui. The proof is complete.

Proposition A.1. Let τ > 0 and N ∈ N∗. Let T = (ti)i=0,...,N ∈ PτN and u ∈ PCT
N ([0, τ ],Rm).

The set PCN,(u,T)([0, τ ],Rm) is a closed subset of L1([0, τ ],Rm).

Proof. Let (uk)k∈N be a sequence in PCN,(u,T)([0, τ ],Rm) converging in L1([0, τ ],Rm) to some
u′ ∈ L1([0, τ ],Rm). Our aim is to prove that u′ ∈ PCN,(u,T)([0, τ ],Rm). The proof is divided in
three steps.
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First step: Let Tk = (ti,k)i=0,...,N ∈ PτN,(u,T) be a partition associated to uk for all k ∈ N. It holds
for all k ∈ N that

0 = t0,k < t1 −
‖T‖

4
≤ t1,k ≤ t1 +

‖T‖
4

< t2 −
‖T‖

4
≤ t2,k ≤ t2 +

‖T‖
4

< . . .

. . . < tN−2 −
‖T‖

4
≤ tN−2,k ≤ tN−2 +

‖T‖
4

< tN−1 −
‖T‖

4
≤ tN−1,k ≤ tN−1 +

‖T‖
4

< tN,k = τ,

and ti,k = ti for all i ∈ {1, . . . , N − 1} such that ui−1 = ui. Extracting a finite number of
subsequences (that we do not relabel), we know that, for all i ∈ {0, . . . , N}, ti,k converges to some
t′i satisfying

0 = t′0 < t1 −
‖T‖

4
≤ t′1 ≤ t1 +

‖T‖
4

< t2 −
‖T‖

4
≤ t′2 ≤ t2 +

‖T‖
4

< . . .

. . . < tN−2 −
‖T‖

4
≤ t′N−2 ≤ tN−2 +

‖T‖
4

< tN−1 −
‖T‖

4
≤ t′N−1 ≤ tN−1 +

‖T‖
4

< t′N = τ,

and t′i = ti for all i ∈ {1, . . . , N − 1} such that ui−1 = ui. Hence we have obtained a partition
T′ := (t′i)i=0,...,N ∈ PτN,(u,T).

Second step: Extracting a subsequence (that we do not relabel) from the partial converse of the
Lebesgue dominated convergence theorem, we know that uk(t) converges to u′(t) for almost every
t ∈ [0, τ ]. We introduce the subset A of [0, τ ] of full measure defined by

A := {t ∈ [0, τ ] | uk(t) converges to u′(t)},

and the subset B of [0, τ ] of full measure defined by B := ∩k∈NBk where

Bk :=

N−1⋃
i=0

{t ∈ [ti,k, ti+1,k) | uk(t) = ui,k},

for all k ∈ N.

Third step: Let i ∈ {0, . . . , N − 1} and let t ∈ (t′i, t
′
i+1) ∩ (A ∩ B). For k ∈ N sufficiently large, it

holds that t ∈ (ti,k, ti+1,k). Since t ∈ A ∩ B, we know that uk(t) = ui,k which converges to u′(t).
Since the convergence of ui,k to u′(t) is independent of the choice of t ∈ (t′i, t

′
i+1) ∩ (A ∩ B), we

deduce that u is equal almost everywhere over [t′i, t
′
i+1] to a constant. Since the last sentence is

true for every i ∈ {0, . . . , N − 1}, we conclude that u′ ∈ PCT′
N ([0, τ ],Rm) ⊂ PCN,(u,T)([0, τ ],Rm).

The proof is complete.

Proposition A.2. Let τ > 0 and N ∈ N∗. Let T = (ti)i=0,...,N ∈ PτN and u ∈ PCT
N ([0, τ ],Rm).

Let (uk)k∈N be a sequence in PCN,(u,T)([0, τ ],Rm) converging in L1([0, τ ],Rm) to u. Let Tk =
(ti,k)i=0,...,N ∈ PτN,(u,T) be a partition associated to uk for all k ∈ N. Then there exists a subsequence

of (uk)k∈N (that we do not relabel) such that:

(i) uk(t) converges to u(t) for almost every t ∈ [0, τ ];

(ii) ti,k converges to ti for all i = 0, . . . , N ;

(iii) ui,k converges to ui for all i = 0, . . . , N − 1.

Proof. Following exactly the same steps as in the proof of Proposition A.1 (replacing u′ by u), we

construct a partition T′ = (t′i)i=0,...,N ∈ PτN,(u,T) such that u ∈ PCT′
N ([0, τ ],Rm). From Lemma A.4,
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it implies that T′ = T. From the construction of T′, we conclude that, up to subsequences (which
we do not relabel), ti,k converges to ti for all i = 0, . . . , N . Let us prove the last statement. Let
us consider the sets A and B defined in the proof of Proposition A.1 and let us introduce the
subset B′ of [0, τ ] of full measure defined by

B′ :=

N−1⋃
i=0

{t ∈ [ti, ti+1) | u(t) = ui}.

Let i = 0, . . . , N − 1 and let t ∈ (ti, ti+1)∩ (A∩B ∩B′). For k ∈ N sufficiently large, it holds that
t ∈ (ti,k, ti+1,k). Moreover, since t ∈ A∩B ∩B′, we know that uk(t) = ui,k converges to u(t) = ui.
Since the last statement is true for all i = 0, . . . , N − 1, the proof is complete.

A.2 Sensitivity analysis of the state equation

In this section we focus on the Cauchy problem given by{
ẋ(t) = f(x(t), u(t), t), a.e. t ≥ 0,

x(0) = x0,
(CP)

for any (u, x0) ∈ L∞(R+,Rm) × Rn. Before proceeding to the sensitivity analysis of the Cauchy
problem (CP) (with respect to the control u and the initial condition x0), we first recall some
definitions and results from the classical Cauchy-Lipschitz (or Picard-Lindelöf) theory.

Definition A.1. Let (u, x0) ∈ L∞(R+,Rm)×Rn. A (local) solution to the Cauchy problem (CP)
is a couple (x, I) such that:

(i) I is an interval such that {0}  I ⊂ R+;

(ii) x ∈ AC([0, τ ],Rn), with ẋ(t) = f(x(t), u(t), t) for almost every t ∈ [0, τ ], for all τ ∈ I;

(iii) x(0) = x0.

Let (x1, I1) and (x2, I2) be two (local) solutions to the Cauchy problem (CP). We say that (x2, I2)
is an extension (resp. strict extension) to (x1, I1) if I1 ⊂ I2 (resp. I1  I2) and x2(t) = x1(t) for
all t ∈ I1. A maximal solution to the Cauchy problem (CP) is a (local) solution that does not admit
any strict extension. Finally a global solution to the Cauchy problem (CP) is a solution (x, I) such
that I = R+. In particular a global solution is necessarily a maximal solution.

Lemma A.5. Let (u, x0) ∈ L∞(R+,Rm)× Rn. Any (local) solution to the Cauchy problem (CP)
can be extended into a maximal solution.

Lemma A.6. Let (u, x0) ∈ L∞(R+,Rm)×Rn. A couple (x, I) is a (local) solution to the Cauchy
problem (CP) if and only if:

(i) I is an interval such that {0}  I ⊂ R+;

(ii) x ∈ C(I,Rn);

(iii) x satisfies the integral representation x(t) = x0 +
∫ t
0
f(x(s), u(s), s) ds for all t ∈ I.

Proposition A.3. For all (u, x0) ∈ L∞(R+,Rm)×Rn, the Cauchy problem (CP) admits a unique
maximal solution denoted by (x(·, u, x0), I(u, x0)). Moreover the maximal interval I(u, x0) is semi-
open and we write I(u, x0) = [0, τ(u, x0)) where τ(u, x0) ∈ (0,+∞]. Furthermore, if τ(u, x0) <
+∞, that is, if the maximal solution (x(·, u, x0), I(u, x0)) is not global, then x(·, u, x0) is not
bounded over I(u, x0) = [0, τ(u, x0)).
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Remark A.1. Let (u, x0) ∈ L∞(R+,Rm)×Rn. The maximal solution (x(·, u, x0), I(u, x0)) to the
Cauchy problem (CP) coincides with the maximal extension (see Lemma A.5) of any other local
solution.

Our aim in the next subsections is to study the behaviour of x(·, u, x0) with respect to perturbations
on the control u and on the initial condition x0.

A.2.1 A continuity result

Let (u, x0) ∈ L∞(R+,Rm)× Rn. In the sequel, for the ease of notations, we denote by ‖ · ‖L∞ :=
‖ · ‖L∞(R+,Rm) and we introduce two sets:

(i) For all R ≥ ‖u‖L∞ and all 0 < τ < τ(u, x0), we denote by

K((u, x0), (R, τ)) := {(y, v, t) ∈ Rn × BRm(0Rm , R)× [0, τ ] | ‖y − x(t, u, x0)‖Rn ≤ 1}.

Firstly note that K((u, x0), (R, τ)) is convex with respect to its first two variables. Secondly,
since x(·, u, x0) is continuous over [0, τ ], then K((u, x0), (R, τ)) is a compact subset of Rn ×
Rm × R+. Thus we denote by L((u, x0), (R, τ)) ≥ 0 the Lipschitz constant of f over the
compact subset K((u, x0), (R, τ)) (see Inequality (1) in Section 2.2).

(ii) For all R ≥ ‖u‖L∞ and all 0 < τ < τ(u, x0), we denote by

N ((u, x0), (R, τ), ε)

:=
{

(u′, x′0) ∈
(

BL1([0,τ ],Rm)(u, ε) ∩ BL∞(0L∞ , R)
)
× BRn(x0, ε)

∣∣∣ u′ = u over [τ,+∞)
}
,

for all ε > 0, which can be seen as a neighborhood of the couple (u, x0) in the L1([0, τ ],Rm)×
Rn-space. The second part of the above definition, imposing that u′ = u over [τ,+∞), allows
us in the sequel to endow the above set with the L1([0, τ ],Rm)× Rn-distance.

In the next proposition we state a continuous dependence result for the trajectory x(·, u, x0) with
respect to the couple (u, x0).

Proposition A.4. Let (u, x0) ∈ L∞(R+,Rm)×Rn. For all R ≥ ‖u‖L∞ and all 0 < τ < τ(u, x0),
there exists ε > 0 such that

∀(u′, x′0) ∈ N ((u, x0), (R, τ), ε), τ(u′, x′0) > τ.

Moreover, considering the L1([0, τ ],Rm)× Rn-distance over the set N ((u, x0), (R, τ), ε), the map

(u′, x′0) ∈ N ((u, x0), (R, τ), ε) 7−→ x(·, u′, x′0) ∈ C([0, τ ],Rn),

is Lipschitz continuous and

(x(t, u′, x′0), u′(t), t) ∈ K((u, x0), (R, τ)),

for almost every t ∈ [0, τ ] and for all (u′, x′0) ∈ N ((u, x0), (R, τ), ε).

Proof. The proof is standard and left to the reader. For similar statements with detailed proofs, we
refer to [11, Lemmas 1 and 3 p.3795-3797], [13, Lemmas 4.3 and 4.5 p.73-74] (in the general frame-
work of time scale calculus) or to [10, Propositions 1 and 2 p.4-5] (in a more classical framework,
closer to the present considerations).

Remark A.2. Let (u, x0) ∈ L∞(R+,Rm)× Rn. Let R ≥ ‖u‖L∞ and 0 < τ < τ(u, x0). Let ε > 0
given in Proposition A.4. Let (uk, x0,k)k∈N be a sequence in N ((u, x0), (R, τ), ε) and let (u′, x′0) ∈
N ((u, x0), (R, τ), ε). From Proposition A.4, if (uk, x0,k) converges to (u′, x′0) in L1([0, τ ],Rm)×Rn,
then the sequence (x(·, uk, x0,k))k∈N uniformly converges to x(·, u′, x′0) over [0, τ ].
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A.2.2 Perturbation of the control

In the next proposition we state a differentiability result for the trajectory x(·, u, x0) with respect
to a convex L∞-perturbation of the control u.

Proposition A.5. Let (u, x0) ∈ L∞(R+,Rm) × Rn and 0 < τ < τ(u, x0). Let v ∈ L∞(R+,Rm)
be fixed. We consider the convex L∞-perturbation given by

uv(·, α) :=

{
u+ α(v − u) over [0, τ),
u over [τ,+∞),

for all 0 ≤ α ≤ 1. Then:

(i) there exists 0 < α0 ≤ 1 such that τ(uv(·, α), x0) > τ for all 0 ≤ α ≤ α0;

(ii) the map
α ∈ [0, α0] 7−→ x(·, uv(·, α), x0) ∈ C([0, τ ],Rn),

is differentiable at α = 0 and its derivative is equal to wv being the unique solution (that is
global) to the linear Cauchy problem given by

ẇ(t) = ∂1f(x(t, u, x0), u(t), t)× w(t)

+∂2f(x(t, u, x0), u(t), t)× (v(t)− u(t)), a.e. t ∈ [0, τ ],

w(0) = 0Rn .

Proof. The proof is standard and left to the reader. For a similar statement with detailed proof,
we refer to [11, Lemma 4 and Proposition 1 p.3797-3798].

We conclude this section by a technical lemma on the convergence of the variation vectors. This
result is needed in the proof of our main result (see Section A.3.2).

Lemma A.7. Let (u, x0) ∈ L∞(R+,Rm) × Rn. Let R ≥ ‖u‖L∞ and 0 < τ < τ(u, x0). We
take ε > 0 as in Proposition A.4. Let (uk, x0,k)k∈N be a sequence of elements in N ((u, x0), (R, τ), ε)
such that x0,k converges to x0 and uk(t) converges to u(t) for almost every t ∈ [0, τ ]. Let (vk)k∈N
be a sequence in L∞([0, τ ],Rm) converging in L1([0, τ ],Rm) to some v ∈ L∞([0, τ ],Rm). Finally
let wkvk be the unique solution (that is global) to the linear Cauchy problem given by

ẇ(t) = ∂1f(x(t, uk, x0,k), uk(t), t)× w(t)

+∂2f(x(t, uk, x0,k), uk(t), t)× (vk(t)− uk(t)), a.e. t ∈ [0, τ ],

w(0) = 0Rn ,

for all k ∈ N. Then the sequence (wkvk)k∈N uniformly converges to wv over [0, τ ] where wv is defined
as in Proposition A.5.

Proof. The proof is standard and left to the reader. For a similar statement with detailed proof,
we refer to [11, Lemmas 4.8 and 4.9 p.77-78].

A.2.3 Perturbation of the initial condition

In the next proposition we state a differentiability result for the trajectory x(·, u, x0) with respect
to a simple perturbation of the initial condition x0.
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Proposition A.6. Let (u, x0) ∈ L∞(R+,Rm) × Rn and 0 < τ < τ(u, x0). Let y ∈ Rn be fixed.
Then:

(i) there exists α0 > 0 such that τ(u, x0 + αy) > τ for all 0 ≤ α ≤ α0;

(ii) the map
α ∈ [0, α0] 7−→ x(·, u, x0 + αy) ∈ C([0, τ ],Rn),

is differentiable at α = 0 and its derivative is equal to wy being the unique solution (that is
global) to the linear homogeneous Cauchy problem given by{

ẇ(t) = ∂1f(x(t, u, x0), u(t), t)× w(t), a.e. t ∈ [0, τ ],

w(0) = y.

Proof. The proof is standard and left to the reader. For similar statements with detailed proofs, we
refer to [11, Lemma 10 and Proposition 3 p.3802-3803] and to [13, Lemma 4.13 and Proposition 5
p.81-83].

We conclude this section by a technical lemma on the convergence of the variation vectors. This
result is needed in the proof of our main result (see Section A.3.2).

Lemma A.8. Let (u, x0) ∈ L∞(R+,Rm) × Rn. Let R ≥ ‖u‖L∞ and 0 < τ < τ(u, x0). We take
ε > 0 as in Proposition A.4. Let (uk, x0,k)k∈N be a sequence of elements in N ((u, x0), (R, τ), ε)
such that x0,k converges to x0 and uk(t) converges to u(t) for almost every t ∈ [0, τ ]. Let y ∈ Rn
be fixed. Finally let wky be the unique solution (that is global) to the linear homogeneous Cauchy
problem given by {

ẇ(t) = ∂1f(x(t, uk, x0,k), uk(t), t)× w(t), a.e. t ∈ [0, τ ],

w(0) = y,

for all k ∈ N. Then the sequence (wky)k∈N uniformly converges to wy over [0, τ ] where wy is defined
as in Proposition A.6.

Proof. The proof is standard and left to the reader. It is similar to the proof of Lemma A.7.

A.2.4 Perturbation of a switching time

Let us introduce the following notion of switching time for a control u ∈ L∞(R+,Rm).

Definition A.2 (Switching time). Let u ∈ L∞(R+,Rm). We say that r > 0 is a switching time
of u if there exist 0 < ηr ≤ r and u(r−), u(r+) ∈ Rm such that:

(i) u = u(r−) almost everywhere over [r − ηr, r);

(ii) u = u(r+) almost everywhere over [r, r + ηr).

This notion is particularly relevant when dealing with piecewise constant controls as in Prob-
lem (OSCP). Indeed, let u ∈ L∞(R+,Rm) such that u ∈ PCT

N ([0, τ ],Rm) for some τ > 0, N ∈ N∗
and T = (ti)i=0,...,N ∈ PτN . Then ti is a switching time of u with u(t−i ) = ui−1, u(t+i ) = ui and
ηti = min(ti − ti−1, ti+1 − ti) > 0 for every i ∈ {1, . . . , N − 1}.

In the next proposition we prove a differentiability result for the trajectory x(·, u, x0) with respect
to a perturbation of a switching time of the control u.
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Proposition A.7. Let (u, x0) ∈ L∞(R+,Rm) × Rn and 0 < τ < τ(u, x0). Let 0 < r < τ be a
switching time of u and let µ ∈ {−1, 1}. We consider the perturbation

uµr (·, α) :=


u(r−) over [r − ηr, r + µα),

u(r+) over [r + µα, r + ηr),

u otherwise,

for all 0 ≤ α ≤ ηr
2 . Then:

(i) there exists 0 < α0 ≤ ηr
2 such that τ(uµr (·, α), x0) > τ for all 0 ≤ α ≤ α0;

(ii) for any 0 < λ ≤ τ − r fixed, the map

α ∈ [0, α0] 7−→ x(·, uµr (·, α), x0) ∈ C([r + λ, τ ],Rn),

is differentiable at α = 0 and its derivative is equal to wµr being the unique solution (that is
global) to the linear homogeneous Cauchy problem given by

ẇ(t) = ∂1f(x(t, u, x0), u(t), t)× w(t), a.e. t ∈ [r, τ ],

w(r) = µ
(
f(x(r, u, x0), u(r−), r)− f(x(r, u, x0), u(r+), r)

)
.

Proof. We only prove the case µ = 1 (the proof for the case µ = −1 is similar). First of all note
that the variation vector wµr is global (in the sense that it is defined over the whole interval [r, τ ])
since the corresponding Cauchy problem is linear. Let R := ‖u‖L∞ . For the ease of notations we
denote by K := K((u, x0), (R, τ)) and by L := L((u, x0), (R, τ)) (see the beginning of Section A.2.1
for these two notations). From Proposition A.4, there exists ε > 0 such that τ(u′, x′0) > τ for all
(u′, x′0) ∈ N ((u, x0), (R, τ), ε). Let us take 0 < α0 ≤ ηr

2 small enough such that r + α0 < τ and
2Rα0 ≤ ε. Then it holds that uµr (·, α) = u over [τ,+∞), ‖uµr (·, α) − u‖L1([0,τ ],Rm) ≤ 2Rα ≤ ε
and ‖uµr (·, α)‖L∞ ≤ R for all 0 ≤ α ≤ α0. It follows that (uµr (·, α), x0) ∈ N ((u, x0), (R, τ), ε)
and τ(uµr (·, α), x0) > τ for all 0 ≤ α ≤ α0. The first item of Proposition A.6 is proved. Since
(uµr (·, α), x0) ∈ N ((u, x0), (R, τ), ε) for all 0 ≤ α ≤ α0 and uµr (·, α) converges to u in L1([0, τ ],Rm)
as α tends to zero, we know from Proposition A.4 that x(·, uµr (·, α), x0) converges uniformly to
x(·, u, x0) over [0, τ ] as α tends to zero and that (x(t, uµr (·, α), x0), uµr (t, α), t) ∈ K for almost every
t ∈ [0, τ ] and for all 0 ≤ α ≤ α0. Now let us define the function

ε(t, α) :=
x(t, uµr (·, α), x0)− x(t, u, x0)

α
− wµr (t),

for all t ∈ [r, τ ] and all α ∈ (0, α0]. Let 0 < λ ≤ τ − r be fixed. We will prove that ε(·, α) uniformly
converges to the zero function on [r + λ, τ ] as α tends to 0. From the integral representation of
ε(·, α), it holds that

ε(t, α) = ε(r + α, α) +

∫ t

r+α

[
f(x(s, uµr (·, α), x0), u(s), s)− f(x(s, u, x0), u(s), s)

α

− ∂1f(x(s, u, x0), u(s), s)× wµr (s)

]
ds,
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for all t ∈ [r + α, τ ] and all α ∈ (0, α0]. Expanding this expression using Taylor’s theorem with
integral remainder, we obtain

ε(t, α) = ε(r + α, α)+

∫ t

r+α

∫ 1

0

∂1f(?αθs) dθ × ε(s, α) ds

+

∫ t

r+α

(∫ 1

0

∂1f(?αθs)− ∂1f(x(s, u, x0), u(s), s) dθ

)
× wµr (s) ds,

for all t ∈ [r + α, τ ] and all α ∈ (0, α0], where

?αθs := (x(s, u, x0) + θ(x(s, uµr (·, α), x0)− x(s, u, x0)), u(s), s) ∈ K,

since K is convex with respect to its first two variables. From the Triangle inequality it holds that

‖ε(t, α)‖Rn ≤ ‖ε(r + α, α)‖Rn + Φ(α) + L

∫ t

r+α

‖ε(s, α)‖Rn ds,

for all t ∈ [r + α, τ ] and all α ∈ (0, α0], where the term Φ(α) is defined to be:

Φ(α) :=

∫ τ

r

∫ 1

0

‖∂1f(?αθs)− ∂1f(x(s, u, x0), u(s), s)‖Rn×n dθ‖wµr (s)‖Rn ds.

From the Gronwall lemma, it holds that

‖ε(t, α)‖Rn ≤ (‖ε(r + α, α)‖Rn + Φ(α))eLτ ,

for all t ∈ [r + α, τ ] and all α ∈ (0, α0]. Since we only want to prove the uniform convergence
of ε(·, α) to the zero function on [r + λ, τ ] as α tends to 0 and since the estimate on the right-
hand side is independent of t, we only need to prove that ε(r + α, α) tends to 0Rn and Φ(α)
tends to 0 as α tends to zero. The convergence of Φ(α) can be obtained with the Lebesgue
dominated convergence theorem. Now let us prove that ε(r+α, α) tends to 0Rn as α tends to zero.
Since x(r, uµr (·, α), x0) = x(r, u, x0) and from the integral representations of x(·, uµr (·, α), x0) and
x(·, u, x0), it holds that

ε(r + α, α) =

∫ r+α

r

f(x(s, uµr (·, α), x0), uµr (s, α), s)− f(x(s, u, x0), u(s), s)

α
ds− wµr (r + α)

=

∫ r+α

r

f(x(s, uµr (·, α), x0), u(r−), s)− f(x(s, u, x0), u(r+), s)

α
ds− wµr (r + α)

=

∫ r+α

r

f(x(s, u, x0), u(r−), s)− f(x(s, u, x0), u(r+), s)

α
ds− wµr (r + α)

+

∫ r+α

r

f(x(s, uµr (·, α), x0), u(r−), s)− f(x(s, u, x0), u(r−), s)

α
ds,

for all α ∈ (0, α0]. Let us deal with the three terms above. Since the first above integrand is
continuous, it is clear that r is a Lebesgue point and we get that

lim
α→0

∫ r+α

r

f(x(s, u, x0), u(r−), s)− f(x(s, u, x0), u(r+), s)

α
ds

= f(x(r, u, x0), u(r−), r)− f(x(r, u, x0), u(r+), r) = wµr (r).
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Secondly, from the continuity of wµr , we know that wµr (r + α) tends to wµr (r) as α tends to 0.
Finally, using the Lipschitz continuity of f over K, we get that∥∥∥∥∫ r+α

r

f(x(s, uµr (·, α), x0), u(r−), s)− f(x(s, u, x0), u(r−), s)

α
ds

∥∥∥∥
Rn

≤ L

α

∫ r+α

r

‖x(s, uµr (·, α), x0)− x(s, u, x0)‖Rn ds ≤ L‖x(·, uµr (·, α), x0)− x(·, u, x0)‖C([0,τ ],Rn).

Since x(·, uµr (·, α), x0) converges uniformly to x(·, u, x0) over [0, τ ] as α tends to 0, the proof is
complete.

We conclude this section by a technical lemma on the convergence of the variation vectors. This
result is needed in the proof of our main result (see Section A.3.2).

Lemma A.9. Let (u, x0) ∈ L∞(R+,Rm)×Rn. Let R ≥ ‖u‖L∞ and let 0 < τ < τ(u, x0). We take
ε > 0 as in Proposition A.4. Let (uk, x0,k)k∈N be a sequence of elements in N ((u, x0), (R, τ), ε)
such that x0,k converges to x0 and uk(t) converges to u(t) for almost every t ∈ [0, τ ]. Let 0 < r < τ
be a switching time of u and rk be a switching time of uk for all k ∈ N. Let us assume that rk
converges to r and that uk(r−k ) and uk(r+k ) converge respectively to u(r−) and u(r+). Finally let
µ ∈ {−1, 1} and let wµ,krk be the unique solution (that is global) to the linear homogeneous Cauchy
problem given by

ẇ(t) = ∂1f(x(t, uk, x0,k), uk(t), t)× w(t), a.e. t ∈ [rk, τ ],

w(rk) = µ
(
f(x(rk, uk, x0,k), uk(r−k ), rk)− f(x(rk, uk, x0,k), uk(r+k ), rk)

)
,

for all k ∈ N. Then, for any 0 < λ ≤ τ − r fixed, the sequence (wµ,krk )k∈N uniformly converges
to wµr over [r + λ, τ ], where the variation vector wµr is defined as in Proposition A.7.

Proof. First of all, for all k ∈ N, note that the variation vector wµ,krk is global (in the sense
that it is defined over the whole interval [rk, τ ]) since the corresponding Cauchy problem is
linear. In this proof we denote by K := K((u, x0), (R, τ)) and by L := L((u, x0), (R, τ)) (see
the beginning of Section A.2.1 for these two notations). From Proposition A.4, it is clear that
‖∂1f(x(t, uk, x0,k), uk(t), t)‖Rn×n ≤ L for almost every t ∈ [0, τ ] and all k ∈ N. From the integral
representation of wµ,krk , it holds that

wµ,krk (t) = wµ,krk (rk) +

∫ t

rk

∂1f(x(s, uk, x0,k), uk(s), s)× wµ,krk (s) ds,

for all t ∈ [rk, τ ] and all k ∈ N. We deduce that

‖wµ,krk (t)‖Rn ≤ ‖wµ,krk (rk)‖Rn + L

∫ t

rk

‖wµ,krk (s)‖Rn ds,

and, from the Gronwall lemma, that ‖wµ,krk (t)‖Rn ≤ ‖wµ,krk (rk)‖RneLτ for all t ∈ [rk, τ ] and all
k ∈ N. From Proposition A.4, we know that x(rk, uk, x0,k) converges to x(r, u, x0) and, from the
continuity of f and the hypotheses, it is clear that wµ,krk (rk) tends to wµr (r). We deduce that there

exists a constant C ≥ 0 such that ‖wµ,krk (t)‖Rn ≤ C for all t ∈ [rk, τ ] and all k ∈ N. Now we define

rk := max(rk, r) for all k ∈ N. Note that rk tends to r. From the integral representations of wµ,krk
and wµr , it holds that

wµ,krk (t)− wµr (t) = wµ,krk (rk)− wµr (rk) +

∫ t

rk

∂1f(x(s, uk, x0,k), uk(s), s)× (wµ,krk (s)− wµr (s)) ds

+

∫ t

rk

(∂1f(x(s, uk, x0,k), uk(s), s)− ∂1f(x(s, u, x0), u(s), s))× wµr (s) ds,
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for all t ∈ [rk, τ ] and all k ∈ N. From the Triangle inequality, it holds that

‖wµ,krk (t)− wµr (t)‖Rn ≤ ‖wµ,krk (rk)− wµr (rk)‖Rn + Γk + L

∫ t

rk

‖wµ,krk (s)− wµr (s)‖Rn ds,

for all t ∈ [rk, τ ] and all k ∈ N, where the term Γk is defined to be:

Γk :=

∫ τ

r

‖∂1f(x(s, uk, x0,k), uk(s), s)− ∂1f(x(s, u, x0), u(s), s)‖Rn×n‖wµr (s)‖Rn ds.

From the Gronwall lemma, we obtain

‖wµ,krk (t)− wµr (t)‖Rn ≤ (‖wµ,krk (rk)− wµr (rk)‖Rn + Γk)eLτ ,

for all t ∈ [rk, τ ] and all k ∈ N. Since we only want to prove the uniform convergence of wµ,krk
to wµr on [r + λ, τ ] (and since rk converges to r) and since the estimate on the right-hand side is
independent of t, we only need to prove that ‖wµ,krk (rk) − wµr (rk)‖Rn and Γk converge to 0 as k
tends to +∞. The convergence of Γk can be obtained with the Lebesgue dominated convergence
theorem. Now let us prove that ‖wµ,krk (rk)−wµr (rk)‖Rn tends to 0 as k tends to +∞. It holds that

‖wµ,krk (rk)− wµr (rk)‖Rn

≤ ‖wµ,krk (rk)− wµ,krk (rk)‖Rn + ‖wµ,krk (rk)− wµr (r)‖Rn + ‖wµr (r)− wµr (rk)‖Rn ,

for all k ∈ N. Let us deal with the three terms above. Firstly, from the integral representation of
wµ,krk , it holds that

‖wµ,krk (rk)− wµ,krk (rk)‖Rn ≤
∫ rk

rk

‖∂1f(x(s, uk, x0,k), uk(s), s)‖Rn×n‖wµ,krk (s)‖Rn ds

≤ LC(rk − rk),

for all k ∈ N. Secondly we have already mentioned that wµ,krk (rk) tends to wµr (r) as k tends to +∞.
Thirdly we use the continuity of wµr to conclude the proof.

A.3 Application of the Ekeland variational principle in the case L = 0

From the sensitivity analysis of the state equation given in Section A.2, we are now in a position
to give a proof of Theorem 2.1 based on the following simplified version of the Ekeland variational
principle (see [17, Theorem 1.1 p.324]).

Proposition A.8 (Ekeland variational principle). Let (E,dE) be a complete metric set. Let J :
E→ R+ be a continuous nonnegative map. Let ε > 0 and λ∗ ∈ E such that J (λ∗) ≤ ε. Then there
exists λε ∈ E such that dE(λε, λ

∗) ≤
√
ε, and −

√
ε dE(λ, λε) ≤ J (λ)− J (λε) for all λ ∈ E.

Without loss of generality (see details at the beginning of Appendix A), we will assume that L = 0
in Problem (OSCP). We will also assume that the final time and the N -partition are free in
Problem (OSCP) (the two simpler cases where only the final time is fixed, and where both of them
are fixed can both be treated in very similar ways).

Let (T,T, x, u) be a solution to Problem (OSCP). In the sequel we will consider that u ∈
L∞(R+,Rm) by considering the extension{

u over [0, T ),
uN−1 over [T,+∞).
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In particular, using the notations of Section A.2, note that x = x(·, u, x(0)) and that τ(u, x(0)) > T .
In the rest of the proof we fix some τ0, τ such that

τ0 := T − T − tN−1
3

and T < τ < min

(
T +

T − tN−1
3

, τ(u, x(0))

)
.

In particular it holds that tN−1 < τ0 < T < τ < τ(u, x(0)). Replacing tN = T by tN = τ , it holds
that T ∈ PτN and, with the above extension of u, it holds that u ∈ PCT

N ([0, τ ],Rm). We conclude

by noting that, with the new value of ‖T‖, it holds that tN−1 + ‖T‖
4 < τ0.

A.3.1 Fix R ∈ N such that R ≥ ‖u‖L∞

In this section we fix R ∈ N such that R ≥ ‖u‖L∞ and we denote by

NR
ε :=

{
(u′, x′0) ∈ N ((u, x(0)), (R, τ), ε) | u′ ∈ PCN,(u,T)([0, τ ],Rm)

with u′(t) ∈ Ω for a.e. t ∈ [0, τ ]} ,

where ε > 0 is given in Proposition A.4. We endow the set NR
ε × [τ0, τ ] with the L1([0, τ ],Rm)×

Rn × R-distance. Endowed with this distance, it can be seen from Proposition A.1, from the
closedness assumption on Ω and from the partial converse of the Lebesgue dominated convergence
theorem that NR

ε × [τ0, τ ] is a complete metric set.

Let us consider a sequence (εk)k∈N converging to zero such that 0 <
√
εk < ε for all k ∈ N. Then

we define the penalized functional J Rk : NR
ε × [τ0, τ ]→ R+ by

J Rk (u′, x′0, T
′)

:=

√(
ϕ(x′0, x(T ′, u′, x′0), T ′)− ϕ(x(0), x(T ), T ) + εk

)+2

+ d2
S

(
g(x′0, x(T ′, u′, x′0), T ′)

)
,

for all (u′, x′0, T
′) ∈ NR

ε × [τ0, τ ] and all k ∈ N.

Since ϕ, g and d2
S are continuous and from Proposition A.4, it follows that J Rk is a continuous

nonnegative map over NR
ε × [τ0, τ ] for all k ∈ N. Furthermore it is clear that J Rk (u, x(0), T ) = εk

for all k ∈ N. Therefore, from the Ekeland variational principle (see Proposition A.8), we conclude
that there exists a sequence (uk, x0,k, Tk)k∈N ⊂ NR

ε × [τ0, τ ] such that

dL1([0,τ ],Rm)×Rn×R((uk, x0,k, Tk), (u, x(0), T )) ≤
√
εk, (6)

and

−
√
εk dL1([0,τ ],Rm)×Rn×R((u′, x′0, T

′), (uk, x0,k, Tk)) ≤ J Rk (u′, x′0, T
′)− J Rk (uk, x0,k, Tk), (7)

for all (u′, x′0, T
′) ∈ NR

ε × [τ0, τ ] and all k ∈ N.

By contradiction let us assume that there exists (u′, x′0, T
′) ∈ NR

ε ×[τ0, τ ] such that J Rk (u′, x′0, T
′) =

0. In particular we have 0 < T ′ ≤ τ . Let us denote by x′ = x(·, u′, x′0) ∈ AC([0, T ′],Rn). Since

u′ ∈ PCN,(u,T)([0, τ ],Rm), there exists T′ = (t′i)i=0,...,N ∈ PτN,(u,T) such that u′ ∈ PCT′
N ([0, τ ],Rm).

Since T′ = (t′i)i=0,...,N ∈ PτN,(u,T), we know that t′N−1 ≤ tN−1 + ‖T‖
4 < τ0 ≤ T ′ ≤ τ . Then,

replacing t′N = τ by t′N = T ′, we get that T′ ∈ PT ′N and u′ ∈ PCT′
N ([0, T ′],Rm). Moreover it holds

that ẋ′(t) = f(x′(t), u′(t), t) and u′(t) ∈ Ω for almost every t ∈ [0, T ′]. Since J Rk (u′, x′0, T
′) = 0,

we deduce moreover that g(x′(0), x′(T ′), T ′) ∈ S. Thus the quadruple (T ′,T′, x′, u′) satisfies all
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constraints of Problem (OSCP) and thus ϕ(x′(0), x′(T ′), T ′) ≥ ϕ(x(0), x(T ), T ) from optimality of
the quadruple (T,T, x, u). This raises a contradiction with the equality J Rk (u′, x′0, T

′) = 0. We
conclude that J Rk (u′, x′0, T

′) > 0 for all (u′, x′0, T
′) ∈ NR

ε × [τ0, τ ].

From the above paragraph we can correctly define the couple (ψ0R
k , ψRk ) ∈ R× Rj as

ψ0R
k :=

−1

J Rk (uk, x0,k, Tk)

(
ϕ(x0,k, x(Tk, uk, x0,k), Tk)− ϕ(x(0), x(T ), T ) + εk

)+
and

ψRk :=
−1

J Rk (uk, x0,k, Tk)

(
g(x0,k, x(Tk, uk, x0,k), Tk)− PS(g(x0,k, x(Tk, uk, x0,k), Tk))

)
,

for all k ∈ N. Note that ψ0R
k ∈ R− and −ψRk ∈ NS[PS(g(x0,k, x(Tk, uk, x0,k), Tk))] from Lemma A.1

for all k ∈ N.

Since (uk, x0,k, Tk) ∈ NR
ε × [τ0, τ ], we know that uk ∈ PCN,(u,T)([0, τ ],Rm) for all k ∈ N. Let

us denote by Tk = (ti,k)i=0,...,N ∈ PτN,(u,T) a partition associated to uk for all k ∈ N. Moreover,

from Inequality (6), the sequence (uk)k∈N converges to u in L1([0, τ ],Rm). Thus we can extract
from Proposition A.2 a subsequence (which we do not relabel) such that uk(t) converges to u(t)
for almost every t ∈ [0, τ ], ti,k converges to ti for all i = 0, . . . , N and ui,k converges to ui for
all i = 0, . . . , N − 1. From Inequality (6), we know that x0,k and Tk converge respectively to
x(0) and T . From Proposition A.4, we deduce that x(Tk, uk, x0,k) converges to x(T ) and thus
g(x0,k, x(Tk, uk, x0,k), Tk) converges to g(x(0), x(T ), T ) ∈ S. Finally, from the definition of J Rk ,
it is clear that |ψ0R

k |2 + ‖ψRk ‖2Rj = 1 for all k ∈ N. By a compactness argument, we can extract
subsequences (which we do not relabel) such that ψ0R

k converges to some ψ0R ∈ R− and ψRk
converges to some ψR ∈ Rj which satisfies −ψR ∈ NS[g(x(0), x(T ), T )] from Lemma A.2. Note
that |ψ0R|2 + ‖ψR‖2Rj = 1.

A.3.2 Crucial inequalities depending on R fixed in the previous section

In this section we will use Inequality (7) along with the perturbations defined in Section A.2 to
obtain four crucial inequalities (depending on R fixed in the previous section). The perturbations
will be considered on uk, x0,k, ti,k, but also on Tk.

Lemma A.10. Let v ∈ PCT
N ([0, τ ],Rm) taking values in Ω ∩ BRm(0Rm , R). Then the inequality〈

ψ0R∂2ϕ(x(0), x(T ), T ) + ∂2g(x(0), x(T ), T )> × ψR, wv(T )
〉
Rn
≤ 0, (8)

where wv is defined in Proposition A.5, holds true.

Proof. The proof is divided in three steps.

First step: For all k ∈ N, let us define

vk(t) := vi if t ∈ [ti,k, ti+1,k) for some i ∈ {0, . . . , N − 1},

for all t ∈ [0, τ). Then vk ∈ PCTk
N ([0, τ ],Rm) for all k ∈ N and, since ti,k converges to ti for all

i = 0, . . . , N , it is clear that the sequence (vk)k∈N converges to v in L1([0, τ ],Rm). It is also true
that vk takes its values in Ω ∩ BRm(0Rm , R) for all k ∈ N.

Second step: Let us fix k ∈ N. We define as in Proposition A.5 the convex perturbation

uk,vk(·, α) :=

{
uk + α(vk − uk) over [0, τ),
uk = u over [τ,+∞),
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for all 0 ≤ α ≤ 1. First of all, note that uk,vk(·, α) ∈ PCTk
N ([0, τ ],Rm) ⊂ PCN,(u,T)([0, τ ],Rm) and,

since Ω is convex, that uk,vk(·, α) takes its values in Ω for all 0 ≤ α ≤ 1. Moreover, it holds that
‖uk,vk(·, α)‖L∞ ≤ R and

‖uk,vk(·, α)− u‖L1([0,τ ],Rm) ≤ ‖uk,vk(·, α)− uk‖L1([0,τ ],Rm) + ‖uk − u‖L1([0,τ ],Rm)

≤ α‖vk − uk‖L1([0,τ ],Rm) +
√
εk.

Since
√
εk < ε, it follows that there exists 0 < α0 ≤ 1 small enough such that (uk,vk(·, α), x0,k) ∈

NR
ε for all α ∈ [0, α0]. From Inequality (7) we obtain

−
√
εk‖uk,vk(·, α)− uk‖L1([0,τ ],Rm) ≤ J Rk (uk,vk(·, α), x0,k, Tk)− J Rk (uk, x0,k, Tk),

and thus

−
√
εk‖vk − uk‖L1([0,τ ],Rm)

≤ 1

J Rk (uk,vk(·, α), x0,k, Tk) + J Rk (uk, x0,k, Tk)
× J

R
k (uk,vk(·, α), x0,k, Tk)2 − J Rk (uk, x0,k, Tk)2

α
,

for all α ∈ (0, α0]. Taking the limit as α tends to 0 and using the definitions of ψ0R
k and ψRk , we

obtain from Proposition A.5 that〈
ψ0R
k ∂2ϕ(x0,k, x(Tk, uk, x0,k), Tk) + ∂2g(x0,k, x(Tk, uk, x0,k), Tk)> × ψRk , wkvk(Tk)

〉
Rn

≤
√
εk‖vk − uk‖L1([0,τ ],Rm).

where wkvk is defined in Lemma A.7.

Third step: We take the limit of the above inequality as k tends to +∞. Since ϕ and g are both
of class C1 and from the uniform convergence of (wkvk)k∈N to wv over [0, τ ] (see Lemma A.7), it
holds that 〈

ψ0R∂2ϕ(x(0), x(T ), T ) + ∂2g(x(0), x(T ), T )> × ψR, wv(T )
〉
Rn
≤ 0.

The proof is complete.

Lemma A.11. Let y ∈ Rn be fixed. Then the inequality〈
ψ0R∂1ϕ(x(0), x(T ), T ) + ∂1g(x(0), x(T ), T )> × ψR, y

〉
Rn

+
〈
ψ0R∂2ϕ(x(0), x(T ), T ) + ∂2g(x(0), x(T ), T )> × ψR, wy(T )

〉
Rn
≤ 0, (9)

where wy is defined in Proposition A.6, holds true.

Proof. The proof is standard and left to the reader. For similar statements with detailed proofs,
we refer to [11, Lemma 17 p.3807-3808] or [13, Lemma 4.20 p.87].

Lemma A.12. Let i ∈ {1, . . . , N−1} such that ui−1 6= ui and let µ ∈ {−1, 1}. Then the inequality〈
ψ0R∂2ϕ(x(0), x(T ), T ) + ∂2g(x(0), x(T ), T )> × ψR, wµti(T )

〉
Rn
≤ 0, (10)

where wµti is defined in Proposition A.7, holds true.
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Proof. The proof is divided in two steps.

First step: Since ti,k converges to ti and since ti − ‖T‖4 ≤ ti,k ≤ ti + ‖T‖
4 , we fix k ∈ N sufficiently

large in order to guarantee that ti − ‖T‖8 ≤ ti,k ≤ ti + ‖T‖
8 . Since uk ∈ PCTk

N ([0, τ ],Rm), the
point ti,k is a switching time of uk with ηti,k = min(ti,k − ti−1,k, ti+1,k − ti,k) > 0. We define the
perturbation uµk,ti,k(·, α) as

uµk,ti,k(·, α) :=


uk(t−i,k) = ui−1,k over [ti,k − ηti,k , ti,k + µα),

uk(t+i,k) = ui,k over [ti,k + µα, ti,k + ηti,k),

uk otherwise,

for all 0 ≤ α ≤ ηti,k
2 . Considering Ti,αk the N -partition given by

0 = t0,k < t1,k < . . . < ti−1,k < ti,k + µα < ti+1,k < . . . < tN−1,k < tN,k = τ,

it is clear that uµk,ti,k(·, α) ∈ PC
Ti,αk
N ([0, τ ],Rm) for all 0 ≤ α ≤ ηti,k

2 . Since ti− ‖T‖8 ≤ ti,k ≤ ti+
‖T‖
8 ,

then ti− ‖T‖4 ≤ ti,k+µα ≤ ti+ ‖T‖4 and thus Ti,αk ∈ PτN,(u,T) and uµk,ti,k(·, α) ∈ PCN,(u,T)([0, τ ],Rm)

for small enough 0 ≤ α ≤ ηti,k
2 . Note that uµk,ti,k(·, α) takes its values in Ω for all 0 ≤ α ≤ ηti,k

2 . It

holds that ‖uµk,ti(·, α)‖L∞ ≤ R and

‖uµk,ti(·, α)− u‖L1([0,τ ],Rm) ≤ ‖uµk,ti(·, α)− uk‖L1([0,τ ],Rm) + ‖uk − u‖L1([0,τ ],Rm) ≤ 2Rα+
√
εk,

for all 0 ≤ α ≤ ηti,k
2 . Since

√
εk < ε, we conclude that there exists 0 < α0 ≤

ηti,k
2 small enough

such that (uµk,ti(·, α), x0,k) ∈ NR
ε for all 0 ≤ α ≤ α0. From Inequality (7) we obtain

−
√
εk‖uµk,ti(·, α)− uk‖L1([0,τ ],Rm) ≤ J Rk (uµk,ti(·, α), x0,k, Tk)− JRk (uk, x0,k, Tk),

and thus

− 2R
√
εk

≤ 1

J Rk (uµk,ti(·, α), x0,k, Tk) + JRk (uk, x0,k, Tk)
×
J Rk (uµk,ti(·, α), x0,k, Tk)2 − JRk (uk, x0,k, Tk)2

α
,

for all α ∈ (0, α0]. Taking the limit as α tends to 0 and using the definitions of ψ0R
k and ψRk , we

obtain from Proposition A.7 that〈
ψ0R
k ∂2ϕ(x0,k, x(Tk, uk, x0,k), Tk) + ∂2g(x0,k, x(Tk, uk, x0,k), Tk)> × ψRk , w

µ,k
ti,k

(Tk)
〉
Rn
≤ 2R

√
εk,

where wµ,kti,k is defined in Lemma A.9.

Second step: We take the limit of the above inequality as k tends to +∞. Since ϕ and g are
of class C1 and, since ti < τ0, from the uniform convergence of (wµ,kti,k)k∈N to wµti over [τ0, τ ] (see
Lemma A.9), it holds that〈

ψ0R∂2ϕ(x(0), x(T ), T ) + ∂2g(x(0), x(T ), T )> × ψR, wµti(T )
〉
Rn
≤ 0.

The proof is complete.
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Lemma A.13. The equality〈
ψ0R∂2ϕ(x(0), x(T ), T ) + ∂2g(x(0), x(T ), T )> × ψR, f(x(T ), uN−1, T )

〉
Rn

+ ψ0R∂3ϕ(x(0), x(T ), T ) + ∂3g(x(0), x(T ), T )> × ψR = 0, (11)

holds.

Proof. The proof is divided in two steps.

First step: Let µ ∈ {−1, 1}. Since (Tk)k∈N converges to T ∈ (τ0, τ), then Tk ∈ (τ0, τ) for k ∈ N
sufficiently large. Let us fix such an integer k ∈ N. Thus there exists α0 > 0 small enough such
that (x0,k, uk, Tk + µα) ∈ NR

ε × [τ0, τ ] for all 0 ≤ α ≤ α0. From Inequality (7) we obtain

−
√
εk |Tk + µα− Tk| ≤ J Rk (uk, x0,k, Tk + µα)− J Rk (uk, x0,k, Tk),

and thus

−
√
εk ≤

1

J Rk (uk, x0,k, Tk + µα) + J Rk (uk, x0,k, Tk)
× J

R
k (uk, x0,k, Tk + µα)2 − J Rk (uk, x0,k, Tk)2

α
,

for all α ∈ (0, α0]. Taking the limit as α tends to 0 and using the definitions of ψ0R
k and ψRk ,

we obtain from the differentiability of x(·, uk, x0,k) at Tk (since uk is constant over the interval
[τ0, τ ] ⊂ [tN−1,k, tN,k] and since Tk ∈ (τ0, τ)) that

µ
〈
ψ0R
k ∂2ϕ(x0,k, x(Tk, uk, x0,k), Tk) + ∂2g(x0,k, x(Tk, uk, x0,k), Tk)> × ψRk

, f(x(Tk, uk, x0,k), uk(Tk), Tk)
〉
Rn

+ µψ0R
k ∂3ϕ(x0,k, x(Tk, uk, x0,k), Tk) + µ∂3g(x0,k, x(Tk, uk, x0,k), Tk)> × ψRk ≤

√
εk,

where uk(Tk) = uN−1,k.

Second step: We take the limit of the above inequality as k tends to +∞. Let us recall that uN−1,k
converges to uN−1. Furthermore, since f is continuous, since ϕ and g are of class C1, and since
uk(Tk) converges to u(T ) from Proposition A.2, it holds that

µ
〈
ψ0R∂2ϕ(x(0), x(T ), T ) + ∂2g(x(0), x(T ), T )> × ψR, f(x(T ), uN−1, T )

〉
Rn

+ µψ0R∂3ϕ(x(0), x(T ), T ) + µ∂3g(x(0), x(T ), T )> × ψR ≤ 0.

Since µ can be chosen arbitrarily in {−1, 1}, the proof is complete.

A.3.3 Crucial inequalities letting R go to +∞

In the previous section we have obtained Inequalities (8), (9) and (10) and Equality (11) which are
valid for R ∈ N being fixed such that R ≥ ‖u‖L∞ . In particular Inequality (8) is satisfied only for
v ∈ PCT

N ([0, τ ],Rm) taking values in Ω∩BRm(0Rm , R). Our goal in this section is to get rid of the
dependence in R. From the equality |ψ0R|2 + ‖ψR‖2Rj = 1 (see the end of Section A.3.1), we can
extract subsequences (that we do not relabel) such that (ψ0R)R∈N converges to some ψ0 in R and
(ψR)R∈N converges to some ψ in Rj when R → ∞. It clearly holds that |ψ0|2 + ‖ψ‖2Rj = 1 and,
since R− and NS[g(x(0), x(T ), T )] are closed, that ψ0 ∈ R− and −ψ ∈ NS[g(x(0), x(T ), T )].
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Now let us fix v ∈ PCT
N ([0, τ ],Rm) taking values in Ω. Considering R ∈ N large enough in order to

get that R ≥ ‖u‖L∞ and R ≥ ‖v‖L∞ , we know from Lemma A.10 that Inequality (8) is satisfied.
Taking the limit as R tends to +∞ we conclude that

〈ψ0∂2ϕ(x(0), x(T ), T ) + ∂2g(x(0), x(T ), T )> × ψ,wv(T )〉Rn ≤ 0. (12)

Similarly, letting R go to +∞ in Inequalities (9) and (10) and in Equality (11), we get that

〈ψ0∂1ϕ(x(0), x(T ), T ) + ∂1g(x(0), x(T ), T )> × ψ, y〉Rn

+ 〈ψ0∂2ϕ(x(0), x(T ), T ) + ∂2g(x(0), x(T ), T )> × ψ,wy(T )〉Rn ≤ 0,
(13)

for any y ∈ Rn, that

〈ψ0∂2ϕ(x(0), x(T ), T ) + ∂2g(x(0), x(T ), T )> × ψ,wµti(T )〉Rn ≤ 0, (14)

for any i ∈ {1, . . . , N − 1} such that ui−1 6= ui and any µ ∈ {−1, 1}, and that

〈ψ0∂2ϕ(x(0), x(T ), T ) + ∂2g(x(0), x(T ), T )> × ψ, f(x(T ), uN−1, T )〉Rn

+ψ0∂3ϕ(x(0), x(T ), T ) + ∂3g(x(0), x(T ), T )> × ψ = 0.
(15)

A.3.4 End of the proof

Now we can end the proof of Theorem 2.1 with the introduction of the adjoint vector p. Before
coming to this point, let us first define p0 := ψ0 and Ψ := ψ. In particular note that p0 ∈ R−, that
Ψ ∈ Rj is such that −Ψ ∈ NS[g(x(0), x(T ), T )] and that |p0|2 + ‖Ψ‖2Rj = 1.

We define the adjoint vector p ∈ AC([0, T ],Rn) as the unique solution (that is global) to the
backward linear Cauchy problem given by{

ṗ(t) = −∂1f(x(t), u(t), t)> × p(t), a.e. t ∈ [0, T ],

p(T ) = p0∂2ϕ(x(0), x(T ), T ) + ∂2g(x(0), x(T ), T )> ×Ψ.

From the Duhamel formula, recall that

p(t) = Z(T, t)> ×
(
p0∂2ϕ(x(0), x(T ), T ) + ∂2g(x(0), x(T ), T )> ×Ψ

)
,

for all t ∈ [0, T ], where Z(·, ·) : [0, T ]2 → Rn×n stands for the state transition matrix associated to
the matrix function t 7→ ∂1f(x(t), u(t), t).

Adjoint equation and transversality conditions on the adjoint vector. From the above
definition of the adjoint vector p, it is clear that the adjoint equation in Theorem 2.1 and the
transversality condition p(T ) = p0∂2ϕ(x(0), x(T ), T )+∂2g(x(0), x(T ), T )>×Ψ are satisfied. More-
over, from the Duhamel formula, it holds that wy(T ) = Z(T, 0) × y and thus Inequality (13) can
be rewritten as

〈p0∂1ϕ(x(0), x(T ), T ) + ∂1g(x(0), x(T ), T )> ×Ψ + p(0), y〉Rn ≤ 0,

for all y ∈ Rn. Thus we conclude that the transversality condition −p(0) = p0∂1ϕ(x(0), x(T ), T ) +
∂1g(x(0), x(T ), T )> ×Ψ holds.
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Nonpositive averaged Hamiltonian gradient condition. Let us fix ω ∈ Ω and i ∈ {0, . . . , N−
1}. Let us consider v ∈ PCT

N ([0, T ],Rm) defined by

v(t) :=

{
ω if t ∈ [ti, ti+1),
u(t) otherwise,

for all t ∈ [0, T ]. From the Duhamel formula given by

wv(T ) =

∫ T

0

Z(T, t)× ∂2f(x(t), u(t), t)× (v(t)− u(t)) dt,

Inequality (12) can be rewritten as∫ T

0

〈
∂2f(x(t), u(t), t)> × p(t), v(t)− u(t)

〉
Rm dt ≤ 0,

that is 〈∫ ti+1

ti

∂2H(x(t), ui, p(t), p
0, t) dt, ω − ui

〉
Rm
≤ 0.

Transversality conditions on the optimal sampling times. Let us fix some i ∈ {1, . . . , N−
1} and µ ∈ {−1, 1}. If ui−1 = ui, then the transversality condition (3) in Theorem 2.1 is obviously
satisfied. Now let us assume that ui−1 6= ui. From the Duhamel formula given by

wµti(T ) = µZ(T, ti)×
(
f(x(ti), ui−1, ti)− f(x(ti), ui, ti)

)
,

Inequality (14) can be rewritten as

µ〈p(ti), f(x(ti), ui−1, ti)− f(x(ti), ui, ti)〉Rn ≤ 0.

Since µ can be arbitrarily chosen in {−1, 1} and from the definition of the Hamiltonian H, we get
that

H(x(ti), ui−1, p(ti), p
0, ti) = H(x(ti), ui, p(ti), p

0, ti).

Transversality condition on the optimal final time. Equality (15) can directly rewritten
as

−H(x(T ), uN−1, p(T ), p0, T ) = p0∂3ϕ(x(0), x(T ), T ) + ∂3g(x(0), x(T ), T )> ×Ψ.

Nontriviality of the couple (p, p0). Let us assume by contradiction that the couple (p, p0)
is trivial. Then p(0) = p(T ) = 0Rn and p0 = 0. We get from the transversality conditions on
the adjoint vector and on the optimal final time that Dg(x(0), x(T ), T )> × Ψ = 0R2n+1 . From
the submersion property, we deduce that Ψ = 0Rj which raises a contradiction with the equality
|p0|2 + ‖Ψ‖2Rj = 1.
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Nelinĕınaya Din. Upr. No. 6 (2008), 101–136.

[17] I. Ekeland. On the variational principle. J. Math. Anal. Appl., 47:324–353, 1974.

[18] M. S. Fadali and A. Visioli. Digital control engineering: Analysis and design. Elsevier, 2013.

[19] H. O. Fattorini. Infinite-dimensional optimization and control theory, volume 62 of Encyclo-
pedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1999.

[20] K. A. Grasse and H. J. Sussmann. Global controllability by nice controls. In Nonlinear
controllability and optimal control, volume 133 of Monogr. Textbooks Pure Appl. Math., pages
33–79. Dekker, New York, 1990.

33
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